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Preface

This document discusses aspects of variance estimation for complex survey data in the
presence of non-response. Chapter 1 provides an overview of the problem and of the
underlying statistical framework. Chapter 2 discusses the nature of the variance to be
estimated, outlining a number of alternative approaches. The impact of non-response
on the variance is discussed in Chapter 3, where a new measure of variance inflation,
the neff, is introduced. Chapter 4 provides the main discussion of the central topic of
this document: variance estimation. The chapter provides a review of existing methods
but also introduces two new approaches: a general jackknife method for data subject to
impution in Section 4.3 and a non-Bayesian version of multiple imputation in Section 4.4.
The primary focus is on variance estimation for data subject to imputation, but the final
Section of the document, 4.5, provides a brief review of variance estimation for weighted
estimators.

Yves G. Berger University of Southampton
Jan Bjørnstad and Li-Chun Zhang Statistics Norway
Chris Skinner University of Southampton
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Chapter 1

Introduction

1.1 Point estimation for complex survey data in the

presence of non-response

Sample surveys are subject to both unit non-response and item non-response. Unit non-
response arises when no survey data are collected for a unit. Item non-response arises
when some data are collected for a unit but values of some items are missing. Some
patterns of non-response are more complex and might be viewed as examples of either
unit or item non-response. See Groves et al. (2002) for further discussion of the sources
and reasons for non-response in surveys.

Different approaches to point estimation may be adopted in the presence of non-response.
Some methods just ignore the non-response. In the case of unit non-response this will
usually involve treating the set of responding units as if it were the selected sample. In
the case of item non-response this may involve deleting units which have missing values
on any of the variables used in a particular analysis (available cases analysis) or deleting
units which have missing values on any of the survey variables (complete cases analysis).
Such approaches may be subject to bias and, in general, do not make most efficient use
of the data. We shall not consider them explicitly, although they will typically feature as
special cases of the approaches we do consider.

Weighting and imputation are the two main methods used to correct for bias due to
non-response and to make efficient use of data. Weighting is classically used to treat the
problem of unit non-response, whereas imputation is classically used to treat problems of
item non-response.

Weighting is a ‘unit-level’ adjustment, providing a common form of adjustment for all
analyses based a common set of responding units and is thus natural for the treatment of
unit non-response. It is less practical to use weighting to treat item non-response, since
a different method of weighting would be required for estimates based upon different sets
of variables.

In contrast to weighting, imputation is a variable-specific adjustment and is thus natural
to treat missing data in a given variable. Imputation tends to become more complicated
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2 Chapter 1. Introduction

and time consuming to implement the more the variables treated and thus it is not usu-
ally considered as a practical solution for unit non-response in a survey measuring many
variables.

1.2 Properties of point estimators in the presence of

non-response

1.2.1 Bias and variance

In a classical frequentist framework for statistical inference, it is usual to summarise the
properties of a point estimator in a sample survey in terms of its bias and variance. It is
usually supposed that the sampling distribution of the estimator is approximately normal
so that the characteristics of this distribution can be captured just by these two char-
acteristics. For a survey employing a probability sampling scheme for which there are
no non-sampling errors, it is usually possible to construct point estimators of standard
population parameters of interest, which are approximately unbiased. Alternative approx-
imately unbiased point estimators may then be compared according to their variances.

The presence of non-response will usually introduce bias into point estimators. A primary
purpose of weighting and imputation methods is to reduce this bias but, in practice, it is
unlikely that these methods will remove bias entirely. In addition to affecting bias, non-
response will also affect the variance of a point estimator. The focus of this document will
be on variance rather than bias and the impact of non-response on variance is investigated
in Chapters 2 and 3.

In the absence of non-sampling errors, the classical design-based approach in sample
surveys, following Neyman (1934), is to evaluate the bias and variance of the point
estimator with respect to randomised sampling scheme. When non-response arises it is
common to evaluate the bias and variance with respect to both the sampling scheme
and the non-response mechanism. This mechanism is often represented probabilistically,
like a probability sampling mechanism. A key difference between these two mechanisms
is, however, that the sampling mechanism should generally be known (at least up to
essential features of the mechanism), whereas the non-response mechanism will typically
be unknown.

1.2.2 Non-response mechanisms

In the mainstream statistical literature, non-response is treated as a form of missing
data. (There are other sources of missing data. For example, in a two-phase survey
measurements for variables recorded in the second phase of the survey will be missing by
design for units present in the first phase sample but not in the second phase sample.) It
is therefore common to refer to non-response mechanisms as missing data mechanisms.
We shall refer to the following types of mechanism. These are discussed in more detail in
deliverable D11.2 and in Little and Rubin (2002).

c© http://www.DACSEIS.de



1.3 Variance estimation 3

Missing Completely At Random (MCAR): The values of the set of variables used to
construct a point estimator are missing completely at random if missingess is independent
of all these variables.

Missing at Random (MAR): The values of the set of variables used to construct a point
estimator are missing at random given an additional set of measured variables if missingess
is independent of the values of the variables which are missing, conditional on the observed
values of both sets of variables.

Ignorable missingness: The missing data mechanism is ignorable if the properties of a
given inference procedure are not affected by the nature of the mechanism.

Non-ignorable missingness: The missing data mechanism is non-ignorable if it is not
ignorable.

1.3 Variance estimation

Since non-response will generally affect the variance of a point estimator, as will be dis-
cussed in Chapters 2 and 3, it is important to consider how to estimate this variance in
the presence of non-response. Chapter 4 reviews existing methods and introduces some
new methods for variance estimation with an emphasis on the estimation of variances for
point estimators based upon imputed data. The first three sections of this chapter treat
the case of single imputation, where each missing value has been replaced by just a single
imputed value. The fourth section considers the method of multiple imputation. The
final section provides some brief remarks about variance estimation for point estimators
which use weighting to compensate for non-response.

DACSEIS-WP11-D11.1
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Chapter 2

Variances in the presence of
non-response

2.1 Introduction

Before considering variance estimation it is important to be clear about the nature of the
variance being estimated. In this chapter we discuss the definition of variances of point
estimators in the presence of non-response. We shall focus on point estimators including
imputed data although much of the discussion is also relevant to weighted estimators and
we refer to this case briefly in Section 2.6.

2.2 Framework

In this section we introduce the basic survey set-up to be considered. We suppose that
the aim is to estimate a parameter θ, which is a function of the values of a k × 1 vector
of variables yi for units i = 1, . . . , N in a finite population U . For example, we may be
interested in a population total

∑
U zi, where zi is a component of yi. We assume for

simplicity that θ is a scalar. We suppose that a survey is undertaken on a sample, s,
of U , selected by a probability sampling design, with the aim of measuring yi for each
i ∈ s. Because of non-response, however, we suppose that each variable in yi may only be
observed for a subset of units in s. Writing yi = (y1i, . . . , yki)

′

, we let Ri = (R1i, . . . , Rki)
′

where Rji = 1 if yji is observed (without error) and Rji = 0 otherwise, j = 1, . . . , k, i ∈ s.

In the classical approach to imputation a single imputed value (or vector of values) y∗
ji

is created for each case (i, j) where Rji = 0 and point estimation of θ takes place as if

y∗
ji = yji. Thus let Y (s) be the k × n matrix with columns yi, i ∈ s and suppose θ̂(Y (s))

would be the estimator of θ if Y (s) were fully observed. For example, if θ =
∑N

1 Yi then

θ̂ might take the form θ̂ =
∑

s wiyi where the wi are survey weights. Let ỹji = yji if
Rji = 1 and ỹji = y∗

ji if Rji = 0, let ỹi = (ỹ1i, . . . , ỹki)
′ and let Ỹ (s) be the k × n matrix

with columns ỹi, i ∈ s. Then θ̂(Ỹ (s)) is the point estimator of θ which treats the imputed
values y∗

ji as if they are the actual values yji.

DACSEIS-WP11-D11.1



6 Chapter 2. Variances in the presence of non-response

The classical approach may be modified in a number of ways. First, the approach may
be modified by estimating θ by a different function of Ỹ (s), to correct for bias effects
of imputation, (see for example, Skinner and Rao, 2002). Second, repeated imputed

values y
∗(1)
ji , . . . , y

∗(M)
ji may be created for each case where Rji = 0, as in the methods of

multiple imputation (Chapter 4) and fractional imputation (Fay, 1996). Let θ̂∗ denote
the resulting estimator of θ, both under these alternative approaches and in the classical
case when θ̂∗ = θ̂(Ỹ (s)).

We are interested in the sampling distribution of θ̂∗ − θ and in the next section will
discuss alternative sources of stochastic variation with respect to which this distribution
may be defined. This paper is concerned with estimating the variance V∗ = var(θ̂∗ − θ)

of this distribution. We shall generally only be concerned with situations where θ̂∗ is
approximately unbiased for θ and the sampling distribution of θ̂∗ − θ is approximately
normal, N(0, V∗), so that V∗ is a useful single summary measure of the accuracy of θ̂∗ as
an estimator of θ.

2.3 Sources of stochastic variation

There are four basic sources of stochastic variation with respect to which the sampling
distribution of θ̂∗ may be defined:

ξ : a model generating the population values y1, . . . , yN ;

p : the sampling mechanism used to select s from U .

q : the response mechanism generating Ri, i ∈ s;

I : the imputation mechanism; which may involve a stochastic element, for example in
the selection of donors in a hot deck method or in the addition of noise in a regression
imputation method.

The variance may be defined with respect to different combinations of these sources of
variation, as will be discussed in Section 4.

Before considering these possibilities we introduce one extension of our framework. A
number of authors extend the definition of Ri to all i ∈ U (e.g. Rubin, 1987, p. 30). The
random variables Ri for i ∈ s = U\s (the non-sampled units in U) may be constructed in
an arbitrary way provided

p (Rs|s) = ∫ p (RU |s) dRs

remains the response mechanism q, where VqUp(θ̂) and RU denote the matrices with
columns Ri for i ∈ s, i ∈ s and i ∈ U respectively. Here we use p(.) to denote a generic
probability mass function. Many authors assume that RU may be constructed so that the
following assumption holds.

A1. Assumption of independence of sampling and non response: s and RU are
independent.

c© http://www.DACSEIS.de



2.4 Definition of variance 7

Under this assumption, the distribution of the Ri, i ∈ U may be interpreted as a response
mechanism which holds whether or not the i are included in the sample (e.g. Rubin, 1987,
p. 30). We denote the distribution p (RU) as qU and refer to it as the population response
mechanism, when the above assumption holds. A consequence of this assumption is that
p (s|RU) = p(s), that is that the distribution of s is the same whether or not we condition
on RU . This is the basis of a number of approaches. One is to condition on RU and
(when k = 1) to treat cases with Ri = 0 or 1 as respondent and non-respondent strata
(e.g. Cochran, 1977, Section 13.2). Another is to evaluate the variance with respect to
p(s) = p (s|RU) first and then with respect to p (RU) (e.g. Shao and Steel, 1999).

Assumption A1 seems a plausible one in many applications in practice but it is not without
force. For example, a consequence of the assumption is that p (Ri|s) = p (Ri) for i ∈ s,
i.e. given that a unit is included in the sample, the probability that the unit will respond
does not depend on which other units are also included in the sample. Note, however,
that no assumption is implied about the relation between the Ri, for example it is not
implied that Ri and Rj must be independent for i 6= j. See Fay (1991) and Lee et al.
(2002) for further discussion of the framework implied by this assumption.

2.4 Definition of variance

In this section we consider possible candidates for the definition of the variance with
respect to one or more of the sources of stochastic variation described in Section 2.3.
These candidates cover the usual definitions employed in the literature.

Design-based Variance (Vp or VpI)

Consider first a deterministic approach where each y∗
ji is a given function of observed

values of yji and other known sample or population information. For example, under
ratio imputation with a single variable (k = 1)

y∗
i = xiy

(s)
obs/x

(s)
obs, i ∈ s

where xi is a variable known for all i ∈ s and
(
y

(s)
obs, x

(s)
obs

)
denotes the mean of (yi, xi) for

i ∈ s with Ri = 1. If in this case θ is the population mean of yi, θ = Y = N−1
∑

U yi, and

θ̂∗ = n−1
∑

s ỹi then it follows that

θ̂∗ =
(
y

(s)
obs/x

(s)
obs

)
n−1

∑
s
xi (2.1)

For a much larger class of imputation methods and estimators, θ̂∗ may be expressed as a
known function of means.

θ̂∗ = h

(
n−1

∑

s

zi

)
, (2.2)

where zi is a vector of elements, well-defined for all i ∈ U and not dependent upon s,
which will typically either be of the form wiRiyji, where wi is a fixed survey weight, or

of the form wixi for an auxiliary variable observed for all i ∈ s. In this case Vp(θ̂
∗) is

DACSEIS-WP11-D11.1



8 Chapter 2. Variances in the presence of non-response

well-defined and provides one possible variance measure, where the Rji are fixed for i ∈ U
and may be interpreted as defining domains or ‘non-response strata’ (Cochran, 1977,
Section 13.2) with respect to which the totals

∑
zi are defined.

The measure Vp has the usual advantage of design-based variances, that it is not model
dependent, but it does require assumption A1 so that RU can be held fixed and hence is
not entirely free of assumptions about the response mechanism.

The measure Vp allows for the variance inflation arising from the reduction in the sample
size due to non-response, just as the design variance of a domain mean allows for the
fact that the domain sample size will usually be smaller than the full sample size. It
fails, however, to capture any element of the uncertainty about the difference between
respondents and non-respondents. Consider, for example, the simpler version of (2.1)

where k = 1, xi = 1 and θ̂∗ is simply the respondent mean θ̂∗ = y
(s)
obs. Under simple

random sampling the expectation of θ̂∗ is Y
(U)

obs =
∑

U yiRi/
∑

U Ri. The variance Vp(θ̂
∗)

fails to reflect any difference between Y
(U)

obs and Y . Even if the response mechanism is

uniform, that is if all the Ri have a common Bernoulli distribution, then Y
(U)

obs and Y
will in general not be identical. There is thus a (conditional) bias. This conditional bias
can be captured in the uncertainty measure if the Ri are not conditioned upon and this
provides motivation for the approach in the next section.

When the imputation approach is stochastic, it is natural to replace Vp(θ̂
∗) by:

VpI

(
θ̂∗
)

= Vp

[
EI

(
θ̂∗
)]

+ Ep

[
VI

(
θ̂∗
)]

(2.3)

As in the deterministic case, this measure will fail to capture the estimation error (condi-

tional bias) represented by the difference between Y
(U)

obs and Y when k = 1.

Quasi Design-based Variance with Population Response Mechanism VqUp (or
VqUpI)

The pure design variance Vp in the previous section failed to take account of estimation
error arising from the difference between the responding and nonresponding parts of the
population. This error may be accounted for by evaluating the variance not only with
respect to the sample design p but also with respect to the population response mechanism
qU . As in the previous section, this formulation depends upon assumption A1. For
deterministic imputation the combined variance may be expressed as:

VqUp

(
θ̂∗
)

= EqU Vp

(
θ̂∗
)

+ VqU Ep

(
θ̂∗
)

, (2.4)

and for stochastic imputation

VqUpI

(
θ̂∗
)

= EqU VpI

(
θ̂∗
)

+ VqU EpI

(
θ̂∗
)

. (2.5)

These are the variances considered by Shao and Steel (1999). Returning to the simple

example in the previous section where k = 1, θ̂∗ = y
(s)
obs is the respondent mean and when

the design is such that Ep(θ̂
∗) = Y

(s)

obs, it is now feasible that θ̂∗ is unbiased for θ under
the distribution with respect to both qU and p, provided qU obeys strong conditions.

c© http://www.DACSEIS.de



2.5 Relation to other DACSEIS Workpackages 9

Quasi Design-based ‘Two-phase’ Variance Vpq (or VpqI)

The approach in the previous section required the construction of qU and an assumption of
the form A1. An alternative and seemingly more natural approach is to treat the response
mechanism as if it were the second phase of a sampling scheme, where p defines the first
phase.

This approach is equivalent to that in the previous section if Assumption A1 holds. For,
let H (s,Rs, yobs) be any statistic, where yobs is the vector of values of yi for which Ri = 1
and i ∈ s, then

EqUpH (s,Rs, yobs) =
∑

RU

∑

s

H (s,Rs, ys) p (s|RU) p (RU)

=
∑

s

∑

RU

H (s,Rs, ys) p(s)p (RU)

if Assumption A1 holds

=
∑

s

∑

Rs

H (s,Rs, ys) p(s)p (Rs)

= EpEqH (s,Rs, ys)

and the moments of any statistic are the same under either representation.

In principle, this approach allows the specification of the response mechanism to depend
upon s. In practice, however, it is usual to treat q as if it were equivalent to a population
response mechanism qU restricted to s. For example, Rao and Shao (1992) assume a
uniform Bernoulli response mechanism within specified imputation classes.

The two-phase variance Vpq extends naturally to VpqI in the case of stochastic imputation
(e.g. Rao and Shao, 1992).

Model-anticipated Variance EξVpq (or EξVpqI)

A potential problem with the quasi design-based approaches in the previous two sections
is that the response mechanism (q or qU) is unknown and must be fully specified.

An alternative approach is to consider introducing dependence upon a model for the yi

into the variance.

While this adds model assumptions it may also reduce the assumptions required about
the response mechanism. Deville and Särndal (1994) consider imputation based upon
a model ξ for the relation between the yi and auxiliary information for which it may be
assumed that θ̂∗ is model unbiased.

2.5 Relation to other DACSEIS Workpackages

In this section we consider how the alternative definitions of variance in Section 2.4 relate
to the treatment of non-response in the other DACSEIS workpackages.

DACSEIS-WP11-D11.1



10 Chapter 2. Variances in the presence of non-response

We first consider the main Monte-Carlo simulation study described in deliverables D3.1
and D3.2 The study first modifies the universe by non-response to obtain the observable
universe. This observable universe is then sampled repeatedly to produce a simulation-
based estimate of the variance. This corresponds to the design-based variance in Section
2.4. The process of modification of the universe corresponds to the population response
mechanism qU . The responding universe is held fixed in the simulation so the simulation-
based variance corresponds to Vp (or to VpI in the case of stochastic imputation).

The nature of this design-based variance is discussed further in Section 6.6 of deliverable
D1.1 There, it is assumed that there exists a population response mechanism and the
design-based variance is referred to as the conditional variance, since it conditions on the
response indicators. It is compared with the quasi-design based variance (in the termi-
nology of Section 2.4) which is referred to as the unconditional variance since it is with
respect to both the sampling design and the response mechanism. The difference between
the conditional and unconditional variances is explored and it is found, as discussed above,
that there will be little difference between the two in practice if the sampling fraction is
negligible, but that there may be an important difference if this is not the case.

Workpackage 5 on resampling methods considers imputation methods which allow for
nonresponse. A number of variance estimation methods from the literature are reviewed.
In addition, some variance estimators for deterministic imputation are developed. The
basic approach is again design-based in the sense that the imputed estimator is represented
as a sample statistic and its variance is estimated in the same way that the variance of a
sample statistic would be estimated were there full response. The response mechanism is
not explicitly allowed for in the variance estimator. The simulation study in deliverable
D5.2 follows a two-phase approach where respondents are subsampled according to a
uniform response mechanism. Hence the simulation variance is effectively a two-phase
variance. Nevertheless, the sampling fractions within strata are very small so that, as
noted in Section 6.6 of deliverable D1.1, the distinction between this two-phase variance
and the design-based variance is negligible.

Workpackage 8 includes nonresponse in its simulation study when evaluating the variances
of estimators. The variance estimators considered are essentially design-based again,
treating the responding units as a fixed domain. As in workpackage 5, the simulation
study follows a two-phase approach but again the sampling fractions are very small so the
distinction between the two-phase variance and the design-based variance is negligible.

2.6 Variance of weighted estimators

The variance of weighted estimators may similarly be evaluated with respect to combi-
nations of p, q or ξ, but not, of course, with respect to I. The two-phase approach is
discussed in detail by Särndal and Swensson (1987) and Lundstrøm and Särndal

(1999). There has also been discussion of conditional variances for weighted estimators.
In particular, Holt and Smith (1979) make a case for conditioning the variance on the
sample sizes within post-strata for a post-stratified estimator.

c© http://www.DACSEIS.de



Chapter 3

Measuring the inflation of variances
by non-response

3.1 neff: a general measure of variance inflation

An intuitive measure of the variance inflation due to non-response is the ratio between
(a) the variance of the estimator based on the observed data (i.e. in the presence of non-
response), and (b) the variance of the would-have-been estimator based on the complete
data (i.e. in the hypothetical situation where non-response is absent). Clearly, estimators
(a) and (b) should be specified in such a way that we may, as much as possible, attribute
the difference between them to the fact that, while we observe all the values of interest in
case (b), some of these values are concealed from us in case (a). Let θ be the population

characteristic of interest. Let θ̂ denote the observed estimator (a). Let θ̃ be the conceptual
estimator (b). The effect of non-response on variance, denoted by neff, is then

neff = Var(θ̂)/Var(θ̃) (3.1)

By definition the variance of θ̃ is due to the sampling variation alone. In cases where
neff > 1, the difference Var(θ̂) − Var(θ̃) can be considered as the additional component

of variance causes by non-response. Moreover, the decomposition of Var(θ̂) into two
components due to, respectively, sampling and non-response, can sometimes be made
explicit as we shall see later. However, artificial examples where Var(θ̂) < Var(θ̃) can

easily be constructed, in which case Var(θ̂)−Var(θ̃) is negative and, thus, not a component
of variance. We therefore define the neff in terms of a ratio.

It should also be noticed that definition (3.1) does not reflect uncertainty arising from
lack of knowledge of the true non-response mechanism. The effect of non-response is to
be evaluated under an assumed non-response model. While there exist Bayesian methods
of inference which include extra model uncertainty (e.g. Rubin, 1987, and Forster

and Smith, 1998), plausible interpretations, or analogies, from a frequentist perspective
remain lacking.
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12 Chapter 3. Measuring the inflation of variances by non-response

The pair of estimators (θ̂, θ̃) is specified as follows. Let s = {1, . . . , n} denote the sample.
Let yi denote the vector of values of the survey variable associated with unit i. Let Ri

be the non-response indicator for unit i, which takes the value 1 if the corresponding
component of yi is observed and 0 if it is missing. Let xi be the vector of auxiliary values
associated with unit i. We assume that xi is not subject to non-response. Let ai = π−1

i

be the sampling weight, where πi denotes the inclusion probability of unit i.

We shall consider both weighting adjustment and imputation based approaches of esti-
mation. Consider first estimation based on imputation. Let ys be the matrix with yi as
its ith column. Let y∗

s = {y∗
i ; i ∈ s} be the imputed matrix, where an element of y∗

s is
identical to the corresponding element of ys if it is observed. Let xs be the matrix of
auxiliary values similarly defined. Let as = (a1, . . . , an) be the vector of sampling weights.
We assume that the conceptual estimator θ̃ is a function of as, ys and xs, denoted by

θ̃ = g(as, ys, xs). (3.2)

The comparable imputation estimator θ̂ is then defined as

θ̂ = g(as, y
∗
s , xs), (3.3)

i.e. through the same function g(.), but based on the imputed y∗
s instead of the conceptual

ys.

Next, consider weighting based on adjustment cells for unit non-response. Let Rs be the
vector of non-response indicators in the sample. Let wi be the adjusted weight if Ri = 1,
which is given as

wi = aiφi ,

where φi denotes the non-response adjustment weight either at the sample or population
level. The observed estimator is a function of ws, Rs, xs and the observed columns of ys

denoted by

θ̂ = g(ws, Rs, ys, xs) . (3.4)

We assume that the function g(.) is specified in a way which allows for the fact that some
columns of ys are missing, and the weight wi is defined for respondents only. Typically,
this can be achieved by operating with Ri, yi and Riwi instead of yi and wi, and make the
convention that Riyi = 0 and Riwi = 0 if Ri = 0. The comparable conceptual estimator
θ̃ is then given by

θ̃ = g(ws, Rs, ys, xs) where φs = Rs = 1 , (3.5)

i.e. through the same function g(.), and the non-response adjustment weight φi ≡ 1 for
all i ∈ s.

Example Direct weighting estimation.

Let θ be the population mean of yi. For (3.4) and (3.5) we use

g(ws, Rs, ys, xs) =

(∑

i∈s

Riaiφiyi

)/(∑

i∈s

Riaiφi

)
.
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3.2 Variance inflation for two frameworks of inference 13

Example Calibration estimation with respect to the known population totals of xi, de-
noted by the vector XU .

Let θ be the population total of some univariate yi. For (3.4) and (3.5) we use

g(ws, Rs, ys, xs) = XT
U β̂ +

∑

i∈s

Riaiφi(yi − xT
i β̂) ,

where β̂ =

(∑

i∈s

Riaiφixix
T
i

)−1(∑

i∈s

Riaiφixiyi

)
.

3.2 Variance inflation for two frameworks of

inference

3.2.1 Design-based

Under the pure design-based framework, Ri is treated as a constant associated with unit
i, just like yi and xi. The only stochastic variation comes from sampling. The general
definition (3.1) is then

neff = Vp(θ̂)/Vp(θ̃), (3.6)

where Vp denotes the variance with respect to the sampling distribution, denoted by ps.

We assume n < N to avoid the trivial case of Vp(θ̂) = Vp(θ̃) = 0.

Example Direct weighting estimation under simple random sampling without replace-
ment (srs wor).

Let θ be the population mean, so that θ̃ = y, i.e. the sample mean, and θ̂ = y1, which is
the observed sample mean. Let n1 be the size of the response sample. We have

Vp(θ̂) = Vp(Ep[ θ̂ |n1 ])+Ep(Vp[ θ̂ |n1 ]) = Vp(θ1)+σ2
1Ep(n

−1
1 −N−1

1 ) = σ2
1Ep(n

−1
1 −N−1

1 ),

where θ1 and σ2
1 are the population mean and variance among those with Ri = 1, and

N1 =
∑

i∈U Ri and U = {1, . . . , N} denotes the population. Let γ = N1/N . We have

neff ≈ AVp(θ̂)

Vp(θ̃)
=

σ2
1[(nγ)−1 − (Nγ)−1]

σ2(n−1 − N−1)
=

σ2
1

σ2γ

where AVp(θ̂) = σ2
1[(nγ)−1− (Nγ)−1] denotes approximate variance, and σ2 is the popula-

tion variance. Notice that so far we have not made any assumptions about the population
vector RU = (R1, . . . , RN), which however are necessary in order to assess the neff. In
particular, under the assumption that σ2

1 = σ2, we may estimate γ by γ̂ = n1/n, to obtain

neff ≈ 1

γ̂
=

n

n1

> 1
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14 Chapter 3. Measuring the inflation of variances by non-response

which, quite reasonably, is the ratio between the complete sample size and the observed
sample size.

Example Estimation following hot-deck imputation under srs wor.

Again, let θ be the population mean, so that θ̃ = y and θ̂ = (n1y1 + n0y
∗
0)/n which is the

imputed sample mean where n0 = n−n1 and y∗
0 denotes the mean of the imputed values.

Let s2
1 be the sample variance among the respondents. It follows that

Vp(θ̂) = Ep(VI [ θ̂ | s ]) + Vp(EI [ θ̂ | s ]) = Ep(n0s
2
1/n

2) + Vp(y1) ,

where EI and VI denote expectation and variance with respect to the hot-deck imputation.
We have

neff ≈ AVp(θ̂)

Vp(θ̃)
= σ2

1

(
1 − γ

n
+

1

nγ

)/(
σ2

n

)

provided n/N ≈ 0. Again, under the assumption that σ2
1 = σ2, we obtain with γ = n1/n,

neff ≈ 1 − γ̂ +
1

γ̂
= 1 − n1

n
+

n

n1

> 1

Notice that the non-response effect is larger than in the case of direct weighting estimator,
because the hot-deck imputation constitutes an additional source of variation.

3.2.2 Quasi design-based

The quasi-design-based framework of inference is based upon a known sampling distri-
bution and an assumed response distribution. Either data generation process may be
considered to precede the other (see Section 2.4). The values of the survey variable,
however, are still treated as constants.

Two-phase approach

In this case, non-response occurs conditional on the selected sample. The general definition
(3.1) becomes

neff = Vpq(θ̂)/Vpq(θ̃) = Vpq(θ̂)/Vp(θ̃),

where Vpq denotes variance with respect to the sampling distribution and the assumed

response distribution, and Vpq(θ̃) = Vp(θ̃) by definition. Provided θ̂ is such that

Eq(θ̂|s) = θ̃ , (3.7)

the variance of θ̂ admits an explicit decomposition for large samples. That is,

Vpq(θ̂) = Ep(Vq[ θ̂ | s ]) + Vp(Eq[ θ̂ | s ]) = Vq( θ̂ | s ) + Vp(θ̃),

where the first component in the approximate expression contains variations arising from
non-response and the second component contains variation due to sampling alone. It
follows that

neff ≈ 1 +
Vq( θ̂ | s )

Vp(θ̃)
(3.8)
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3.2 Variance inflation for two frameworks of inference 15

Notice that the explicit decomposition does not apply exactly but approximately

for large samples. Moreover, the neff is necessarily larger or equal to unity under the
current framework of inference.

The condition (3.7) is satisfied for several commonly used estimation methods under
their respective assumptions of non-response. Including e.g. estimators based on known
/observable adjustment cells, and estimators based on hot-deck or regression imputation.
Indeed, exactly or approximately, it seems a reasonable requirement for any estimation
method under the assumed non-response model. On the other hand, simulation studies
(Särndal and Swensson, 1987, and Zhang, 2002), indicate that evaluation of the non-
response effect (3.8) is fairly robust towards non-response model misspecification, so that
the condition (3.7) may not be very critical for (3.8) in practice.

Example Direct weighting estimation under srs wor with observations missing completely
at random (MCAR).

Let θ be the population mean, so that θ̃ = y and θ̂ = y1 as before. We have

neff ≈ 1 +
Vq(y1|s)
Vp(y)

= 1 +
Eq(Vq[y1|s, n1])

σ2(n−1 − N−1)
= 1 +

s2Eq(n
−1
1 − n−1)

σ2(n−1 − N−1)
,

where s2 is the sample variance among ys. Under the MCAR assumption, we obtain

n̂eff = 1 +
n−1

1 − n−1

n−1 − N−1

which reduces to n/n1, i.e. n̂eff under the pure randomisation framework, provided N−1 ≈
0.

Example Estimation following hot-deck imputation under srs wor and MCAR mecha-
nism.

Again, let θ be the population mean, so that θ̃ = y, and θ̂ = y∗ = (n1y1 + n0y
∗
0)/n. The

variance of θ̃ remains the same, whereas

Vq(θ̂|s) = Vq {Eq (EI [y∗|s, n1, y1] |s, n1)} + Eq {Vq (EI [y∗|s, n1, y1] |s, n1)}
+ Eq {Eq (VI [y∗|s, n1, y1] |s, n1)}

= Vq {Eq (y1|s, n1)} + Eq {Vq (y1|s, n1)} + Eq

{
Eq

(
n − n1

n2
s2
1

∣∣∣s, n1

)}

= 0 + s2Eq (1/n1 − 1/n) + s2Eq

(
1/n − n1/n

2
)

where the last term is due to the additional variation in hot-deck imputation.
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16 Chapter 3. Measuring the inflation of variances by non-response

Quasi design-based approach with population response mechanism

In this case, response precedes sampling. We have VqUp(θ̃) = Vp(θ̃) by definition, and

VqUp(θ̂) = EqU (Vp[ θ̂ |RU ]) + VqU (Ep[ θ̂ |RU ]) ≈ Vp( θ̂ |RU ) + VqU (Ep[ θ̂ |RU ]) (3.9)

Typically, however,

VqU (Ep[θ̂|RU ])/Vp(θ̂|RU) = O(n/N),

such that the neff is approximately the same as that under the pure randomization
framework provided n/N ≈ 0, but not otherwise.

Example Direct weighting estimation under srs wor and MCAR mechanism.

Let θ be the population mean, so that θ̃ = y and θ̂ = y1. We have

VqU (Ep[y1|RU ]) = VqU (θ̂1|RU) = EqU (VqU [θ1|N1]|RU)+VqU (EqU [θ1|N1]|RU) ≈ σ2

N
(γ−1−1),

whereas AVp(θ̂|RU) = σ2
1(n

−1 − N−1)γ−1. It follows that n̂eff = n/n1 if n/N ≈ 0.

Example Estimation following hot-deck imputation under srs wor and MCAR mecha-
nism.

Again, let θ be the population mean, so that θ̃ = y, and θ̂ = y∗ = (n1y1 + n0y
∗
0)/n.

The approximate variance AVp( θ̂ |RU ) is the same as previously given for the hot-deck
imputation estimator, whereas

VqU (Ep[ θ̂ |RU ]) = VqU (Ep{EI [ θ̂ | s,Rs ] |RU }) = VqU (Ep[ y1 |RU ]) = VqU (θ1).
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Chapter 4

Variance estimation

4.1 Introduction

In the previous two chapters we have discussed the variances of point estimators in the
presence of non-response. We now consider the estimation of these variances using ob-
served data from responding units. We shall focus on the case when missing data have
been replaced by imputed values and the point estimator is based upon these imputed
data. Much of the discussion, especially in Section 4.2., will also be relevant to weighted
point estimators.

We begin by recalling the alternative definitions of variances in Chapter 2, reflecting the
alternative frameworks for inference. We now outline approaches to the estimation of
these alternative variances and refer to some of the literature where methods have been
developed. We employ the same notation as in Chapter 2 where the parameter is denoted
θ and the estimator of θ based upon imputed data is denoted θ̂∗.

Design-based V̂p (or V̂pI)

Considering first deterministic imputation, we suppose that θ̂∗ may be expressed as in
(2.2). We may then apply any available variance estimation method for a smooth function
of estimated totals, e.g. linearization or replication methods. The variance estimator may
thus be constructed as a natural extension of the variance estimator which would be
chosen in the absence of missing data. The main complexity involved is in obtaining the
expression of form (2.2). See Shao and Steel (1999) for examples.

In the case of stochastic imputation, the variance is given in (2.3) and the same variance
estimation approach may be applied to estimate the first term in (2.3) by obtaining an

expression of form (2.2) for EI(θ̂
∗). It is then necessary to add an estimator of VI(θ̂

∗)
(Shao and Steel, 1999, Section 5).

Quasi Design-based with Population Response Mechanism: VqUp (or VqUpI)

The approach described in the previous section may be naturally extended, following the
approach of Shao and Steel (1999), to estimate the variance in (2.4) or (2.5). The
first term in (2.4) and (2.5) may be estimated in exactly the same way as the design-
based variance. In cases where the sampling fraction is negligibly small the second term
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18 Chapter 4. Variance estimation

in (2.4) or (2.5) may be omitted as an approximation. Otherwise, Shao and Steel

(1999) discuss how this term may be estimated using linearization and the assumption
about qU that the Ri are independent for different i and that Pr (Ri = 1) is constant
within imputation cells, with imputation conducted independently in different cells. The
smaller the sampling fraction the more robust this method may be expected to be under
departures from this assumption about qU .

Quasi Design-based – two-phase sampling: Vpq (or VpqI)

The standard approach to variance estimation in this case is to make assumptions about
the response mechanism, q, and then to use standard methods of variance estimation for
two-stage sampling from the survey sampling literature. A common assumption is that
the Ri are independently distributed and that Pr (Ri = 1) is constant (uniform response),
either across the population or within imputation cells. See Rao and Sitter (1995); Rao

(1996), and Sitter and Rao (1997) for linearization approaches. Replication approaches
have also been proposed within this framework and under the same assumptions. See
Rao and Shao (1992); Rao and Sitter (1995); Sitter and Rao (1997), and Yung

and Rao (2000) for jackknife methods and Shao et al. (1998) and Rao and Shao (1999)
for balanced repeated replication methods.

Model-anticipated variance EξVpq (or EξVpqI)

Variance estimation methods for this case are generally based upon the model ξ, which was
explicit or implicit in generating the imputed values and is called the imputation model,
together with the assumption that yi is missing at random (MAR) given the covariates
used in imputation (this is also called an unconfounded missing data mechanism). Such
methods therefore make stronger assumptions than the two-phase approach, in the sense
that they depend upon a model, but weaker assumptions in the sense that the missing
data mechanism only needs to be MAR not uniform. Deville and Särndal (1994)
set out the approach for regression imputation. This approach is discussed further by
Rancourt et al. (1994); Lee et al. (2002) and Lundstrøm and Särndal (2002).

4.2 Some specific methods for estimating variance

inflation

In Chapter 3 we introduced the concept of neff, to measure the inflation of variance
arising from non-response. In the notation of that chapter, we again use θ to denote the
parameter of interest. We use θ̂ to denote the estimator based upon the observed data,
which may be the same as θ̂∗ if the estimator is based upon imputed data. We use θ̃ to
denote the estimator based upon the complete data, in the hypothetical situation where
no non-response had arisen. The neff measure was defined in (3.1) as the ratio of the
variances of these two estimators.

In simulation studies the variances and neff, provided they are too complicated to be
given in closed forms, can be approximated in a straightforward manner by the Monte
Carlo method using independent replicates of θ̂ and θ̃. In real applications, and based on
the selected sample and the observed data, we need to estimate the variances of θ̂ and
θ̃, where the variances are defined according to a given framework for inference. In this
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4.2 Some specific methods for estimating variance inflation 19

section we describe some general resampling methods, whose detailed properties remain
to be examined by simulations. The notation will follow that in Chapter 3.

4.2.1 Variance estimation based on plug-in sample

Plug-in variance estimation

Suppose that either a consistent or unbiased variance estimator is available for Vp(θ̃) given
the complete data, denoted by τ(as, ys, xs). A plug-in variance estimator is then given by

V̂p(θ̃) = τ(ãs, ỹs, x̃s),

for some suitable plug-in sample data s̃ = (ãs, ỹs, x̃s). The plug-in sample data are such
that

(ãi, ỹi, x̃i) = (ai, yi, xi) if ri = 1,

i.e. if there are no missing values on unit i. For any unit from which data are missing,
we still observe (ai, xi) and, possibly, components of yi. Nevertheless, we do not require
the plug-in values to be the same as the observed ones in such cases, as long as they are
plausibly chosen for the purpose of variance estimation. Hence the term plug-in sample
rather than imputed sample.

Notice that estimation of V(θ̃) may be possible without constructing the entire plug-in
sample, especially when closed variance formula is available given the complete data, such
as when θ̃ is the Horvitz-Thompson or generalised regression estimator (Särndal et al.,
1992). In such cases, we only need to plug in certain complete-data statistics estimated
from the observed data.

The situation is similar for Vq( θ̂ | as, ys, xs). In the first place, closed formulae are often

available when θ̂ is derived under either the MCAR or MAR assumption, such as examples
earlier on direct weighting and hot-deck imputation. Otherwise, suppose that given ys,
Vq(θ̂|as, ys, xs) can be evaluated straightforwardly by Monte Carlo approximation based

on independent bootstrap replicates of θ̂ under the assumed non-response model. A plug-
in estimator is then given by applying the same bootstrap variance estimator to some
suitable plug-in data sample data s̃.

Construction of the plug-in sample

For the purpose of variance estimation, the plausibility of a plug-in sample rests primarily
on whether it exhibits similar sample variation to that of the complete sample.

Both weighting adjustment and imputation methods often assume that the units can
be divided into so-called response homogeneity groups (RHG). Under the RHG model,
response is independent between units, homogenous within the same response group, but
heterogeneous across the groups. Let sh denote the response groups, for h = 1, . . . , H. Let
F1,h(a, y, x) be the empirical distribution function (EDF) based on {(ai, yi, xi); i ∈ s1,h},
where s1,h denotes the set of complete cases within group h, which is an unbiased estimator
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20 Chapter 4. Variance estimation

of the EDF based on {(ai, yi, xi); i ∈ sh}. A plausible plug-in set of data for units in group
h which are subject to non-response, denoted by s̃0,h, is such that

F0,h(a, y, x) = F1,h(a, y, x).

For discrete (a, y, x), we simply put mh(a, y, x) cases with values (a, y, x) into s̃0,h, where

mh(u, y, x)/m̃h = nh(a, y, x)/nh

and nh(a, y, x) is the number of complete cases with values (a, y, x), and
nh =

∑
a,y,x nh(a, y, x), and m̃h is either the observed or estimated size of s̃0,h. When

at least some of the components of (a, y, x) are continuous, we may approximate F1,h by
the following procedure:

1. choose a suitable set of grid values (ak, yk, xk) for k = 1, . . . , K;

2. divide s1,h into s1,h,1,...,s1,h,k, such that {(ai, yi, xi); i ∈ s1,h,k} are centered around
(ak, yk, xk), and let nhk be the size of s1,h,k;

3. fill into s̃0,h a simple random sample of size mhk, drawn with replacement from
s1,h,k, together with the associated values (ai, yi, xi), for mhk/m̃h = nhk/nh and
k = 1, . . . , K.

In cases where the response probability is unique for individual values of (a, y, x) the fol-
lowing two procedures can be considered. Firstly, we may stratify the response probabili-
ties into a suitable number of classes, and then construct the plug-in sample as described
above for the RHG model. Secondly, let ŷi denote the estimated expected values which
are missing. Variations among the conceptual ys can be approximated by adding ‘noises’
to these expected values in a suitable manner.

Previous simulation studies (Zhang, 2002) indicate that variance estimation is fairly
robust towards to the various approximations involved in the construction of the plug-in
sample. It would be interesting to check whether this robustness holds in a wider range
of situations.

4.2.2 Variance estimation using bootstrap or jackknife

Based on complete data, both the Taylor linearization method and resampling methods,
such as the jackknife and bootstrap, have been justified under the general stratified mul-
tistage sample design (for an overview see Shao, 1996) provided that θ̃ is some smooth
(non-linear) function of plug-in estimates of a number of population characteristics. Given
non-response, the linearization approach, as well as some of the resampling approach such
as the rescaling bootstrap (Rao and Wu, 1988), easily becomes intractable. For some
theoretical results on bootstrap and jackknife in the presence of non-response we refer to
Shao and Sitter (1996); Rao and Shao (1992); Yung and Rao (2000); Chen and
Shao (2001). The additional non-response assumptions considered in these works are

either MCAR or MAR. Yet, as long as we can envisage θ̂ as a smooth function of the
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4.2 Some specific methods for estimating variance inflation 21

observed data, we may expect the validity of the proposed bootstrap and jackknife meth-
ods to carry through also for estimators derived under nonignorable non-response models.
The key to success lies in appropriate treatment of non-response in the resamples. We
shall not go into the details here. Instead we discuss below some points which are either
work taking notice of, or require further investigations in the future.

First of all, the works cited above are somewhat vague when it comes to the exact nature
of the framework of inference. Are they targeted at Vp(θ̂) or Vpq(θ̂)? Of course, there
is no difference between the two frameworks in the case of sampling with replacement.
Moreover, as long as the sampling fractions of the first-stage PSU’s are negligible, as in
Rao and Shao (1992); Yung and Rao (2000) and Chen and Shao (2001), we may

ignore the term VqU (Ep[ θ̂ |RU ]) in (3.9), such that Vp(θ̂) ≈ VqUp(θ̂), and the conceptual
difference between them matters little in reality. But what about the cases where the
sampling fractions are appreciable? It is instructive then to consider the cited bootstrap
and jackknife methods in the extreme case of a census subject to non-response, where
Vp(θ̂) = 0 and

VqUp(θ̂) = Vq[θ̂(RU , aU , yU , xU)|yU , xU , aU = 1].

The jackknife methods require that the first-stage PSU’s are either selected with replace-
ment, or may be so treated. Although the condition is clearly not satisfied in the case of
s = U , the jackknife variance estimator may still be calculated. Let θ̂(hi) be the (hi)th

jackknife replicate of θ̂, i.e. the estimator obtained using the jackknife weights on dele-
tion of the ith PSU in stratum h. Since θ̂(hi) differs depending on which PSU is being
deleted, the jackknife variance estimator will not be zero. But neither is it an estimate of
Vq(θ̂|yU , xU). Rather, in this case it is an estimate of the variance, w.r.t. to the unknown
‘super-population’ distribution of (RU , yU , xU), because it is approximately the same as
the bootstrap variance from resampling with replacement the PSU’s in the population
with all the associated values of (Rhi, yhi, xhi).

Unlike the jackknife, the bootstrap approach is not restricted to estimators of smooth
functionals. Neither does it require sampling with replacement. Shao and Sitter

(1996) recommend two resampling procedures given non-response, i.e. the without-
replacement bootstrap BWO, Sitter (1992a), and the mirror-match bootstrap MMB,
Sitter (1992b). In the extreme case of census subject to non-response, the BWO draws
stratified resamples of the population size. Since these are drawn without replacement,
the bootstrap replicates of θ̂ are all identical to the observed one. It follows that the BWO
is aimed at Vp(θ̂) in this case. The MMB is undefined in this case. We consider instead srs
wor with nh = Nh−1, where the stratum sample size equals to the stratum population size
minus one. A special MMB in this case amounts to stratified bootstrap with replacement,
with the stratum resample size given by Nh (Nh − 1). The bootstrap replicates of the
estimator for the stratum population mean have then variance s2

h/ [Nh (Nh − 1)], which
matches the theoretical variance estimate under the pure randomization framework.

It is clear from the discussions above that we need to modify the existing bootstrap and
jackknife methods for estimation of VqUp(θ̂) in cases where the sampling fractions are
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appreciable. We propose the following procedure based on the BWO (Sitter, 1992a,
Section 3.1):

1. Create the pseudopopulation as in the BWO. However, instead of the observed sam-
ple data (as, Rs, ys, xs), use some suitable plug-in sample s̃ as described in Subsection
4.2.1 above.

2. Generate the population response vector, denoted by R∗
U , under the estimated non-

response model.

3. Resample as in the BWO, but with the response indicators generated in Step 2
above.

4. Derive θ̂∗ based on the resample in the same way as θ̂ on the observed sample.

5. Repeat Step 2-4 to generate independent bootstrap replicates of θ̂, and calculate
the standard Monte Carlo approximation to VqUp(θ̂).

In this way, the modified BWO contains an extra randomization (Step 2) with respect to
the estimated response distribution. Notice that the pseudopopulation values of (yU , xU),

generated in Step 1, are held fixed for all the resamples, which is appropriate for VqUp(θ̂).

4.3 A general jackknife method for imputed data

Some jackknife methods have already been referred to in Subsection 4.2.2. These meth-
ods tend to make specific assumptions about the sampling scheme. For example, Rao

and Shao (1992) assumed that at the first stage, the units (or clusters) are selected
with replacement (or equivalently the first stage sampling fractions are small) and with
equal probabilities. However, without replacement sampling is common in practice. The
jackknife method set out in this section can be applied for unequal probability sampling
without replacement, where the sampling fractions may be large, as in workpackage 6.

The two-phase approach described in Section 2.4 will be used as the framework. The
selection of a sample s of size n from a finite population of size N by a sampling design
p(s) is treated as the first phase. The selection of a set of respondents r ⊂ s by a
probability mechanism q(r|s) is treated as the second phase. We suppose that the item y
is observed only for units in r. Let Ri be the response indicator for unit i, so that Ri = 1
if unit i responds to item y and Ri = 0 otherwise. Let qi = q(Ri = 1 | s) be the response
probability for unit i ∈ s. We assume that the units respond independently of one another.
We further assume uniform response, that is qi = q for all i ∈ s. This assumption will be
relaxed in Subsection 4.3.4, where we allow for different response probabilities in different
imputation classes.
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4.3 A general jackknife method for imputed data 23

4.3.1 A jackknife method for general sampling designs but no
non-response

Campbell (1980) proposed a generalized jackknife variance estimator that allows for
complex sampling. Berger and Skinner (2003) show that this jackknife estimator is
design-consistent for parameters of interest that can be expressed as a function of means.

Consider the Hájek (1981) estimator,

µ̂ =
∑

i∈s

wiyi ,

of a population mean µ = N−1
∑

i∈U yi, where

wi = π−1
i

/N̂,

πi is the first-phase inclusion probability of unit i and N̂ =
∑

i∈s π−1
i . The generalized

jackknife estimator of the variance of µ̂ is given by

V̂ =
∑

i∈s

∑

j∈s

πij − πiπj

πij

ε(i)ε(j) , (4.1)

where the πij are the joint inclusion probabilities for the (first phase) sampling design.
The quantities εi are pseudo-values given by

ε(j) = (1 − wj)(µ̂ − µ̂(j)), (4.2)

where µ̂(j) is the estimator of µ which has the same form as µ̂, but is based only on the
data that remain after omitting the j-th unit; that is

µ̂(j) =
∑

i∈s,i6=j

wi(j)yi ,

where

wi(j) = πi/N̂(j) ,

with N̂(j) = N̂ − π−1
j , (i 6= j).

The weights wi are more suitable than (Nπi)
−1 for the jackknife as, whenever a unit is

deleted, these weights reduce to the jackknife weights for simple random sampling without
replacement (srs wr). Indeed, whenever a unit j is deleted, the weights wi(j) reduce to
the usual jackknife weight (n − 1)−1 under srs wr. The term (1 − wi) is a correction for
unequal probabilities.

4.3.2 Deterministic imputation

Let r and m = s− r denote, respectively, the sets of respondents and non-respondents to
item y. When i ∈ r, the value of yi is known and does not need to be imputed. When
i ∈ m, the value of yi is missing and needs to be imputed. Let y∗

i denote the imputed
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value for missing yi, i ∈ m. Let ỹ be the imputed item, where ỹi = yi if i ∈ r and ỹi = y∗
i

if i ∈ m. We assume that imputed values are identifiable; that is, the response indicators
Ri are known. The imputed estimator of the population mean µ is

µ̂I =
∑

i∈s

wiỹi. (4.3)

We consider two forms of deterministic imputation for which (4.3) is asymptotically un-
biased.

Mean imputation

First, consider the case of mean imputation where y∗
i = µ̂r with

µ̂r =
∑

i∈r

wi;ryi , (4.4)

where

wi;r = wi

(∑

j∈r

wj

)−1

.

Suppose that whenever a responding unit j ∈ r is deleted, the imputed values y∗
i are

adjusted by an amount

αi(j) = y∗
i(j) − y∗

i , (4.5)

where y∗
i(j) is the value one would impute for the non-responding unit i. Under mean

imputation, αi(j) = αj, for all i ∈ m, where

αj = µ̂r(j) − µ̂r , (4.6)

µ̂r(j) =
∑

i∈r,i6=j

wi;r(j)yi ,

wi;r(j) = wi

( ∑

l∈r,l 6=j

wl

)−1

,

where j 6= i ∈ r. Thus, the adjusted imputed values are y∗
i + αj. For srs wr, (4.6) is

the adjustment proposed by Rao and Shao (1992). The imputed values are unchanged
whenever a non-responding unit is deleted.

The adjusted jackknife variance estimator proposed is

V̂a =
∑

i∈s

∑

j∈s

πij − πiπj

πij

εa
(i)ε

a
(j) + V̂r , (4.7)

where

V̂r = (1 − q)
∑

i∈s

πiε
a
(i)

2 (4.8)

εa
(i) = (1 − w̃j)(µ̂I − µ̂a

I(j)), (4.9)
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where µ̂a
I(j) is computed with adjusted imputed values and

1 − w̃j = 1 − wj;r if j ∈ r, (4.10)

= (1 − wj)(1 − qπj)
−0.5 if j ∈ m.

Note that with equal probabilities and small sampling fraction 1 − w̃j ≈ 1 for j ∈ s. For
mean imputation, one can use any value for 1 − w̃j when j ∈ m, as µ̂I − µ̂a

I(j) = 0 when
j ∈ m. However, in Subsection 4.3.3 we will see that the values of 1 − w̃j when j ∈ m
guarantee asymptotic unbiasedness with stochastic imputation.

Berger and Rao (2004) show that (4.7) is consistent with uniform non-response. In
(4.8) q needs to be estimated, for example by q̂ =

∑
i∈r wi. Here, we treat q as fixed.

The first term in (4.7) reduces to the adjusted jackknife estimator of Rao and Shao

(1992) for srs wr. The second term V̂r in (4.7) is a correction for large sampling fractions.

Indeed, in this case, the first term of (4.7) is small and V̂r has a larger contribution to the

variance. V̂r equals zero for full response. With a census, the first term equals zero, as
πij − πiπj = 0 and the variance is only due to the non-response: V̂a = V̂r. The following

lemma gives conditions for V̂r to be negligible.

Lemma V̂rV̂
−1

a → 0 if λmin → 1 and λmax → 1 , where λmin and λmax are the minimum
and the maximum value of λi = (1 − πi)(1 − πiq)

−1 for i ∈U.

The proof of this lemma is given in Berger and Rao (2004). The jackknife variance
estimator proposed depends on πij, which is often unknown. However, if p(s) is a single
stage stratified sampling design, we can use the Hájek (1964) variance estimator. This
estimator can be easily computed for a wide range of sampling designs (Berger, 1998)
with any standard package using weighted least squares residuals.

Ratio imputation

Now suppose that values xi of an auxiliary variable are available for all the sampled units
i ∈ s and that ratio imputation is employed with y∗

i = xiµ̂r/µ̂x;r, where

µ̂x;r =
∑

i∈r

wi;rxi.

Suppose that whenever a responding unit j ∈ r is deleted, the imputed values y∗
i are

adjusted by the amount αi(j) defined by (4.5) with

y∗
i(j) = xi

µ̂r(j)

µ̂x;r(j)

,

where

µ̂x;r(j) =
∑

i∈r,i6=j

wi;r(j)xi.

Thus, the adjusted imputed values are y∗
i + αi(j). The imputed values are unchanged

whenever a non-responding unit is deleted. Note that unlike mean imputation, with ratio
imputation the adjustment depends on i. Berger and Rao (2004) show that (4.7) is
consistent under ratio imputation with uniform non-response.
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4.3.3 Stochastic imputation

Deterministic imputation leads to serious under-estimation for measure of population
distributions. For example, mean imputation can under-estimate the population variance
of an item y. This bias can be reduced by using stochastic imputation, such as hot deck.

Consider

y∗
i = µ̂r + ei , (4.11)

where the ei are independent random variables such that EI(ei) = 0, where EI(.) denotes
expectation with respect to the stochastic imputation specified by the distribution of ei

given s and r. The ei can be generated from a parametric distribution. Alternatively, the
ei can be the residual yi − µ̂r of a donor i ∈ r selected with replacement with selection
probabilities wi;r. The second option is called weighted random hot deck. Hot deck is
more appealing for categorical variables.

Suppose that the missing values are imputed using (4.11) and consider an imputed es-
timator given by (4.3). Suppose that whenever a responding unit j ∈ r is deleted, the
imputed values y∗

i are adjusted by an amount

αi(j) = EI(j)(y
∗
i ) − EI(y

∗
i ), (4.12)

where EI(j)(.) denotes expectation with respect to the distribution of ei given s and r
after omitting the j-th sample unit. Note that (4.12) reduces to (4.5) when the ei are not
random. The adjusted jackknife estimator is given by (4.7) with

εa
(j) = (1 − w̃j)(µ̂I − µ̂a

I(j)), (4.13)

where µ̂a
I(j) is computed after adjusting imputed values by (4.12) and w̃j is defined by

(4.10). Note that µ̂I − µ̂a
I(j) 6= 0 for j ∈ m and the term (1− qπj)

−0.5 in (4.10) is necessary
to guarantee asymptotic unbiasedness with large sampling fractions (see Berger and
Rao, 2004). Berger and Rao (2004) show that the adjusted jackknife estimator (4.7)
is asymptotically unbiased under stochastic imputation and uniform non-response if the
adjusted pseudo-values are given by (4.13).

4.3.4 Imputation classes

The uniform response assumption is often unrealistic in practice. It can be relaxed by
forming ν > 2 imputation classes and then assume uniform response within imputation
classes. Let sυ and rυ denote the sample and the set of respondents in the ν-th class.
Suppose that imputation is performed independently within each imputation class so that
y∗

i = µ̂rυ + eiυ; where EIυ(eiυ) = 0, where EIυ(.) denotes the expectation with respect to
sυ and rυ. The mean for the respondent of the ν-th class is

µ̂rυ =
∑

i∈rυ

wiyi

(∑

j∈rυ

wj

)−1
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Thus, the imputed estimator µ̂I is

µ̂I =
∑

υ

N̂υ

N̂
µ̂Iυ ,

where

µ̂Iυ =
∑

i∈sυ

wiỹi

(∑

j∈sυ

wj

)−1

.

4.4 A non-Bayesian approach to multiple imputation

Multiple imputation is a method specifically designed to enable variance estimation in
the presence of missing data (Rubin; Rässler, 1987; 2004). The basic idea is to create
m multiple imputed values for each missing value. Given these values, it is possible to
compute m values of the point estimator and of the ‘näıve’ variance estimator, both of
which treat the imputed values as real. A variance estimator may then be constructed
from these values according to Rubin’s combination formula. For this estimator to be
valid, the imputation method must display an appropriate level of variability across mul-
tiple imputations. In the terminology of multiple imputation, the imputation method is
required to be “proper” (Rubin, 1987). Unfortunately, the methods used for imputing
for non-response in national statistical institutes (NSI’s) very seldom if ever satisfy the
requirement of being ”proper”. However, the idea of creating multiple imputations to
measure the imputation uncertainty and use it for variance estimation and for computing
confidence intervals is still of interest. The problem is then that Rubin’s combination
formula is no longer valid with the usual non-proper imputations used by NSI’s. The
reason being that the variability in non-proper imputations is too little and the within
imputation component must be given a larger weight in the variance estimate. The prob-
lem is then to determine what this weight should be to give valid statistical inference,
and also for what kind of non-response mechanisms and estimation problems it is possible
to determine a simple combination formula not dependent on unknown parameters. This
section suggests an approach for studying this problem.

In Subsection 4.4.1 an approach for determining the combination of the imputed completed
data sets is suggested, with two illustrations. Subsection 4.4.2 takes up the problem of
using the same combination rule for all estimation problems with a given imputation
method and data & response model.

4.4.1 An approach for determining an alternative combination
formula for variance estimation

Let s = (1, . . ., n) denote the sample, with Y (s) the matrix with columns given by the
realized sample values y1, . . . , yn of random variables Y1, . . . , Yn under the model ξ. The
objective is to estimate some parameter θ. Now, let yobs be the observed part of Y (s),
with r being the subset of responding units in s, of size nr,

yobs = (yi : i ∈ r).
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Let θ̂ be the estimator based on the full sample data Y (s), with Var(θ̂) estimated by V̂(θ̂).
For i ∈ s− r we impute by some method to give an imputed value y∗

i and let Ỹ (s) denote
the complete data (yobs, y

∗
i , i ∈ s − r). Based on Ỹ (s), we have

θ̂∗ = θ̂(Ỹ (s))

V̂
∗

= V̂(θ̂∗)

Multiple imputation of m repeated imputations leads to m completed data-sets with m

estimates θ̂∗i , i = 1, . . . ,m and related variance estimates V̂
∗

i , i = 1, . . . ,m. The combined
estimate is given by

θ
∗

=
m∑

i=1

θ̂∗i /m.

The within-imputation variance is defined as

V
∗

=
m∑

i=1

V̂
∗

i /m

and the between-imputation component is

B∗ =
1

m − 1

m∑

i=1

(θ̂∗i − θ
∗
)2.

The total estimated variance of θ
∗

is then proposed to be

W = V
∗
+

(
k +

1

m

)
B∗ ,

where k is to be determined such that

E(W ) = Var(θ
∗
). (4.14)

Rubin (1987) has shown that k = 1 can be used with proper imputations, which essentially
means drawing imputed values from a posterior distribution in a Bayesian framework.

In general, one has to determine the terms in (4.14). One way to try and do this is to use
double expectation, conditioning on yobs, that is,

E(W ) = E{E(W |Yobs)}

Var(θ
∗
) = E{Var(θ

∗|Yobs)} + Var{E(θ
∗|Yobs)}

Typically,

E(V
∗
) ≈ Var(θ̂) (4.15)

and

E(B∗|yobs) = Var(θ̂∗|yobs).
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Hence, approximately

E(W ) = Var(θ̂) +

(
E(k) +

1

m

)
EVar(θ̂∗|Yobs) (4.16)

Moreover,

Var(θ
∗|yobs) = Var(θ̂∗|yobs)/m

and

E(θ
∗|yobs) = E(θ̂∗|yobs).

This implies that

Var(θ
∗
) =

1

m
E{Var(θ̂∗|Yobs)} + Var{E(θ̂∗|Yobs)} (4.17)

From (4.15) and (4.16), the equation (4.14) becomes

Var(θ̂) + E(k)EVar(θ̂∗|Yobs) = Var{E(θ̂∗|Yobs)},

which gives the following general expression for E(k):

E(k) =
VarE(θ̂∗|Yobs) − Var(θ̂)

EVar(θ̂∗|Yobs)
. (4.18)

For this to be of interest, k must be, at least approximately, determined independent of
unknown parameters. In addition, one needs to check that (4.15) holds.

To illustrate how (4.18) can be used we shall consider two special cases with random
non-response.

Example Estimating a population average with hot-deck imputation

Consider a simple random sample from a finite population of size N , where the aim is
to estimate the population average Y of some variable y. We shall assume completely
random non-response, MCAR in the terminology of Subsection 1.2.1. We note that MCAR
means that the response indicators R1, . . . , RN are independent with the same response
probability q=Pr(Ri = 1). The imputation method is the hot-deck method, where y∗

i is
drawn at random from yobs, and the estimate is the sample mean. Let yr be the observed
sample mean and σ̂2

r = (nr − 1)−1
∑

i∈r (yi − yr)
2 the observed sample variance. Then

Y
∗

is the imputation-based sample mean for the completed sample, and the combined
estimator is given by

Y
∗

=
m∑

i=1

Y
∗

i /m.

Let Y s denote the sample mean based on a full sample. Then,

Var(Y s) = σ2

(
1

n
− 1

N

)
,
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with σ2 = (N − 1)−1
N∑

i=1

(yi − Y )2 being the population variance.

E(Y
∗|yobs) = yr and Var(Y

∗|yobs) =
n − nr

n2
· nr − 1

nr

σ̂2
r

using the facts that

E(Y ∗
i |yobs) = yr

and

Var(Y ∗
i |yobs) =

nr − 1

nr

σ̂2
r .

Here,

V̂
∗

= σ̂2
∗

(
1

n
− 1

N

)
,

where

σ̂2
∗ = (n − 1)−1

[∑
r
(yi − y∗)2 +

∑
s−r

(y∗
i − y∗)2

]
.

It can be shown that

E(σ̂2
∗|yobs) = σ2

(
1 − 1

nr

)(
1 +

nr

n(n − 1)

)
≈ σ2,

and (4.15) holds.

We find, from (4.18),

E(k) =

Var
(
Y r

)
− σ2

(
1

n
− 1

N

)

E

(
n − nr

n2
· nr − 1

nr

)
E(σ̂2

r |nr)

=

σ2

(
E

(
1

nr

)
− 1

N

)
− σ2

(
1

n
− 1

N

)

E

(
n − nr

n2
· nr − 1

nr

)
σ2

≈ (1 − q)/q

1 − q
=

1

q
,

which is satisfied approximately by letting

k =
1

1 − f
,

where f = (n − nr)/n is the rate of non-response.
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Example Estimating a regression coefficient with residual imputation We shall assume
completely random non-response as in the previous example.

Model: Yi = βxi + εi, with Var(εi) = σ2xi; i = 1, . . ., n.

It is assumed that all xi’s are known, also in the non-response sample. The full data
estimator of β is given by

β̂ =
n∑

i=1

Yi

/ n∑

i=1

xi.

The unbiased estimator of σ2 is given by

σ̂2 =
1

n − 1

n∑

i=1

1

xi

(yi − β̂xi)
2.

We shall consider residual regression imputation:

Let β̂r be the β̂ - estimate based on observed sample r. Define the standardized residuals

ei = (yi − β̂rxi)/
√

xi, for i ∈ r .

For i ∈ s − r, draw the value of e∗i at random from the set of observed residuals ei, i ∈ r,
and the imputed y-value is given by

y∗
i = β̂rxi + e∗i

√
xi.

Let X =
∑

i∈s xi, Xr =
∑

i∈r xi and Xnr =
∑

i∈s−r xi = X − Xr. All considerations from
now on are conditional on nr and Xr, and we aim to determine k directly from (4.18).
Define the proportion of the x - total in the non-response group to be:

fX = Xnr/X.

We now have

β̂∗ =
(∑

r
yi +

∑
s−r

y∗
i

)/
X

σ̂2
∗ = (n − 1)−1

∑
r
x−1

i (yi − β̂∗xi)
2 +

∑
s−r

x−1
i (y∗

i − β̂∗xi)
2.

In order to determine k from (4.14) we need to check the validity of (4.15) and derive the

following quantities: Var(β̂∗|yobs), E(β̂∗|yobs) and Var(β̂).

Var(β̂) = σ2/X.

Consider (4.15) which is equivalent to

E(σ̂2
∗) ≈ σ2.

Let β̂nr =
∑
s−r

y∗
i /Xnr, and σ̂2

nr = (nnr − 1)−1
∑
s−r

x−1
i (y∗

i − β̂nrxi)
2. Here, nnr = n − nr.

Then, after some algebra, one can express σ̂2
∗ in the following way:

σ̂2
∗ =

1

n − 1

(
(nr − 1) σ̂2

r + (nnr − 1) σ̂2
nr +

XrXnr

X
(β̂r − β̂nr)

2

)
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In this case,

E(Y ∗
i |yobs) = β̂rxi + e

√
xi, where e =

∑
r
ei/nr ,

Var(Y ∗
i |yobs) = xis

2
e, where s2

e = n−1
r

∑
r
(ei − e)2.

Using this, it can be shown that

E(σ̂2
∗) = σ2

(
1 − c1

n − 1
− 4c2

(n − 1)nr

− c3f
n − 1

n · nr

)

where c1, c2, c3 lie in the interval (0,1).

Hence, E(σ̂2
∗) ≈ σ2 and (4.15) follows, at least for moderate and large nr.

Next, we look at Var(β̂∗|yobs) and E(β̂∗|yobs):

We see that β̂∗ = (β̂rXr + β̂nrXnr)/X, and

E(β̂nr|yobs) = β̂r +
e

Xnr

∑

s−sr

√
xi

Var(β̂nr|yobs) = s2
e/Xnr.

This gives us

E(β̂∗|yobs) = β̂r +
e

X

∑

s−sr

√
xi

Var(β̂∗|yobs) =
Xnr

X2
s2

e.

Next, we need to find EVar(β̂∗|yobs) and VarE(β̂∗|yobs). We have:

VarE(β̂∗|yobs) = Var(β̂r) +
(
∑

s−sr

√
xi)

2

X2
Var(e) + 2

∑
s−sr

√
xi

X
Cov(β̂r, e).

Using the Cauchy-Schwarz inequality,

(
n∑

i=1

aibi

)2

6

n∑

i=1

a2
i

n∑

i=1

b2
i

with ai =
√

xi and bi = 1, we see that

(∑

s−r

√
xi

)2

6 nnrXnr. (4.19)

Now, after some algebra we find that Cov(β̂r, e) = 0 and

Var(e) =
σ2

nr

(
1 −

(∑
sr

√
xi

)2

nrXr

)
= (1 − d1)

σ2

nr

, 0 6 d1 6 1.
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Moreover, from (4.19),

(∑
s−sr

√
xi

)2

X2
=

d2nnrXnr

X2
, 0 6 d2 6 1.

Hence,

VarE(β̂∗|yobs) =
σ2

Xr

+
(1 − d1)d2nnrXnr

X2
· σ2

nr

Next we find that

E(s2
e) = σ2(1 − 1

nr

) − Var(e) =
σ2

nr

(nr + d1 − 2)

which gives us

EV ar(β̂∗|yobs) =
Xnr

X2
· σ2

nr

(nr + d1 − 2).

From (4.18),

k =

σ2

Xr

+
σ2

nr

· (1 − d1)d2nnrXnr

X2
− σ2

X
σ2

nr

· Xnr

X2
(nr + d1 − 2)

=
nrX

2 − nrX · Xr + (1 − d1)d2nnrXnrXr

XrXnr(nr + d1 − 2)

≈ X

Xr

+ (1 − d1)d2
nnr

nr

.

We note that if all xi = 1, then d1 = d2 = 1. Now, with fX = Xnr/X being the proportion
of the x-total in the non-response group and f = nnr/n the rate of non-response, we finally
get, since typically (1 − d1)d2 ≈ 0,

k ≈ 1

1 − fX

+ (1 − d1)d2
f

1 − f
≈ 1

1 − fX

for usual x-values and non-response rates.

4.4.2 Question: can we use the same k for a given situation and
imputation method, for all scientific estimands?

We try here to give a general approach to this problem. As an illustration we consider
the first example in the previous section. For other situations and imputation methods,
similar considerations should be studied.
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In the example referred to, we found that for estimating the population mean with the
sample mean,

k =
1

1 − f
, with f = nnr/n, the non-response rate. (4.20)

The question is now: is this k valid for other estimation problems as well, using the same
imputation method. The answer, in general, is NO. What is needed is to find conditions
for (4.20) to be valid. From (4.18),

E(k) =
VarE(θ̂∗|Yobs) − Var(θ̂)

EVar(θ̂∗|Yobs)
.

In this case, the stochastic variables are (s, r), so an alternative notation is to use (s, r)
instead of Yobs. Hence, (4.18) becomes

E(k) =
VarE(θ̂∗|s, r) − Var(θ̂)

EVar(θ̂∗|s, r)
(4.21)

One obvious requirement is that, at least approximately

E(θ̂∗|s) = θ̂, (4.22)

i.e. the imputed estimator should estimate the same parameter as θ̂.

If we restrict attention to estimators that are linear in (yi : i ∈ s),

θ̂ =
∑

i∈s

ai(s)yi , (4.23)

then we have the following two results, which are proved in the Appendix.

Lemma Assume θ̂ is given by (4.23). Then θ̂ satisfies (4.22) if and only if ai(s) = a(s) for
all i ∈ s.

i.e., θ̂ = a(s)
∑

i∈s yi = na(s)ys.

Theorem Assume θ̂ is given by (4.23) and satisfies (4.22). Then E(k) = 1/q and k =
1/(1 − f).

Let us look at some special cases:

1. a(s) = 1/n, same as in the earlier example.

2. Regression coefficient for regression through the origin:

β̂ =
∑

i=s

yi/
∑

i∈s

xi.

Here (4.22) is satisfied with a(s) = 1/
∑

i∈s xi, and hence k = 1/(1 − f).
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4.5 Variance estimation in the presence of weighting for non-response 35

3. A case where (4.22) does not hold is regression coefficient in linear regression not
through the origin:

β̂ =

∑
i∈s

(xi − xs)yi

∑
i∈s

(xi − xs)2
.

Here, ai(s) =
xi − xs∑

j∈s

(xj − xs)2
, which is not independent of i and one can show that

E(β̂∗|s) ≈ qβ (exact [(nq − 1)/(n − 1)]β). Hence, for regular regression problems
hot-deck imputation cannot work.

Obviously, when y is correlated with known x in non-response group, one should utilize
this in the imputation regardless of the estimation problem one considers.

4.5 Variance estimation in the presence of weighting

for non-response

The representation of sampling and non-response as two phases of sampling and the def-
inition of the variance of a weighted estimator with respect to these phases was referred
to in Section 2.6. Methods of variance estimation for two-phase sampling can therefore
be applied to this case, under suitable assumptions about the non-response mechanism
(Särndal and Swensson, 1987). The application of these ideas to a broad class of cali-
bration estimators is discussed by Lundstrøm and Särndal (1999), and Lundstrøm

and Särndal (2002).

The explicit two-phase approach requires the estimation of two components of variance,
for sampling and for non-response, and this can be complicated with complex designs and
estimators.

In some circumstances, it may be reasonable to employ a much simpler approach, which
effectively ignores the non-response by treating the respondents as the sample obtained
from the given sampling design. The idea is to employ a variance estimator which is valid
for the given sampling design and weighted estimator in the absence of non-response.
One example where this may be reasonable is for a stratified multistage design with small
sampling fractions within strata. In this case, a common variance estimator is based
upon the ‘ultimate clusters’ formed from sampled elements within primary sampling units
(PSUs) within strata. The validity of this estimator depends upon approximating the
without replacement sampling of the PSUs by with replacement sampling. This variance
estimator will still be valid if the sample is also subject to unit non-response, provided non-
response operates independently and in a common way between PSUs. Another example
where this approach may be reasonable consists of a jackknife variance estimator based
upon the deletion of PSUs.

Some care may be needed in judging whether standard variance estimators remain valid
in the case of non-response. For example, the variance estimators proposed for calibration
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weighting by Deville and Särndal (1992) assume that the design-weighted estimates
of the calibration totals are unbiased. This assumption may be unreasonable in the case of
non-response, when the ‘true’ response probabilities are unknown. It may still be possible,
however, to use appropriate ‘single phase’ variance estimators without estimating the two
components required by the two-phase approach. Some discussion in the case of raking is
provided in DACSEIS workpackage 6.

When population-level auxiliary information is used in weighting, it may be reasonable
to consider estimating a conditional variance. The most well-studied case consists of
post-stratification, where Holt and Smith (1979) argue that the variance should be
conditional on the sample sizes within strata. Zhang (2002) discusses the use of such
conditional variance estimation for a particular weighting approach designed to handle
non-ignorable non-response.
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Appendix A

Proofs of results in Section 4.4.2

In order to prove the two results we need some facts:

(a) nr is binomial (n, pr)

(b) sr given s, nr is a simple random sample from s of size nr

(c) P (Ri = 1|s, nr) = nr/n and P (Ri = 1, Rj = 1|s, nr) =
nr

n
· nr − 1

n − 1
(follows from (b))

(d) E(Y ∗
i |s, sr) = yr ( ⇒ E(Y ∗

i |s, nr) = ys ⇒ E(Y ∗
i |s) = ys )

(e) Var(Y ∗
i |s, sr) =

nr − 1

nr

σ̂2
r

( ⇒ Var(Y ∗
i |s, nr) =

nr − 1

nr

σ̂2
s , where σ̂2

s =
1

ns − 1

∑
i∈s (yi − ys)

2 and Var(Y ∗
i |s) ≈ σ̂2

s)

Proof of Lemma

We get

E(θ̂∗|s) = E

(∑

i∈sr

ai(s)yi +
∑

i∈s−sr

aiY
∗
i

∣∣∣s
)

= Esr|sE

(∑

i∈sr

ai(s)yi +
∑

i∈s−sr

ai(s)Y
∗
i

∣∣∣s, sr

)

=(d) E

(∑

i∈sr

ai(s)yi

∣∣∣s
)

+ E

( ∑

i∈s−sr

ai(s)yr

∣∣∣s
)

The first term is:

E

(∑

i∈sr

ai(s)yi

∣∣∣s
)

= EE

(∑

i∈sr

ai(s)yi

∣∣∣s, nr

)

DACSEIS-WP11-D11.1
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= EE

(∑

i∈s

ai(s)yiRi

∣∣∣s, nr

)
= E

(∑

i∈s

ai(s)yiP (Ri = 1|s, nr)

)

=(c) E

(∑

i∈s

ai(s)yi

nr

n

∣∣∣s
)

=(a) prθ̂.

The second term is:

E

( ∑

i∈s−sr

ai(s)yr

∣∣∣s
)

= EE

( ∑

i∈s−sr

ai(s)yr

∣∣∣s, nr

)

= EE

(
1

nr

∑

i∈s−sr

∑

j∈sr

ai(s)yj

∣∣∣s, nr

)

= EE

(
1

nr

∑

i∈s

∑

j∈s

ai(s)yj(1 − Ri)Rj

∣∣∣s, nr

)

= E




1

nr

∑

i∈s

∑

j∈s
j 6=i

ai(s)yj(E(Rj|s, nr) − E(RiRj|s, nr))




=(c) E




1

nr

∑

i∈s

∑

j∈s
j 6=i

ai(s)yj

(
nr

n
− nr

n
· nr − 1

n − 1

)



=(a) 1 − pr

n − 1

∑

i∈s

∑

j∈s
j 6=i

ai(s)yj

=
1 − pr

n − 1
(na(s)nys − θ̂), where a(s) =

∑

i∈s

ai(s)/n.

This implies that

E(θ̂∗|s) = prθ̂ +
1 − pr

n − 1
(n2a(s)ys − θ̂)

and (4.22) is equivalent to

prθ̂ +
1 − pr

n − 1
(n2a(s)ys − θ̂) = θ̂

⇔ θ̂

(
1 +

1 − pr

n − 1
− pr

)
=

1 − pr

n − 1
n2a(s)ys

⇔ θ̂
n(1 − pr)

n − 1
=

1 − pr

n − 1
n2a(s)ys

⇔ θ̂ = na(s)ys = a(s)
∑

i∈s

yi and the result follows. �
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Proof of Theorem

From the lemma, θ̂ = a(s)
∑

i∈s yi = na(s)ys and θ̂∗ = a(s)
(∑

i∈sr
yi +

∑
i∈s−sr

aiy
∗
i

)
.

E(θ̂∗|s, sr) =(d) a(s)(nryr + (n − nr)yr) = na(s)yr

Var(θ̂∗|s, sr) =(e) [a(s)]2(n − nr)
nr − 1

nr

σ̂2
r

Hence,

VarE(θ̂∗|s, sr) = Var(na(s)yr) = EVar(na(s)yr|s) + VarE(na(s)yr|s)

= En2[a(s)]2Var(yr|s) + Var{na(s)E(yr|s)}

= En2[a(s)]2{Enr|sVar(yr|s, nr) + Varnr|sE(yr|s, nr)} + Var{na(s)Enr|sE(yr|s, nr)}

=(b) En2[a(s)]2
{

Enr

(
σ̂2

s

(
1

nr

− 1

n

))
+ Varnr

(ys)

}
+ Var{na(s)Enr

ys}

= En2[a(s)]2
{(

σ̂2
sE

(
1

nr

)
− 1

n

)
+ 0

}
+ Var{na(s)Enr

ys}

= n2

(
E

(
1

nr

)
− 1

n

)
E[a(s)]2σ̂2

s + Var θ̂.

Next,

EVar(θ̂∗|s, sr) =(f) E

{
[a(s)]2(n − nr)

nr − 1

nr

σ̂2
r

}

= EE

{
[a(s)]2(n − nr)

nr − 1

nr

σ̂2
r

∣∣∣s, nr

}
≈ E{[a(s)]2(n − nr)E(σ̂2

r |s, nr)}

=(b) E[a(s)]2σ̂2
s(n − nr) = EE([a(s)]2σ̂2

s(n − nr)|s)

= n(1 − pr)E[a(s)]2σ̂2
s .

We find now, from 4.21

E(k) =
VarE(θ̂∗|s, sr) − Var(θ̂)

EVar(θ̂∗|s, sr)

=

n2

(
E

(
1

nr

)
− 1

n

)
E[a(s)]2σ̂2

s

n(1 − pr)E[a(s)]2σ̂2
s

=
n(E(1/nr) − 1)

1 − pr

≈ (1/pr) − 1

1 − pr

=
1

pr

. �
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