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Abstract: This paper is designed to provide an extensive introduction to the prin-
ciples of multiple imputation and to give some general recommendations of using
multiple imputation techniques in the DACSEIS universes. The definition of an ig-
norable missingness mechanism is explained, and the concept of the observed-data
likelihood is discussed. To introduce the multiple imputation principle a short in-
troduction of Bayesian statistics is provided. A small simulation study is performed
comparing different approaches to illuminate the advantages and disadvantages of
different imputation techniques. Finally, an overview about recently available mul-
tiple imputation software is given and violations of the assumptions made are ad-
dressed.

Keywords: Complex survey, missing data, ignorable missingness, observed-data

likelihood, observed-data posterior, Monte-Carlo techniques

1 Introduction

Often empirical researchers are confronted with missing values in their data sets. As the
phenomenon is often not seen as a possible threat to the validity of the research, the most
common approach to this problem is simply to deny it. However, a closer look to the data
often reveals 5% to 20% of missing values in a few variables, reducing the complete data
for any multivariate analysis considerably, see Figure 1.

Moreover, often these blind spots were not dropped randomly all over the responses.
We find special socio-economic groups or minorities disproportionately struck by missing
values. Even worse, if the missingness depends on the variable of interest itself, like it is
common that the highest income appears to be unknown. The same happens when, e.g.,
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1 Introduction 2

populations with worst health conditions or high at risk refuse to be sampled. Finally, the
quality of response deteriorates with long and boring questionnaires like they are common
practice in media research. In all these cases, missing data can be a threat to the research
and the remaining data are all but representative for the population of interest.
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Figure 1: Loss of information due to case deletion

Missing data are common in practice and usually complicate data analyses for scientific
investigations. A rather general method for handling missing values in a data set is to
impute, i.e., fill in one or more plausible values for each missing datum so that one or
more completed data sets are created. Often it is easier to first impute for the missing
values and then use a standard complete-data method of analysis than to develop special
statistical techniques that allow the analysis of incomplete data directly.

Imputing a single value for each missing datum and then analyzing the completed data
using standard techniques designed for complete data will usually result in standard error
estimates that are too small, confidence intervals that undercover, and p-values that are
too significant; this is true even if the modeling for imputation is carried out carefully.
The usual single imputation strategies such as mean imputation, hot deck, or regression
imputation typically result in confidence intervals and p-values that ignore the uncertainty
due to the missing data, because the imputed data were treated as if they were fixed known
values.1

1A discussion of advantages and disadvantages of single and multiple imputation procedures may be
found by the interested reader in Marker et al. (2002) and Meng (2002). Approaches for obtaining
frequency valid standard errors under single imputation procedures are discussed, e.g., by Lee et al.
(2002) and Shao (2002).
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2 Missingness mechanisms 3

Multiple imputation (MI), introduced by Rubin (1978) and discussed in detail in Rubin
(1987), is an approach that retains the advantages of imputation while allowing the data
analyst to make valid assessments of uncertainty. The concept of multiple imputation
reflects uncertainty in the imputation of the missing values through resulting in theoreti-
cally wider confidence intervals and thus p-values suggesting less significance than single
imputation would. MI is a Monte Carlo technique that replaces the missing values by
m > 1 simulated versions, generated according to a probability distribution indicating
how likely the true values are given the observed data, see Figure 2.
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Figure 2: Multiple imputation

Typically m is small, e.g., m = 5, although with upcoming computational power m can
be 10 or 20, in general, this depends on the amount of missingness and on the distribution
of the parameter to be estimated, especially if analyst’s model and imputer’s model differ.
Each of the imputed (and thus completed) data sets is first analyzed by standard methods;
the results are then combined to produce estimates and confidence intervals that reflect
the missing data uncertainty.

2 Missingness mechanisms

Following the terminology introduced by Rubin (1987) and Little and Rubin (1987, 2002)
the missing-data mechanism can be classified according to the probability of response.
The missing data are said to be as follows.
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2 Missingness mechanisms 4

• MCAR – missing completely at random. In this case, the unobserved values form
a random subsample of the sampled values. If, for instance, the probability that
income is recorded is the same for all individuals, regardless of, e.g., their age or
income itself, then the data are said to be MCAR.

• MAR – missing at random. In this case, the unobserved values form a random
subsample of the sampled values within classes defined by the observed values. For
example, if the probability that income is recorded varies according to the age of
the respondent but does not vary according to the income of the respondent within
an age group, then the data are MAR.

• MNAR – missing not at random. If the data are neither MCAR nor MAR, the mech-
anism is nonignorable. If the probability that income is recorded varies according
to income itself, then the data are MNAR.

We will discuss these definitions more technically now. Let U be any population of in-
terest, finite or not, and ui = (ui1, ui2, . . . , uir) denote the value of a random vector
U = (U1, U2, . . . , Ur) for each unit i ∈ U . Without loss of generality let fU(ui; θ) be the
probability of drawing a certain unit i, i ∈ U with observations ui = (ui1, ui2, . . . , uir)
depending on the parameter θ ∈ Ωθ which may be regarded as a scalar or vector. In the
case of continuous random variables U , fU may be taken as the density function instead
of the probability function. To be more general, fU may also describe a finite mixture
of densities. Finally, let a random sample of n independently observed units from U be
given with probability or, more generally, with density function

∏n
i=1 fU(ui; θ), θ ∈ Ωθ.

Now denote the observed part of the random vector U by Uobs, and the missing part
by Umis, so that U = (Uobs, Umis). The joint distribution of Uobs and Umis is given by
fU(ui; θ) = fUobs,Umis

(uobs,i, umis,i; θ) for each unit i ∈ U .

Furthermore, let R be an indicator variable being zero or one depending on whether the
corresponding element of U is missing or observed; i.e.,

Rij =

{
1 , if variable Uj is observed on the unit i,
0 , else,

for all units i ∈ U and variables Uj, j = 1, 2, . . . , r. Generally a probability model for R
with fR(r; ξ) is assumed, which depends on some unknown nuisance parameter ξ ∈ Ωξ.
Hence, the joint distribution of the response indicator R and the interesting variables U
is given by

fU,R(u, r; θ, ξ) = fU(u; θ)fR|U(r|u; ξ), (θ, ξ) ∈ Ωθ,ξ.

The density or probability function describing the observed data of any unit i ∈ U and,
thus, their likelihood may actually be written

L(θ, ξ; uobs, r) = fUobs,R(uobs, r; θ, ξ)

=

∫
fUobs,Umis

(uobs, umis; θ)fR|Uobs,Umis
(r|uobs, umis; ξ)dumis, (1)

with (θ, ξ) ∈ Ωθ,ξ. For simplicity we want the integral to be understood as the sum for
discrete distributions. To ease reading, we usually refer to fU as the density function of
U hereinafter.
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Figure 3: Missing data example

Consider, e.g., an iid sample with two random variables U1 and U2 observed from n (U1)
or r < n (U2) units, respectively. Then the observed-data likelihood according to the data
presented in Figure 3, is

L(θ, ξ; uobs, r) =
r∏

i=1

fU1,U2
(ui1, ui2; θ)fR|U1,U2

(ri|ui1, ui2; ξ)

×
n∏

i=r+1

∫
fU1,U2

(ui1, ui2; θ)fR|U1,U2
(ri|ui1, ui2; ξ)dui2

which is also called the full likelihood by Little and Rubin (2002), p. 119. Notice that the
integration of the second term is not easily done without further assumptions.

Now the assumptions concerning the missing-data mechanisms can be explained in more
detail.

• First of all it is assumed that θ and ξ are “distinct”; i.e., knowing θ will provide
no information about ξ and vice versa (see Schafer (1997), p. 11). Then the joint
parameter space Ωθ,ξ is the product of the parameter space of θ and the parameter
space of ξ, i.e., Ωθ,ξ = Ωθ ×Ωξ. Thus, the conditional distribution of R given a value
U = u, i.e., R|U = u or, for short, R|u, does not depend on θ and can therefore be
written as fR|U(r|u; ξ).

• Under the MCAR mechanism the response indicator R and the interesting variables
U are assumed to be independent with fR|U(r|u; ξ) = fR(r; ξ) for all U .

• Under the MAR mechanism the conditional distribution of R|U = u does not depend
on the missing data Umis and is given by fR|U(r|u; ξ) = fR|Uobs

(r|uobs; ξ) for all Umis.

Thus we have seen, if the parameters ξ and θ are distinct and the missing-data mecha-
nism is at least MAR, then the conditional distribution of R|u is given by fR|U(r|u; ξ) =
fR|Uobs

(r|uobs; ξ). The conditional distribution of R|u is independent of Umis and θ; the
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3 Multiple imputation 6

missingness mechanism is said to be ignorable. The likelihood (1) of the observed data of
any unit i ∈ U under MAR can now be factorized into

L(θ, ξ; uobs, r) =

∫
fUobs,Umis

(uobs, umis; θ)fR|Uobs,Umis
(r|uobs, umis; ξ)dumis

=

∫
fU(u; θ)dumis

︸ ︷︷ ︸
= L(θ; uobs)

fR|Uobs
(r|uobs; ξ) , θ ∈ Ωθ, ξ ∈ Ωξ. (2)

According to Little and Rubin (2002) and illustrated by (2) under ignorable missingness, it
is not necessary to consider a model for R if likelihood-based inference about θ is intended.

For the above example as shown in Figure 3, if θ and ξ are distinct and fR|U1,U2
(r|u1, u2; ξ)

does not dependent on the missing data, i.e., the MAR assumptions holds, then the
observed-data likelihood reduces to

L(θ, ξ; uobs, r) =
r∏

i=1

fU1,U2
(ui1, ui2; θ)fR|U1,U2

(ri|ui1, ui2; ξ) ×
n∏

i=r+1

fU1
(ui1; θ)fR|U1

(ri|ui1; ξ)

=
r∏

i=1

fU1,U2
(ui1, ui2; θ) ×

n∏

i=r+1

fU1
(ui1; θ)

︸ ︷︷ ︸
= L(θ; uobs)

×
r∏

i=1

fR|U1,U2
(ri|ui1, ui2; ξ) ×

n∏

i=r+1

fR|U1
(ri|ui1; ξ)

and maximizing L(θ; uobs) with respect to θ gives the correct ML estimate of θ. Thus,
given n observations independently drawn from the underlying population, the likelihood
ignoring the missing-data mechanism is

L(θ; uobs) =
n∏

i=1

L(θ; uobs,i) =
n∏

i=1

fUobs
(uobs,i; θ) =

n∏

i=1

∫
fU(ui; θ)dumis,i .

Notice that uobs,i describes the observed value of unit i for i = 1, 2, . . . , n. Concerning
the example above, uobs,i = (ui1, ui2) for units i = 1, 2, . . . , r and uobs,i = (ui1) for units
i = r + 1, r + 2, . . . , n.

Hence, we have seen that all relevant statistical information about the parameters in-
corporated by θ should be contained in the observed-data likelihood L(θ; uobs), if the
complete-data model, i.e., the data generating process assuming no missingness, and the
ignorability assumption is correct.

3 Multiple imputation

Since the theoretical motivation for multiple imputation is Bayesian, a short introduction
to the Bayesian way of argumentation is given here first.
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3.1 Bayesian Inference 7

3.1 Bayesian Inference

The Bayesian paradigm is based on specifying a probability model for the observed data
U with joint density fU |Θ(u|θ) given a vector of unknown parameters Θ = θ which is
identical to the likelihood function L(θ; u) understood as a function of θ. Then we assume
that Θ is random2 and has a prior distribution with density or probability function fΘ.
Inference about Θ is then summarized in the function fΘ|U , which is called the posterior
distribution of Θ given the data. The posterior distribution is derived from the joint
distribution fU,Θ = fU |ΘfΘ according to Bayes’ formula

fΘ|U(θ|u) =
fΘ,U(θ, u)

fU(u)
=

fU |Θ(u|θ)fΘ(θ)∫
Ω

fΘ,U(θ, u)dθ
=

L(θ; u)fΘ(θ)∫
Ω

L(θ; u)fΘ(θ)dθ
, (3)

where Ω denotes the parameter space of Θ. Notice that from a Bayesian perspective the
joint distribution fU |Θ(u|θ) equates the likelihood L(θ; u) when the data are observed and
only Θ is still variable.

For brevity again the integral is used, although Θ may also be discrete. In such cases
the integral should be understood as the sum. From (3) it is easily seen that fΘ|U(θ|u) is
proportional to the likelihood multiplied by the prior; i.e.,

fΘ|U(θ|u) = c(u)−1L(θ; u)fΘ(θ) ∝ L(θ; u)fΘ(θ) = fU |Θ(u|θ)fΘ(θ),

and thus involves a contribution from the observed data through L(θ; u) and a contribution
from prior information quantified through fΘ(θ). The quantity

c(u) =

{ ∫
Ω

fU |Θ(u|θ)fΘ(θ)dθ if Θ is continuous,∑
Ω fU |Θ(u|θ)fΘ(θ) if Θ is discrete,

is usually treated as the normalizing constant of fΘ|U(θ|u) ensuring that it is a density
or probability function, i.e., to integrate or sum to one. Notice that c(u) is a constant
when the data U = u are observed. Before the data U are obtained, their distribution
fU(u) is called the marginal density of U or the prior predictive distribution, which is
not conditioning on previous observations. To predict a future observation value û when
the data U = u have been observed, we condition on these previous observations u. The
distribution fÛ |U(û|u) of Û |U = u is called the posterior predictive distribution with

fÛ |U(û|u) =

∫

Ω

fÛ |Θ,U(û|θ, u)fΘ|U(θ|u)dθ =

∫

Ω

fÛ |Θ(û|θ)fΘ|U(θ|u)dθ (4)

if Θ is continuous, otherwise the sum is taken instead of the integral. Notice that usually
Û and U are assumed to be conditionally independent given Θ; thus fÛ |Θ,U(û|θ, u) =

fÛ |Θ(û|θ) holds. Hence the posterior predictive distribution is conditioned on the values

U = u already observed and predicts a value Û = û that is observable.

A classical and extensive introduction to Bayesian inference is given by Box and Tiao
(1992); for deeper insights into Bayesian inference and computation the interested reader
is referred thereto. For further reading concerning Bayesian inference we recommend

2To make clear that the parameter θ is treated as a random variable in the Bayesian context, we use
capital letters for the random variable Θ as far as possible.
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Berger (1985), Gelman et al. (2000), and Carlin and Louis (2000). Frequentist methods,
however, do not tell us what our belief in a theory should be, given the data we have
actually observed. This question is usually answered by the posterior distribution fΘ|U .
To work out this value we must first establish fΘ; i.e., we have to formulate some “prior
probability” for the theory in mind. In contrast to classical Bayesian inference we do
not focus further on what we can learn about our theory given the data. Our objective
is the derivation of a suitable imputation procedure that has good properties under the
frequentist’s randomization perspective.

In the Bayesian framework all inference is based on a posterior density function for the
unknown parameters conditioning on the quantities observed. Returning to our notation
the unknown parameters are (Θ, Ξ) and the observed quantities are (Uobs, R). According
to Bayes’ theorem the posterior distribution of (Θ, Ξ) given (Uobs = uobs, R = r), i.e., the
observed-data posterior distribution fΘ,Ξ|Uobs,R = fΘ,Ξ,Uobs,R/fUobs,R, may be written as

fΘ,Ξ|Uobs,R(θ, ξ|uobs, r) = c−1fUobs,R|Θ,Ξ(uobs, r|θ, ξ)fΘ,Ξ(θ, ξ)

= c−1L(θ, ξ; uobs, r)fΘ,Ξ(θ, ξ) (5)

with normalizing constant

c =

∫ ∫
fUobs,R,Θ,Ξ(uobs, r, θ, ξ)dθ dξ =

∫ ∫
fUobs,R|Θ,Ξ(uobs, r|θ, ξ)fΘ,Ξ(θ, ξ)dθ dξ .

Note that L(θ, ξ; uobs, r) denotes the likelihood (2) of the observed data considering the
missingness mechanism, and fΘ,Ξ(θ, ξ) is the joint prior distribution of the parameters.

Under the assumption of MAR and the distinctness of (Θ, Ξ), which means prior inde-
pendence of Θ and Ξ in Bayesian inference, i.e., fΘ,Ξ(θ, ξ) = fΘ(θ)fΞ(ξ), according to (2)
the observed-data posterior (5) reduces to

fΘ,Ξ|Uobs,R(θ, ξ|uobs, r) = c−1fUobs|Θ,Ξ(uobs|θ, ξ)fR|Uobs,Θ,Ξ(r|uobs, θ, ξ)fΘ(θ)fΞ(ξ)

= c−1fUobs|Θ(uobs|θ)fR|Uobs,Ξ(r|uobs, ξ)fΘ(θ)fΞ(ξ) . (6)

From the Bayesian point of view the MAR assumption requires the independence of R
and Θ, i.e., fR|Uobs,Θ,Ξ(r|uobs, θ, ξ) = fR|Uobs,Ξ(r|uobs, ξ), as well as the independence of Uobs

and Ξ, i.e., fUobs|Θ,Ξ(uobs|θ, ξ) = fUobs|Θ(uobs|θ) leading to (6) finally.

Hence the marginal posterior distribution of Θ is achieved by integrating (6) over the
nuisance parameter Ξ with

fΘ|Uobs,R(θ|uobs, r) =

∫
fΘ,Ξ|Uobs,R(θ, ξ|uobs, r)dξ

=

∫
c−1fUobs|Θ(uobs|θ)fR|Uobs,Ξ(r|uobs, ξ)fΘ(θ)fΞ(ξ)dξ

= c−1 fUobs|Θ(uobs|θ)︸ ︷︷ ︸
= L(θ; uobs)

fΘ(θ)

∫
fR|Uobs,Ξ(r|uobs, ξ)fΞ(ξ)dξ

∝ L(θ; uobs)fΘ(θ) (7)

∝ fΘ(θ)
n∏

i=1

∫
fU |Θ(ui|θ)dumis,i.
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Now use c = fUobs,R(uobs, r) = fR|Uobs
(r|uobs)fUobs

(uobs) = c1 · c2, then, from (7) we realize
that fΘ|Uobs,R(θ|uobs, r) is also proportional to

c−1
2 L(θ; uobs)fΘ(θ) = fΘ|Uobs

(θ|uobs).

Thus, under ignorability all information about Θ is included in the posterior that ignores
the missing-data mechanism,

fΘ|Uobs
(θ|uobs) = c−1

2 L(θ; uobs)fΘ(θ) = c−1
2 fΘ(θ)

n∏

i=1

fUobs
(uobs,i; θ). (8)

For brevity we refer to (8) as the “observed-data posterior” according to Schafer (1997),
p. 17. With incomplete data, however, the usual conjugate prior distributions no longer
lead to posterior distributions that are recognizable or easy to summarize.

3.2 Multiple imputation paradigm

The theoretical motivation for multiple imputation is Bayesian, although the resulting
multiple imputation inference is usually valid also from a frequentist viewpoint. Basically,
MI requires independent random draws from the posterior predictive distribution fUmis|Uobs

of the missing data given the observed data analogous to (4). Since fUmis|Uobs
itself often

is difficult to draw from directly, a two-step procedure for each of the m draws is useful:

(a) First, we make random draws of the parameters Θ according to their observed-data
posterior distribution fΘ|Uobs

according to (8),

(b) then, we perform random draws of Umis according to their conditional predictive
distribution fUmis|Uobs,Θ.

Because

fUmis|Uobs
(umis|uobs) =

∫
fUmis|Uobs,Θ(umis|uobs, θ)fΘ|Uobs

(θ|uobs)dθ (9)

holds, analogous to (4), with (a) and (b) we achieve imputations of Umis from their
posterior predictive distribution fUmis|Uobs

. For many models the conditional predictive
distribution fUmis|Uobs,Θ is rather straightforward due to the data model used; see as an
example Figure 4. It often may easily be formulated for each unit with missing data.

On the contrary, the corresponding observed-data posteriors fΘ|Uobs
usually are difficult

to derive for those units with missing data, especially when the data have a multivariate
structure and different missing data patterns, see for illustration Figure 4. The observed-
data posteriors are often not standard distributions from which random numbers can
easily be generated. However, simpler methods have been developed to enable multiple
imputation on the grounds of Markov chain Monte Carlo (MCMC) techniques; they are
extensively discussed by Schafer (1997). In MCMC the desired distributions fUmis|Uobs

and
fΘ|Uobs

are achieved as stationary distributions of Markov chains which are based on the
easier to compute complete-data distributions.

To proceed further, let θ denote a scalar quantity of interest that is to be estimated,
such as a mean, variance, or correlation coefficient. Notice that now θ can be completely
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Unit no.

i

j

Variable

U1
. . . Ul Ul+1 . . . Uk Uk+1 . . . Ur

uobs,i umis,i

uobs,j umis,j

U |θ ∼ fU |Θ(u|θ) ⇒ Umis|uobs, θ ∼ fUmis|Uobs,Θ(umis|uobs, θ) , e.g, for units i, j
U |θ ∼ Nr(µU , ΣU) ⇒ Umis,i|uobs,i, θ ∼ Nr−l(µUmis,i|Uobs,i

, ΣUmis,i|Uobs,i
)

⇒ Umis,j|uobs,j, θ ∼ Nr−k(µUmis,j |Uobs,j
, ΣUmis,j |Uobs,j

)

Figure 4: Example of a conditional predictive distribution

different from the data model used before to create the imputations. In the remainder of
this section, the quantity θ to be estimated from the multiply imputed data set, has to
be distinguished from the parameter θ used in the model for imputation.

Consider, for example, the DACSEIS expenditure survey. Let us assume that only the
income (inc) information is missing for some units. If the imputation of the missing
income is based on the expenditure (exp) information, e.g., by applying a simple linear
regression inci = α0 + α0α1expi + εi for i = 1, 2, . . . n, then θ (imputation) = (α0, α1).
If, on the other hand, the analyst’s model explains expenditure by income, such that
expi = β0 + β1inci + νi for i = 1, 2, . . . n holds, then θ analysis) = (β0, β1).

Although θ (analysis) could be an explicit function of θ (imputation), as it is the case in
the example above, one of the strengths of the multiple imputation approach is that this
need not be the case. In fact, θ (analysis) could even be the parameter of the imputation
model, then imputation and analysis model are the same and are said to be congenial,
a term coined by Meng (1995). However, multiple imputation is designed for situations
when the analyst and the imputer are different, thus, the analyst’s model could be quite
different from the imputer’s model. As long as the two models are not overly incompatible
or the fraction of missing information is not high, inferences based on the multiply imputed
data should still be approximately valid. Even more, if the analyst’s model is a sub-model
of the imputer’s model, i.e., the imputer uses a larger set of covariates than the analyst
and the covariates are good predictors of the missing values, then MI inference can beat
the best inference possible using only the variables in the analyst’s model. This property
is called superefficiency by Rubin (1996). On the other hand, if the imputer ignores some
important correlates of variables with missing data, but these variables are used in the
analyst’s model, then the result will be biased. Consider again the DACSEIS expenditure
surveys and the situation of imputing income without using expenditure. This refers
to an imputation being done under the hypotheses of zero correlation between income
and expenditure which is surely not the case, thus, results will be biased.3 Moreover,

3Rubin (1987) and Schafer (1997, Chapter 4) and their references therein discuss the distinction
between θ (analysis) and θ (imputation) more fully.
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the imputer’s model also allows to use in-house variables such as additional information
from the interviewers (area of living, neighborhood, house size, number of car garages
etc.) which are typically not available to the analyst but may show some correlation with
the missing variables. In general and specifically for the DACSEIS recommendations on
MI4, we suggest to use as much variables in the imputation model as are available or are
reasonable. Thus, an inclusive strategy is nearly always better than a restrictive one.

As described before, U = (Uobs, Umis) denotes the random variables concerning the data

with observed and missing parts, and θ̂ = θ̂(U) denotes the statistic that would be used

to estimate θ if the data were complete. Furthermore, let v̂ar(θ̂) = v̂ar(θ̂(U)) be the

variance estimate of θ̂(U) based on the complete data set.

The MI principle assumes that θ̂ and v̂ar(θ̂) can be regarded as an approximate complete-
data posterior mean and variance for θ, with

θ̂ ≈ E(Θ|uobs, umis)

and
v̂ar(θ̂) ≈ var(Θ|uobs, umis)

based on a suitable complete-data model and prior; see also Schafer (1997), p. 108. More-
over, we should assume that with complete data, tests and interval estimates based on
the normal approximation

(θ̂ − θ)/

√
v̂ar(θ̂) ∼ N(0, 1) (10)

should work well. Hence, we assume that the complete-data inference can be based on
θ̂ ∼ N(θ, var(θ̂)) and that v̂ar(θ̂) is of lower-order variability than var(θ̂); see Li et al.
(1991). Notice that the usual maximum-likelihood estimates and their asymptotic vari-
ances derived from the inverted Fisher information matrix typically satisfy these assump-
tions. Sometimes it is necessary to transform the estimate θ̂ to a scale for which the normal
approximation can be applied. For example, we can use the so-called z-transformation
for the correlation coefficient estimate, with z(ρ̂) = (1/2) ln((1+ ρ̂)/(1− ρ̂)), which makes
z(ρ̂) approximately normally distributed with mean z(ρ) and constant variance 1/(n−3);
see Schafer (1997), p. 216 and Brand (1999), p. 116.

Suppose now that the data are missing and we make m > 1 independent simulated
imputations (Uobs, U

(1)
mis), (Uobs, U

(2)
mis), . . . , (Uobs, U

(m)
mis ) enabling us to calculate the im-

puted data estimate θ̂(t) = θ̂(Uobs, U
(t)
mis) along with its estimated variance v̂ar(θ̂(t)) =

v̂ar(θ̂(Uobs, U
(t)
mis)), t = 1, 2, . . . ,m. Figure 5 illustrates the multiple imputation principle.

From these m imputed data sets the multiple imputation estimates are computed.

The MI point estimate for θ is simply the average

θ̂MI =
1

m

m∑

t=1

θ̂(t). (11)

4For details of the proposed MI algorithms in DACSEIS see deliverable D11.2 by Laaksonen et al.
(2003).
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Figure 5: The multiple imputation principle

To obtain a standard error

√
v̂ar(θ̂MI) for the MI estimate θ̂MI we first calculate the

“between-imputation” variance

v̂ar(θ̂)between = B =
1

m − 1

m∑

t=1

(θ̂(t) − θ̂MI)
2,

and then the “within-imputation” variance

v̂ar(θ̂)within = W =
1

m

m∑

t=1

v̂ar(θ̂(t)) .

Finally, the estimated total variance is defined by

v̂ar(θ̂MI) = T = v̂ar(θ̂)within + (1 +
1

m
)v̂ar(θ̂)between

= W +
m + 1

m
B. (12)

Notice that the term ((m + 1)/m)B enlarges the total variance estimate T compared to
the usual analysis of variance with T = B + W ; (m+1)/m is an adjustment for finite m.
An estimate of the fraction of missing information γ about θ due to nonresponse is given
by

γ̂ =
(1 + 1/m)B

T
.

For large sample sizes, tests and two-sided (1 − α)100% interval estimates can be based
on the Student’s t-distribution

(θ̂MI − θ)/
√

T ∼ tv and θ̂MI ± tv,1−α/2

√
T (13)
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with the degrees of freedom,

v = (m − 1)

(
1 +

W

(1 + m−1)B

)2

, (14)

which are based on a Satterthwaite approximation; see Rubin and Schenker (1986) or
Rubin (1987), pp. 76–77. For small data sets an improved expression for the degrees of
freedom is given by Barnard and Rubin (1999). They relax the assumption of a normal
reference distribution of (10) for the complete-data interval estimates and tests to allow
a t distribution, and they derive the corresponding degrees of freedom for the MI infer-
ence to replace the formula (14) given here. Moreover, additional methods are available
for combining vector estimates and covariance matrices, p-values, and Likelihood-ratio
statistics (see Little and Rubin, 2002).

From (13) we realize that the multiple imputation interval estimate is expected to produce
a larger interval than an estimate based only on the observed cases or based only on one
single imputation. The multiple imputation interval estimates are widened to account for
the missing data uncertainty and simulation error (see Schafer, 1999).

3.3 Efficiency of the multiple imputation estimates

Rubin (1987), p. 114, shows that the relative efficiency of an estimate based on m im-
putations to one based on m = ∞ number of imputations is approximately 1 + γ/m
to 1, where γ is the rate of missing information. Taking m = 3 multiple imputations
and assuming a fraction of 50% missing information an estimate based on this m = 3
imputations has a standard error that is about 8% higher than one based on m = ∞,
because

√
1 + 0.5/3 = 1.0801. Schafer (1999) states that unless the fraction of missing

information is unusually high (i.e., far more than 50%), there is little benefit in using
more than 5 to 10 imputations.

Notice that the multiple imputation theory is developed under the assumption that the
imputer and the analyst use a common Bayesian model. To account for a wider variety
of applications, Rubin (1987), pp. 113-147, addressed the frequency properties of mul-
tiple imputation methods and, therefore, defined the term “proper”. Roughly speaking,
a proper multiple imputation method leads to inferences that are valid also from the
(random-response) randomization-based perspective, if the complete-data inference is a
valid randomization-based inference. In general, if (10) for the complete case estimator
holds and the imputations are proper, then the multiple imputation estimate (11) is a
consistent, asymptotically normal estimator in the frequentist sense, and an estimator
of its asymptotic variance is given by (12), for a recent discussion see Nielson (2003),
Meng and Romero (2003) and Rubin (2003a). Usually it is to be expected that imputa-
tions which are independently drawn from (9) should be proper or at least approximately
proper. However, it can be quite difficult to prove that an imputation procedure is proper
in Rubin’s sense. Therefore, Schafer (1997), p. 105, coined the term Bayesianly proper
for an imputation procedure that generates independent realizations of the posterior pre-
dictive distribution fUmis|Uobs

. Bayesianly proper imputations do not necessarily imply
proper imputations. For example, the multiple imputation method based on a regression
model proposed by Schenker and Welsh (1988) is Bayesianly proper, but not proper in
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Rubin’s frequentist sense. But, once a procedure is Bayesianly proper, at least some of
the conditions of being proper are automatically satisfied.

It should be mentioned here that there is an ongoing discussion about how to account
for design features, such as clustering and weighting. In complex survey designs it can
be extremely difficult to find proper imputation methods allowing to construct confidence
intervals that are frequency valid, see Binder and Sun (1996) or Marker et al. (2002).
Moreover, a multiple imputation method that leads to valid frequentist inference for one
complete data estimator may not be frequency valid for another one. However, as Rubin
(2003a) states “it’s not that MI is so great, it’s that other generally available methods are
worse, either computationally, analytically, or with respect to statistical validity.” There
is a growing body of evidence, see, e.g., Schafer (1997), pp. 372-377, p. 383, Schafer and
Yucel (2002), Schafer (2003), Rubin (2003b), or Rässler and Schnell (2004), that also with
complex survey designs MI works well and possibly better than traditional techniques,
such as weighting. The general advice for creating multiple imputations accounting for
complex survey designs is to include design variables or also weights in the imputer’s
model. Of course, more work needs to be done to develop flexible MI algorithms especially
for complex panel surveys. However, it is its broad applicability which makes MI so
appealing for the DACSEIS project. Finally, even if data are multiply imputed using a
sensitive but imperfect model, then according to Rubin (2003a) MI “will typically lead to
slightly conservative inference, that is, inferences that have coverage that is slightly larger
than nominal.” The proposed MI models for DACSEIS as specified in D11.2, Laaksonen
et al. (2003), are sensitively chosen, such that any arbitrary inference should be, at least,
approximately valid.

We do not want to replicate all the inferential questions and justifications for the MI prin-
ciple in general here; they are extensively described by Rubin (1987, 1996), Schafer (1997),
and Brand (1999). An illustration of the verification of a proper imputation method is
shown in Figure 6 which is adopted from Brand (1999), p. 115, and extended. For the
DACSEIS simulation studies similar procedures are used to evaluate different imputa-
tion techniques. Remember that the concept of proper imputation methods requires the
complete-data inference to be randomization-valid; i.e., for repeated sampling from the
underlying population the following should approximately hold,

θ̂ ∼ N1(θ, var(θ̂)), E(v̂ar(θ̂)) = var(θ̂),

and v̂ar(θ̂) has less variability than θ̂; see Rubin (1987), p. 118.

To evaluate whether a MI technique is proper for a set of complete-data statistics (θ̂(U),

v̂ar(θ̂(U))) by means of Monte Carlo simulation the following simplified validity conditions
may be discussed.

E(θ̂MI) = θ̂(U),

E(W ) = v̂ar(θ̂(U)), (15)

E(B) = var(θ̂MI).

As the number of imputations becomes large (i.e., m → ∞,) these equations (15) de-

mand that θ̂MI , W , and B are unbiased estimates of the statistics θ̂(U), v̂ar(θ̂(U)), and

var(θ̂MI). Notice that θ̂(U) and v̂ar(θ̂(U)) are based on the hypothetical complete data
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Figure 6: Simulation process to verify a proper imputation method

set when no data are missing and var(θ̂MI) describes the true variance of the MI estimate
for a given observed data set and m = ∞ number of imputations.

More precisely, it is required that (θ̂MI−θ̂(U))/
√

B should become approximately N(0, 1),
when the number of imputations gets large and the data U are held fixed. The within-
imputation variance W should be an unbiased estimate of the complete-data variance
estimate v̂ar(θ̂(U)), and the variances of W and B should be smaller than the true variance

var(θ̂MI) of the MI estimate, if again the data are regarded as fixed and m = ∞. Finally,

over repeated samples the true variance var(θ̂MI) should be of lower variability than θ̂(U).5

By means of Monte Carlo simulations we may recognize that an imputation procedure can
be, at least approximately, proper for a set of complete-data statistics (θ̂(U), v̂ar(θ̂(U)))
by verifying whether

Ê(θ̂MI) ≈ θ̂(U),

Ê(W ) ≈ v̂ar(θ̂(U)),

(1 + m−1)Ê(B) ≈ v̂ar(θ̂MI) with m ¿ ∞

holds; see Brand (1999), pp. 114-117. A schematic overview of the simulation process to
verify whether an imputation method may be proper is presented in Figure 6.

5For the original definition of a proper imputation method see Rubin (1987), pp. 118–119; a summary
is given by Schafer (1997), pp. 144–145. A detailed discussion of the verification of proper multiple
imputations is provided by Brand (1999), pp. 75–91 and pp. 114–117.
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4 A simple simulation study

In this section we present a simple simulation study just for the purpose of illustration.
The focus is to compare MI with results produced by a simple single mean imputation
(SI) as well as a single mean imputation within classes (SI CM) or by using only the
available cases (AC).

Assume that age (AGE) is normally distributed with mean 40 [years] and standard error
of 10 [years], then take income (INC) as normally distributed with mean 1500 [EURO]
and standard error of 300 [EURO]. Moreover, let the correlation between age and income
be about 0.8. So we let

(AGE, INC) ∼ N

((
40

1500

))
,

((
102 0.8 · 3000

0.8 · 3000 3002

))

A sample of n = 2000 is drawn from this universe. After being generated, the AGE
variable is recoded into 6 categories, 1 <= 20 years, 2 = 20 - 30 years, ..., 6 > 60
years. First, the complete cases are analyzed, the mean income estimate, its standard
error (s.e.), and the 95% confidence interval are calculated. Then different missingness
mechanisms (MCAR, MAR, MNAR) are applied on income. Under MAR, income is
missing with higher probability when age is higher, under MNAR, the probability that
income is missing is higher the higher income is itself.

After discarding 30% of the income data, the available cases are analyzed, then a simple
mean imputation is performed, and, finally, a proper multiple imputation procedure is
applied according to Rubin (1987), p. 167. The whole simulation process of creating the
data, applying the missingness, performing the imputations, and analyzing the sample
is repeated 1000 times. The coverage (cvg.) is counted, i.e., the number of confidence
intervals out of 1000 that cover the true mean value. The average width of the 95%
confidence interval is reported and the usual correlation estimate between age (recoded)
and income is given.

Very clearly the Table 1 shows how precision is reduced when only the available cases are
used under MCAR, and how biased the available case estimate gets when the missingness
is MAR or MNAR. The table also shows how biased a simple mean imputation is and how
this bias is corrected when conditional means are imputed instead of the overall mean.
However, this only works when the missingness depends on the variable conditioned on.
The single mean imputation within classes also leads to an overestimation of the correla-
tion between recoded AGE and INC though the simple single imputation underestimates
it. Moreover, with single imputation the standard errors are always too small to get the
nominal coverage.

Though the missingness is MCAR, a simple mean imputation is quite harmful to standard
errors and correlation. Under MAR and even under MNAR, multiple imputation works
by far better than the other alternatives, in the latter case borrowing strength from
the correlation between age and income. Standard errors, correlation and the nominal
coverage are well reproduced by MI. Notice that confidence intervals under MI can be
shorter than confidence intervals based only on the complete or available cases (AC). This
is especially true if the imputed sample is substantially larger than the complete case
sample. Therefore, typically, the following comparisons hold for most surveys and most
estimates of standard errors:
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s.e.(SI) < s.e.(truth) < s.e.(MI) < s.e.(AC).

Missing Proc. Cvg. Mean(INC) S.e. (INC) CIwidth Cor(AGE, INC)

None CC 0.96 1500.21 6.71 26.3 0.77
MCAR AC 0.95 1500.14 8.01 31.44 0.77
MCAR SI 0.82 1500.14 5.61 22.01 0.64
MCAR SI CM 0.91 1500.20 6.28 24.63 0.82
MCAR MI 0.95 1500.24 7.34 29.1 0.77

MAR AC 0.04 1470.35 7.98 31.31 0.77
MAR SI 0.01 1470.35 5.58 21.90 0.63
MAR SI CM 0.88 1499.90 6.28 24.65 0.82
MAR MI 0.93 1499.82 7.43 29.50 0.77

MNAR AC 0.11 1474.29 7.99 31.34 0.77
MNAR SI 0.03 1474.29 5.59 21.91 0.64
MNAR SI CM 0.59 1489.33 6.26 24.56 0.82
MNAR MI 0.71 1489.30 7.36 29.20 0.77

Table 1: Results of the simulation study

5 Final comments

With the increasing computational power, more and more multiple imputation techniques
are being implemented, making multiple imputation inference quite easy to perform. For
an overview see Table 2.

There are programs and routines available for free, such as the stand-alone Windows
program NORM or the S-PLUS libraries NORM, CAT, MIX, PAN, and MICE (also
available for R now) wich are all basically data augmentation algorithms. NORM uses
a normal model for continuous data, CAT a log-linear model for categorical data. MIX
relies on a general location model for mixed categorical and continuous data. PAN is
created for panel data applying a linear mixed-effects model. The new missing data library
in S-PLUS 6 features these models and simplifies consolidating the results of multiple
complete-data analyses after multiple imputation. Moreover, there is the free SAS-callable
application IVEware, the SAS procedures PROC MI, PROC MIANALYZE, as well as
the free Windows or Gauss version AMELIA. PROC MI provides a parametric and a
nonparametric regression imputation approach, as well as the multivariate normal model.
MICE as well as IVEware are very flexible tools for generating multivariate imputations
for different kinds of variables by using chained equations. Finally, SOLAS for Missing
Data Analysis 3.0 is a commercial Windows program provided by Statistical Solutions
Limited. For links and further details see www.multiple-imputation.com or Horton and
Lipsitz (2001).

As already mentioned, Meng (1995, 2002) coined the term “congeniality” which basically
means that the imputer’s model should agree with the analyst’s model. In some sense
this is assured if the imputer uses, at least, the same set of input data, i.e., variables and
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Programme Inf. Prior Available at Speciality

NORM, CAT,
MIX, PAN

yes http://www.stats.psu.edu/~jls

http://cran.r-project.org/

S-Plus / R library

Missing Data
Library

ridge prior Insightful Corporation S-Plus library

NORM 2.03 ridge prior http://www.stat.psu.edu/~jls standalone (WIN)

AMELIA no http://gking.harvard.edu/stats.shtml standalone (DOS)

Hmisc no http://hesweb1.med.virginia.edu/biostat/s

http://cran.r-project.org/

S-Plus / R library

IVEware no http://www.isr.umich.edu/src/smp/ive/ SAS procedure

MICE V1.0 no http://www.multiple-imputation.com S-Plus / R library

PROC MI no SAS Institue Inc. SAS procedure

SOLAS 3.0 no Statistical Solutions Ltd. standalone (WIN)

Table 2: Currently available Software for MI

observations. Thus, problems of misspecification should be avoided. Schafer (2003) points
out that MI performs well when many variables are incorporated in the imputer‘s model
although assumptions may be violated. Finally, empirical evidence suggests that multiple
imputation under MAR often is quite robust against violations of this assumption. Even
an erroneous assumption of MAR may have only minor impact on estimates and standard
errors computed using multiple imputation strategies. Only when MNAR is a serious
concern and the fraction of missing information is substantial, does it seem necessary to
model jointly the data and the missingness. Moreover, since the missing values cannot
be observed, there is no direct evidence in the data to address the MNAR-assumption. It
can be more helpful, therefore, to consider several alternative models and to explore the
sensitivity of resulting inferences.

Thus, we like to conclude that a multiple imputation procedure seems to be the best
alternative at hand to account for missingness and to exploit all valuable available in-
formation. In general, it is crucial to use multiple rather than single imputation so that
subsequent analyses will be statistically valid. Otherwise, with single imputation, effort
has to be placed on correcting variance estimates to assure valid inference. Notice that
an extensive comparison of different variance estimation methods when values are (singly
or multiply) imputed will be a result of the DACSEIS project.
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