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Preface

A major goal of the KEI project was to develop a composite indicator for the Knowledge
Economy, based on the political framework, adequate economic definitions, as well as on
state-of-the-art methodology. The study examines 125 (single) indicators with data from
25 European countries plus the US and Japan. The main focus was laid on recent data
coming from the time period 2001 to 2004.

As one important output of the project, particular attention was paid to the research
of analysis of aggregation issues and the behavior of the resulting composite indicator.
In order to adequately build a composite indicator or the KEI composite indicator (cf.
Saisana and Munda, 2008) the availability of reliable data sources and especially of a
complete dataset is an essential basis for the study. Knowledge indicator data, however,
in general come from many sources, possibly conducted in different years and hence yield
datasets with many unobserved or even unobservable values.

One major aim of the research within deliverable 3.2 of the KEI project was to investigate
means to adequately handle the large amount of missing values containing the above
mentioned challenging structure. In order to accommodate this structure and to provide
the necessary methods for accuracy measurement while accounting for the variability of
the missingness mechanisms within the imputation process, special multiple imputation
methods were investigated and implemented for handling the missing values within the
KEI dataset properly.

The main work of this deliverable was based on theoretical findings which were developed
and discussed in Huergo (2008). The implementation of the procedures on the dataset
was part of the work shown in Enderle (2008). One additional output of the work within
this deliverable was a multiply imputed KEI dataset which was used in the research of
the workpackages 5 and 7.

The authors would like to thank the KEI team for many valuable comments which helped
to improve the generation of the final multiply imputed dataset.
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Chapter 1

Introduction

1.1 Indicators and Imputation

Nowadays, indicators are applied in many areas, e.g. as the foundation for economic
and political decisions. In general, two goals are connected with the use of indicates,
measuring performance and development of different units of interest, like countries. In
order to fulfil these tasks, a complete and reliable database is an essential input. In
practice, however, datasets of this size contain missing values which have to be treated
adequately. Improper treatment of missing values may yield wrong values of indicators
and especially of composite indicators.

The project’s dataset consists of 125 indicators from 25 European countries plus US and
Japan. The time period of interest was set to 2001 – 2004. The entire dataset, which
is based on macrodata, contains approximately 42% missing values to which we refer as
NA. Partially, this results from the fact that some surveys are not conducted every year
which per se yields a large amount of missing values. A closer description of the dataset
is given in Appendix A.1.

The treatment of missing values generally leads to either weighting or imputation methods.
Whereas weighting rules are generally applied to cases where complete units of interest
are unobserved in micro data, imputation methods can be applied in many cases. The
idea of imputation is to fill in the missing value with a sensible value. The major question
is dedicated to the term sensible.

On macro level data, last value carried forward is often applied. This could be viewed
as a naive forecast or nowcast. A statistically plausible advance might be the application
of time series methods. In the KEI context, this will hardly be possible due to the high
dimensional sophisticated interactions based on a very short time horizon.

One method to overcome these difficulties which also enables the user to measure the
accuracy of the outcome of the research on indicators is the multiple imputation approach
developed by Rubin in the 1970ies (cf. Rubin, 1987, or Little and Rubin, 2002). Thus,
dealing with missing data and especially with multiple imputation is a key issue of the
project.

c© http://kei.publicstatistics.net - 2008



2 Chapter 1. Introduction

1.2 Justification of the Methods Used

Some of the most established and practically most relevant methods that occur in litera-
ture (e.g. Kim and Curry, 1977; Roth, 1994) when dealing with incomplete datasets are
discussed at first. Due to the bad properties they come along with, alternative but more
complex methods that have become increasingly popular will be introduced. And within
the KEI project several extensions and improvements have to be developed to cope with
the adverse data situation.

The listwise deletion method is still the most commonly used method, not least because
of its simple applicability. All observations with incomplete values are excluded from the
dataset which results in a shrunk but completely observed dataset. In doing so, much
utilizable information is lost. Especially in the case of multivariate datasets the remaining
observations tend to shrink enormously. However, the damage of this loss in efficiency
caused by the cutback of the data is not the only one. If the mechanism of the missingness
in the data is related to the parameters of interest, then deleting observations with missing
values can cause a remarkable systematic bias. In addition to that, in the KEI setting,
deleting rows (i.e. countries) is all but impossible.

The omitted variable method differs just insofar, as instead of observations this time
variables with missing values are excluded. The deletion of columns (i.e. KEI indicators)
is also not desired.

A further approach is the single imputation of missing values, whereas in most cases this
is done in a relatively subjective manner. There are several ways to carry out a single
imputation: The missing values can be imputed by an ad hoc value (ad hoc imputation),
by the corresponding mean of the observed values (mean imputation) unconditionally or
conditionally given some observed covariates, or by searching for some observed data which
correspond to the missing data according to certain criteria and using them as proxies for
the missing values (proxy or hot deck imputation). In spite of their simplicity the use of
these methods is not advisable since they tend to yield invalid inferences (Kofman and
Sharpe, 2003).

In order to circumvent this problem, the missing values should be imputed with certain
restrictions given by Little and Rubin (2002, p. 72). According to them, imputations
should be:

(a) Conditional on observed variables

As already featured by Buck’s method (Buck, 1960), which can be seen as a precur-
sor of the single imputation methods applied here, conditional imputes on observed
values improve the imputation of missing values. In doing so, following improve-
ments will be achieved:

– reduced bias due to non-response,

– improved precision and

– preserved association between missing and observed variables.

KEI-WP3-D3.2



1.2 Justification of the Methods Used 3

(b) Multivariate

Imputations in multivariate settings make sure that associations between missing
variables will be preserved.

(c) Draws from the predictive distribution rather than means

Indeed, imputing means from a predictive distribution yields consistent estimates
but tends to systematically underestimate the variability and leads to invalid infe-
rences. Thus, the imputations should be random draws from a predictive distribu-
tion to provide valid estimates of a wide range of estimands (Little and Rubin,
2002, p. 72).

(d) Multiple

Because inferences achieved by single imputation methods don’t account for impu-
tation uncertainty, values have to be imputed multiply.

To cope with these requirements the used imputations rely on two powerful groups of
methods called Expectation Maximization Algorithm (EM) and Markov Chain Monte
Carlo methods (MCMC). The use of these techniques ensures that the listed conditions
are met.

EM Algorithm         MCMC

 Joint distribution of the data  P(ymis| yobs, θ)  -Imputation-
T1 T2 Tp

7,60 5,84 4,02 T11 T12 T1pNA NA 3,15
11,95 NA -0,70 T22 T2p20,21 4,82 -1,56
NA 1,90 0,34 Tpp23,87 3,65 3,71

-7,47 7,24 NA
8,13 NA NA

18,76 6,68 -1,91
1,31 NA 0,21
NA 2,46 NA
NA 8,18 -0,58

-4,78 5,95 -0,16 μ2,18 4,55 NA
NA 6,01 1,13

-6,94 1,94 -0,07

μ Σ
5,46 NA NA
6,77 1,20 4,34
NA 4,15 NA
7,08 11,85 NA

 P( θ| yobs, ymis)  -Posterior-

Y1

Y2

Y3

Ym

Expectation

Maximization

Figure 1.1: General imputation schema.

While the EM algorithm is used to search for the optimal parameters of a multivariate dataset with
missing values, the MCMC algorithm yields m imputes for each missing value. (Source: Huergo, 2008.)

Since the KEI dataset consists of continuous indicators the proposed imputation models
are based upon the multivariate normal model. In this respect Schafer states:

The most common probability model for continuous multivariate data is the
multivariate normal distribution. [...] Moreover, the classical techniques of
linear regression [...] assume conditional normality of the response variables
given linear functions of the predictors, which is the conditional distribution
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4 Chapter 1. Introduction

implied by a multivariate normal model for all the variables. Because statistical
methods motivated by assumptions of normality are in such widespread use,
it is natural to seek general techniques for inference from incomplete normal
data. (Schafer, 1997, p. 147)

However, due to the problems regarding the bad underlying data situation, some adjust-
ments to the base model have to be discussed. Frequently occurring problems are:

1. The presence of outliers (because of the varying construction of the indicators bet-
ween countries)

2. Important departures from the Normal Distribution

3. Presence of Variables with a strictly positive domain

4. Non-linear relationships between variables

5. Small sample sizes

6. High proportion of missing values (NAs)

Here are some proposals on how to handle these problems (Huergo, 2008):

1. The presence of outliers: Various further developments of the base model for mul-
tivariate normal data, created by different authors (Liu and Rubin, 1995; Lange
et al., 1989; Little, 1988; Liu, 1995): t−model, adaptive t−Model and contami-
nated normal model, can be implemented to deal with outliers. By means of a
selective weighting of the observations, these methods are often able to yield robust
parameter estimates of the multivariate normal distribution.

2.-3. Departures from the Normal Distribution: Numerous indicators do not seem
to follow a normal distribution. Furthermore, many of them are defined on R+, i.e.
negative values are not valid. To adjust the empirical distributions to approximative
normality and to avoid imputing invalid values, the EM algorithm was expanded
by an adaptive power transformation, which is based upon a Generalized Method of
Moments (GMM). This power transformation is often able to transform arbitrarily
distributed variables into a symmetric, bell shaped distribution, and thus to provide
a better estimation of the multivariate model.

4. Non-linear relationships between indicators: Non-linear relationships between
the indicators can cause biases when imputing linearly, as done by the proposed
algorithms. To deal with this problem, the power transformation has to be expanded
such that an approximation to a multivariate normal distribution can be achieved.
Because of the linear dependence structure of the multivariate normal distribution
(Schaich and Münnich, 2001, p. 78, Def. 2.-21), linear imputation procedures
yield correct imputed values.
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1.2 Justification of the Methods Used 5

5. Small sample sizes: Because of the already mentioned small sample size of the KEI
dataset, previous observations of preliminary years have been taken into account.
The dataset has thus a panel structure which has to be accounted for.

Different imputation methods of how to deal with panel data are discussed in the
literature (e.g. Nijman and Verbeek, 1992). State-of-the-art methods are com-
monly based upon the so called Mixed Effects models (Schafer and Yucel, 2002).
These typically bayesian methods imply the existence of a joint normal distribution,
which, as already mentioned, cannot be assumed for the KEI dataset. Further deve-
lopments of this panel methods to account for departures from normality turn out
to be complicated and it is not clear whether the underlying small sample size can
justify this complexity.

The proposed implementation of the panel structure can be realized by a simple ex-
tension of the models proposed by Schafer (1997) and Little and Rubin (2002).
In this extension, a dummy variable will be included for each year and will be
treated and modeled as an additional design variable. This extension retains the ro-
bustness of the methods, namely the possibility of neutralizing outliers via selective
weighting.

Of course, the marginal distributions of these dummy variables deviate from the
normal distribution. The fact that such a strategy does not cause any estimation
problems is stated by Schafer (1997, p. 35):

• these dummy variables are totally observed (i.e. no imputation of them will be
necessary) and

• under the existence of a joint normal distribution of the remaining variables,
all conditional distributions, given these dummy variables, are normal. This is
ensured by the linearity of the regression curves.

With this extension of the model, the time dimension can be taken into account in
a very parsimonious manner.

At times, modeling of time effects via dummy variables has been contested. An
application of the proposed methods to dummy variables is regarded as adverse
since standard errors are slightly diluted (Bollen, 1989, pp. 375). But as mentioned
above, is the question justified, how much sophistication in the modeling of the time
effects can be compatible with the observed data (especially with regard to the small
sample sizes).

Furthermore, the trivial task of inserting and implementing dummy variables within
linear regression models turns out to be challenging for the MCMC methods being
used.

6. High proportion of NAs: There are a lot of countries in the dataset that provide
no values for certain indicators. Furthermore, some years, values for a given indi-
cator are missing for all countries. Therefore, applying approaches such as repeated
measures models (Schafer, 1997, pp. 379), which follow every observation in the
course of time, is not possible. Hence, models based upon the i.i.d. assumption are
chosen to ensure feasible imputations.
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6 Chapter 1. Introduction

1.3 Remaining Problems

Although the proposed solutions expand the basic imputation method to account for the
underlying data situation, there are some remaining problems:

1. The i.i.d. assumption: The i.i.d. assumption is not very realistic for macro data
like the KEI dataset, because the countries normally exhibit regional dependences.

2. Transformation: The power transformation is based upon some higher moments
of a distribution and thus is suitable for large sample sizes (Hayashi, 2000, p. 215).
The dataset for the construction of composite indicators has by definition a small
sample size.

3. Selective weighting: The robust methods don’t allow for selective weighting of
the rows’ elements (i.e. different indicators).

4. No random effects: The heterogeneity of the countries cannot be modeled sepa-
rately.

However, even when the proposed methods exhibit these shortcomings, they are designed
to yield consistent estimates under adverse conditions.

1.4 Implicit Methods and Convexcombination

This work favors methods which are based upon a solid statistical theory, which is eviden-
ced by the implementation and adaptation of MCMC methods. However, the situation
in the KEI project is unique insofar as many first-time studies concerning the indicators’
behavior had to be carried out on reconstructed data. Therefore, it seems to be more
important to deliver robust estimates of the missing values rather than to make sure
that their standard errors are underestimated (which can be seen as the typical bone of
contention of single imputation methods (Little and Rubin, 2002, p. 61)).

Because of this reason, an additional imputation method which belongs to the implicit
or ad hoc methods was implemented (Little and Rubin, 2002, p. 60). This conserva-
tive and model-free method carries out (1) a spline interpolation of those missing values
that are surrounded by observed values, and (2) a Last Value Carried Forward (LVCF)
extension to those that have no coterminous observation in the previous or successive
year.

The method is conservative insofar as the data are not extrapolated. Thus, merely values
which are either observed for a certain combination of indicator and country or which are
a result of a spline interpolation of observed values will be imputed.

It has to be mentioned, that this method is not able to provide values for all missing
values. The difficulty is that various countries have delivered absolutely no values for
certain indicators in the considered time slice, thus the i.i.d. assumption to enhance the
possibility of imputations.
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1.5 Overview 7

The results of the different imputation methods will be aggregated by a convex combina-
tion, whose weights can be seen as a function of the number of observations per indicator
and country. These weights reflect the trustworthiness of an imputation based on the
observed data for one country and indicator.

1.5 Overview

This work is organized as follows. Chapter 2 begins with an introduction to the necessary
basic assumptions and the background on the EM and MCMC methods. Chapter 4
presents a proposed approach on how to transform the KEI indicators, so that Chapter
3 can present the application of these methods to multivariate normal data. But due to
the presence of outliers, these models must be expanded by robust extensions, which will
be discussed in Chapter 5. Finally, Chapter 6 presents the final imputation round.

1.6 Remarks

The procedures and algorithms presented and applied in this work were implemented with
R, a language and environment for statistical computing and graphics. A comprehensive
overview including examples appears in the books of Ligges (2006) and Rizzo (2008).
Applications of Bayesian computing are presented by Albert (2007); an exposition on
the R graphical system by Murrell (2005).
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Chapter 2

EM and Data Augmentation

2.1 The Complete Data Model

One very important issue when dealing with missing values is the study of the underlying
mechanism which causes the data not to be observed. Indeed, the missingness can occur
for different reasons, for example non-sampling entry errors. A problem that often arises
is that certain questions (items) in a survey are left unanswered. This is referred to item
non-response. A typical example is income. So for instance it is assumed that people with
a high monthly wage fail to name their income because of tax implications.

To formalize the treatment of the subject, let define the n × p data matrix Y = (yij),
where the rows stand for n observations (i = 1, ..., n) and the columns represent the p
variables (j = 1, ..., p). If all data were available and under the assumption that the rows
are independent and identically distributed (i.i.d.), the joint probability function of the
data could be written as follows:

P (Y |θ) =
n∏
i=1

f(yi|θ) . (2.1)

In the presence of missing data, the probability function cannot be stated like that any
more. Hence, the data matrix Y has to be split into two components: The observed
data Yobs and the missing data Ymis, with Y = (Yobs, Ymis) (Schafer, 1997, pp. 10). To
distinguish between the observed and missing components of the data matrix Y , a n× p
indicator matrix R = (rij) has to be introduced. These indicator variables determine
which values in Y are available and which are not:

R = (rij) i∈{1,...,n}
j∈{1,...,p}

with rij =

{
1, if missing value
0, if observed value.

That is, an observed value yij results in rij = 0 and a missing yij in rij = 1. To get a
complete data set, imputation refers to the simulation of the unobserved component in
Y, that is Ymis.
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2.2 Missing Data Mechanism 9

2.2 Missing Data Mechanism

2.2.1 Classification

As mentioned in Rubin (1987), the missing data mechanism is characterized by the condi-
tional distribution of R given Y: f(R | Y, ξ), where ξ describes a typically unknown
parameter related to the missingness mechanism. Differences in the properties of this
conditional distribution of the missingness indicator R now allows to classify such data
into three categories (Rubin, 1976):

(a) Missing Completely at Random (MCAR): The missing values are a random
sample of all values. That means, the missingness in Y doesn’t depend on Yobs or
Ymis.

=⇒ f(R | Y, ξ) = f(R | ξ)

(b) Missing at Random (MAR): MAR is a weaker or less restrictive assumption for
missing data. The missingness here just depends on Yobs, but not on Ymis.

=⇒ f(R | Y, ξ) = f(R | Yobs, ξ)

(c) Not Missing at Random (NMAR): The missingness in Y depends on Ymis and
cannot be explained only by Yobs.

=⇒ f(R | Y, ξ) = f(R | Yobs, Ymis, ξ)

It must be pointed out that these definitions are not restrictions on the pattern of mis-
singness, but that they describe how the missingness depends on the values of all data,
both missing and observed.

Applying the MAR assumption, the relation between variables and the missingness in
other variables can be used to impute missing values. Thus, finding correlations becomes
a very important task in this framework. To tackle the previous income example, credit
card expenditures could be used as covariate, making the MAR assumption more tenable.

Throughout this work, it will be assumed that the missing values are generated by a MAR
mechanism.

2.2.2 Distinctness of the Parameters

Furthermore, it is assumed that the parameter of the data model, θ, and the parameter of
the missingness mechanism, ξ , are distinct from each other. Distinctness means that the
joint parameter space of (θ, ξ) corresponds to the cartesian product of the two parameter
spaces of θ and ξ.
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10 Chapter 2. EM and Data Augmentation

2.2.3 Ignorability

If both assumptions - MAR and distinctness between θ and ξ - occur, the missing data
mechanism is said to be ignorable.

This ignorability assumption is of great value for the Maximum Likelihood (ML) based
inferences on the parameters θ of the data matrix Y. For this purpose, one has to examine
the probability function of the observed data

P (R, Yobs | θ, ξ) =

∫
P (R, Y | θ, ξ)dYmis =

∫
P (R | Y, ξ)P (Y | θ)dYmis . (2.2)

The indicator matrix R has to be taken into account, to express the observed data. Under
a valid MAR assumption, Equation (2.2) can be transformed into:

∫
P (R | Y, ξ)P (Y | θ)dYmis = P (R | Yobs, ξ)

∫
P (Y | θ) dYmis

= P (R | Yobs, ξ)P (Yobs | θ) ,

that is, the probability can be presented by two factorizable parts. With the further
assumption of distinctness, the likelihood based inference regarding θ is independent of ξ,
and thus also of the former factor P (R | Yobs, ξ). That is, the missingness-data mechanism
can be ignored. For the observed-data likelihood holds then

L(θ | Yobs) ∝ P (Yobs | θ) , (2.3)

the following likelihood can be maximized

Lign(θ | Yobs) = P (Yobs | θ) .

Whereas the complete likelihood is defined to be

Lfull(θ, ξ | Yobs) = P (Yobs, R | θ, ξ) .

Due to the ignorability assumption, the inferences, which are based upon Lign, are equi-
valent to the ML estimation, which are based upon Lfull. Thus, the parameters for the
whole data matrix Y = (Yobs, Ymis) can be computed in a much easier manner.

Inference in case of multiple imputations (i.e. the Bayesian framework) will be based on
the posterior distribution when the missing-data mechanism is ignorable. This is the case
if the missing data are MAR and (according to the assumption of distinctness)

P (θ, ξ) = P (θ)P (ξ) ,

that is, the parameters θ and ξ are a priori independent.
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2.3 Maximum Likelihood Method 11

2.2.4 Problems

Restricting to a method generates problems, such as violations of the met assumptions.
Here three of them are listed and discussed:

(a) The MAR assumption

It is said that if the data are missing because of the design of the research (missing by
design) the data satisfy the MAR assumption because the researcher didn’t intend to
collect all data. When there are missing data, it is not always reasonable to apply a
missing-data method, because the missingness doesn’t necessarily imply that values
are merely missing. And in the literature (e.g. Krosnick et al., 2000) a wide range
of reasons are given why respondents fail to answer.

When the missingness is noncontrollable, it isn’t safe to say if the MAR assumption
is appropriate. To do a formal test, the missing data, or at least a sample of it,
has to be available externally. If that is not feasible, all findings are based upon
heuristic assumptions.

When the missing data are NMAR the missing-data mechanism cannot be ignored
and the likelihood must be properly included in the analysis.

(b) The i.i.d. assumption

For the probability function in Equation (2.1), the rows need to be independent and
identically distributed. The following chapters will describe an algorithm, which is
intended for multivariate normal data and which assumes that observations fulfill
the i.i.d. assumption.

(c) The ignorability assumption

A violation of the ignorability assumption does not automatically imply a break
down of missing-data methods, especially not in case of multivariate settings. Scha-
fer agrees with David et al. (1986) and draws the conclusion, that

improvements in missing-data procedures would probably come from better
modeling of the multivariate structure of the data, not from nonignorable
modeling (Schafer, 1997, p. 27).

For more details see Schafer (1997, pp. 20), who extensively treats violations of these
assumptions.

2.3 Maximum Likelihood Method

Figure 2.1 depicts the following situation: A certain phenomenon has to be described
as best as possible with a specific statistical distribution. For this purpose a sample of
data, which are the result of a random experiment, is available (see the red crosses on the
abscissa). Although the functional form of the distribution is assumed to be known, their
parameters are not. The task is thus the estimation of these parameters.
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12 Chapter 2. EM and Data Augmentation
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Figure 2.1: Maximum Likelihood schema.

For a sample y of observed data from a distribution known up to a parameter (vector) θ
the Maximum Likelihood method estimates the unknown parameters in a way that these
estimates assign maximal likelihood to the observed data (see the horizontal adjustment
in Figure 2.1).

Since the data are assumed to be independent and identically distributed, their likelihood
can be written as

L(θ|y) =
n∏
i=1

f(yi|θ) .

The Maximum likelihood estimator is then

L(φ̂|y) = sup
φ∈θ

L(θ|y) .

A complete summary of the ML method is given in Greene (2003, Ch. 17).

One drawback of this method is that it requires the derivatives of the log likelihood
function to be computed, which often turns out to be difficult. Thus, numerical or iterative
methods have to be used. One example of an iterative method which does not require the
calculation of derivatives is the EM algorithm.

2.4 The EM Algorithm

2.4.1 Overview

Consider a data matrix Yobs, which was generated out of a specific probability distribution.
The parameters are however unknown and the aim is precisely to find the parameters that
describe the distribution of the data as best as possible. The EM algorithm (Dempster
et al., 1977) iteratively yields Maximum Likelihood estimates (MLEs), even if there are
incomplete data. This algorithm can be split up in two steps:
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2.4 The EM Algorithm 13

(a) Expectation-step (e-step)

The e-step finds the expectations of the log-likelihood of θ, l(θ | Y ), where the
expectation regarding Ymis conditioning Yobs and θ(t), has to be calculated:

Q(θ | θ(t)) =

∫
l(θ | Y )P (Ymis | Yobs, θ(t))dYmis .

(b) Maximization-step (m-step)

The m-step then finds the updated value

θ(t+1) = arg max
θ

Q(θ | θ(t)) . (2.4)

The updated θ(t+1) replaces the θ(t) in the e-step and θ(t+2) maximizes Q(θ | θ(t+1)). This
routine is repeated until the sequence

{
θ(0), θ(1), θ(2), . . .

}
converges.

2.4.2 Theory

This section discusses the functioning of the EM algorithm based on the book of Schafer
(1997, pp. 38).

As long as the probability function in the incomplete-data problem of Y , i.e. P (Y | θ) =
P (Yobs, Ymis | θ), can be split in two factorizable terms, then following holds

P (Y | θ) = P (Yobs | θ)P (Ymis | Yobs, θ) . (2.5)

Making use of Equation (2.3), the likelihood functions of θ given Y or Yobs can be stated
as

L(θ | Y ) = P (Y | θ),
L(θ | Yobs) = P (Yobs | θ) ,

and inserted into Equation (2.5)

L(θ | Y ) = L(θ | Yobs)P (Ymis | Yobs, θ) . (2.6)

Taking the logarithm of each side in Equation (2.6)

logL(θ | Y ) = logL(θ | Yobs) + logP (Ymis | Yobs, θ) + c ,

it follows that

l(θ | Y ) = l(θ | Yobs) + logP (Ymis | Yobs, θ) + c , (2.7)

where l(θ | Y ) is the complete-data loglikelihood, l(θ | Yobs) the observed-data loglikelihood
and c an arbitrary constant. Of high importance is the expression P (Ymis | Yobs, θ),
which is described as the conditional predictive distribution of the missing data given
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14 Chapter 2. EM and Data Augmentation

parameter θ. It describes the interdependence between Ymis and θ: Considered as a
probability distribution, it imparts knowledge about Ymis for any assumed value of θ.
Whereas considered as a function of θ, it provides information about θ, which is contained
in Ymis.

Now one has to find the MLE of θ, that is, the value of θ which maximizes l(θ | Yobs).
Equation (2.7) shows, that this is equivalent to searching for the the value for θ that
maximizes l(θ | Y )− logP (Ymis | Yobs, θ), as long as

l(θ | Yobs) = l(θ | Y )− logP (Ymis | Yobs, θ) . (2.8)

Given that Ymis is not observable, the above mentioned term cannot be computed. The-
refore, one takes the average of Equation (2.8) over the predictive distribution P (Ymis |
Yobs, θ

(t)), where θ(t) is a preliminary estimate of the unknown parameter. Hence it follows

E [ l(θ | Yobs) ] = E [ l(θ|Y ) ]− E [ logP (Ymis | Yobs, θ) ] (2.9)

⇔ l(θ | Yobs) = Q(θ | θ(t))−H(θ | θ(t)) ,

where

Q(θ | θ(t)) =

∫
l(θ | Y )P (Ymis | Yobs, θ(t)) dYmis

H(θ | θ(t)) =

∫
logP (Ymis | Yobs, θ)P (Ymis | Yobs, θ(t)) dYmis .

If the loglikelihood is linear in the data, then the expectations in Equation (2.9) are
computable by imputing the missing data with their conditional expectation given the
the observed data and some parameters. However, in general it is not the case.

2.4.3 Properties

Dempster et al. (1977) show that when the likelihood is bounded the EM algorithm al-
ways converges to a stationary point. The algorithm constructs a sequence

{
θ(0), θ(1), θ(2), . . .

}
so that the loglikelihood is a non-decreasing function

l(θ(t+1) | Yobs) ≥ l(θ(t) | Yobs) , (2.10)

which can also be written as follows

l(θ(t+1) | Yobs)− l(θ(t) | Yobs) ≥ 0

Q(θ(t+1) | θ(t))−H(θ(t+1) | θ(t))−Q(θ(t) | θ(t)) +H(θ(t) | θ(t)) ≥ 0

Q(θ(t+1) | θ(t))−Q(θ(t) | θ(t))︸ ︷︷ ︸
A

+H(θ(t) | θ(t))−H(θ(t+1) | θ(t))︸ ︷︷ ︸
B

≥ 0 .

This holds, because it can be shown that both quantities A and B are non-negative:
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2.5 Data Augmentation 15

• Quantity A: This is non-negative, because θ(t+1) in Equation (2.4) has been chosen
to satisfy Q(θ(t+1) | θ(t)) ≥ Q(θ | θ(t)) for all θ.

• Quantity B: This is non-negative as well, as can be shown by Jensen’s inequa-
lity (Sydsaeter et al., 2005, p. 67) and the concavity of the logarithmic function.

B = −E

[
log P (Ymis|Yobs,θ

(t+1))

P (Ymis|Yobs,θ(t))

∣∣∣∣Yobs, θ(t)

]
≥ − log E

[
P (Ymis|Yobs,θ

(t+1))

P (Ymis|Yobs,θ(t))

∣∣∣∣Yobs, θ(t)

]
= − log

∫
P (Ymis|Yobs,θ

(t+1))

P (Ymis|Yobs,θ(t))
P (Ymis | Yobs, θ(t))dYmis

= 0 .

If the EM algorithm constructs a sequence (θt)t∈N, then the sequence (L(θt))t∈N is mo-
notone increasing. Is there a M ∈ R with (L(θt))t∈N < M , i.e. L is bounded, so is the
sequence (L(θt))t∈N already necessarily convergent (Königsberger, 2000, p. 46). More
precisely, the sequence of the θ(t)’s leads to an increase of θ with each iteration step. But
it can also be shown that, under relatively weak assumptions, a sequence l(θ) converges

to l(θ̂), where θ̂ is a stationary point.

It cannot in general be guaranteed that the EM algorithm will converge to a maximum.
That requires an unimodal and concave loglikelihood function over the whole parameter
space θ.

To the advantages of the EM algorithm one can list its straightforwardness, its stability
and its simple applicability, because the restrictions on the parameters are mostly fulfilled
automatically and one obtains an iteratively increasing likelihood. But convergence can be
very slow and depends particularly on the proportion of missing information. The linear
rate of convergence is an often noted disadvantage, which cannot compete for example
with the quadratic convergence of the Newton-Raphson method (see Deuflhard, 2004).
Furthermore, standard errors are computable indirectly, though in a rather technical way.
As with all iterative methods, the selection of starting values is an important issue.

However, it should be mentioned that the arising problems regarding saddle points, ex-
trema, boundary estimation, etc. are not exclusive of the EM algorithm, but intrinsic to
the maximum likelihood method. For an extensive description of the properties Schafer
(1997, Ch. 3.3, pp. 51) and McLachlan and Krishnan (1997, Ch. 3, pp. 82) give a
wider overview.

2.5 Data Augmentation

2.5.1 Bayes Statistics

Since the EM algorithm is a method for Maximum Likelihood estimation rather than an
imputation method, it can only provide one estimate for each missing value and hence
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16 Chapter 2. EM and Data Augmentation

cannot fill in missing data multiple times to account for imputation uncertainty. To derive
a multiple imputation method, such as data augmentation, one must throw a glance at
the Bayesian framework. Ideally, one draws from the predictive posterior distribution,
P (Ymis | Yobs), which can be obtained by taking the average of the conditional predictive
distribution P (Ymis | Yobs, θ) over the observed-data posterior distribution of the unknown
parameters, θ. That is, the posterior distribution contains evidence of the observed-data
posterior distribution of θ.

To obtain P (Ymis | Yobs), one has to gain knowledge about the posterior distribution,
P (θ | Y ). This distribution is a combination of the likelihood-function, L(θ | Y ), and the
prior distribution P (θ):

P (θ | Y ) ∝ L(θ | Y )P (θ) ,

which can be obtained from Bayes’ theorem (Bayes, 1958).

The posterior knowledge of θ can be regarded as prior knowledge of a θ which is modified
by the likelihood-function. In order for the posterior distribution to be tractable and the
resultant simulated parameter values to be obtained, a suitable prior (Schafer, 1997,
pp. 154) distribution has to be chosen. The calculation of the posterior distribution can
be done analytically or by using a Monte Carlo method.

2.5.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are employed to get random draws from
a probability distribution, called the target distribution P (Z). In cases where the direct
simulation of this distribution turns out to be difficult and cannot be done directly, the
idea is to construct a Markov Chain which is designed to have P (Z) as its stationary
distribution. Such a chain is a sequence of random variables {Z(1), Z(2), . . . , Z(t), . . .},
where each value only depends in some way on the immediately previous ones, which
converges under certain conditions to the target distribution. In practice, to eliminate the
dependence on starting values, a sufficiently large t or burn-in period K has to be chosen.
The burn-in period is an initial number of iterations which are normally discarded, in
order for the chain to lose its dependence on the starting values

A Gibbs sampling (Geman and Geman, 1984) is the best known and most implemented
sampling method for MCMC. Consider a problem with a random vector partitioned into
two subvectors Z = (z1, z2) and suppose the joint distribution of Z, say P (Z), exists.
Then starting at some initial point, the sequence{

(z
(1)
1 , z

(1)
2 ), (z

(2)
1 , z

(2)
2 ), . . . , (z

(t)
1 , z

(t)
2 ), . . .

}
can be obtained by successively drawing from the distributions

z
(s)
1 ∼ P (z

(s)
1 | z

(s−1)
2 )

z
(s)
2 ∼ P (z

(s)
2 | z

(s)
1 ) ,
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2.5 Data Augmentation 17

where (s = 1, 2, . . . , t, . . .). Thus the values at the (s + 1)-th step depend entirely on the
values at the sth step and, given those values, are independent of the previous history.
Under mild regularity conditions, the Markov chain converges to a stationary distribution,

which is the target distribution, that is Z(t) d−→ Z as t→∞. The method generalizes to
any number of subvectors (see Schafer, 1997, Eq. (3.31)).

Example: The Gibbs Sampler for random number generation from a bivariate distribu-
tion with known parameters (taken from Huergo, 2008)

The only purpose of this example is to show the mode of operation of the Gibbs Sampler,
mostly in a graphical way. Indeed, drawing i.i.d. numbers from a normal distribution
represents no problem whatsoever and there are lots of algorithms which can accomplish
this in an efficient way. However, it is for didactic purposes interesting to deal with
a multivariate distribution, whose marginal and conditional distributions belong to the
same distribution family.

Setup: Let Y be a bivariate normally distributed random variable, whose parameters Θ
are assumed to be known. This parameter vector be made up of µ1 = 1, µ2 = 0,5,
σ2

1 = 1, σ2
2 = 1 and ρ = 0.5. The aim of this example is to obtain drawings from this

bivariate distribution without resorting to the joint density to accomplish it.

Additionally, let both conditional distributions

fY1|Y2=y2;Θ ∼ N(µ1 + ρσ1

σ2
(y2 − µ2); σ2

1(1− ρ2))

and

fY2|Y1=y1;Θ ∼ N(µ2 + ρσ2

σ1
(y1 − µ1); σ2

2(1− ρ2))

be available as well.

The Gibbs Sampler has to be initialized with a starting value y0
1 for Y1. Conditioning

on y0
1 the distribution fY2|Y1=y01 ;Θ is completely characterized and it is possible to draw a

value y1
2 from it. Conditioning on this value, a value y1

1 from fY1|Y2=y12 ;Θ can in turn be
drawn, which completes one cycle. This iteration scheme can be repeated until there are
enough observations to characterize the joint distribution.

Figure 2.2 depicts the joint distribution and its marginals. Previous to the start of the
simulation there are no conditionals drawn. The process in an advanced status, which can
easily be recognized on the green dots underneath the marginal distribution, is illustrated
in Figure 2.3. Both panels depict two consecutive steps of the simulation. The conditional
distribution in the right panel is located exactly over the last value drawn, which is plotted
in the left panel.

After 500 Iterations a comparison is drawn between the target distribution and the kernel
density estimation of the drawn sample. Additionally, the marginals are compared to
its empirical counterparts. Figures 2.4, 2.5 and 2.6 show the results of this comparison.
Despite the small deviations between the bivariate target distribution an the kernel den-
sity estimation, it is already clear that the algorithm is able to capture the dependence
structure of the joint distribution. Because of the existence of the bivariate distribution
and the fact that the drawings are from the whole set of full conditionals, this distribution
can be approximated to any degree of accuracy.
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18 Chapter 2. EM and Data Augmentation

Figure 2.2: Begin of the Simulation.

The objective is to draw from the joint distribution in the middle of the graphic. As an additional check,
both marginals are included (red, dashed lines). It must be pointed out, that neither the joint distribution
nor the marginals are used for the sample generation. (Source: Huergo, 2008.)

Figure 2.3: Draws from the conditional distributions.

It can be seen that the conditional distribution on the right panel is positioned exactly over the last value
drawn (left panel, yellow line). (Source: Huergo, 2008.)
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2.5 Data Augmentation 19

Figure 2.4: First marginal distribution.

The dashed white line shows the kernel density estimation of the first 500 draws. (Source: Huergo,
2008.)

Figure 2.5: Second marginal distribution

After 500 iterations is the approximation fairly accurate. (Source: Huergo, 2008.)
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20 Chapter 2. EM and Data Augmentation

Figure 2.6: Approximation of the joint distribution

The yellow surface curve represents 500 Pairs drawn from the conditional distributions. It can clearly be
seen, that the algorithm is able to reproduce the correlation structure of the target distribution. (Source:
Huergo, 2008.)

Another Markov Chain Monte Carlo method which is closely related to the Gibbs sampler
is the Data Augmentation algorithm, which goes back to the paper of Tanner and Wong
(1987). In fact, under certain conditions, the former can be shown to be a special case of
the latter (Gelfand and Smith, 1990).

Beginning with the starting value θ(0), data augmentation yields the stochastic sequence{
(θ(t), Y

(t)
mis) : t = 1, 2, . . .

}
, whose stationary distribution is the distribution of interest,

namely P (Ymis, θ | Yobs), or respectively the stationary distributions P (θ | Yobs) and

P (Ymis | Yobs) of the subsequences
{
θ(t) : t = 1, 2, . . .

}
and

{
Y

(t)
mis : t = 1, 2, . . .

}
. Such a

sequence can be obtained by iterative draws of Y
(t+1)
mis and θ(t+1) from P (Ymis | Yobs, θ(t))

and P (θ | Yobs, Y (t+1)
mis ) in a two step approach which turns out to be simpler than drawing

directly from the posterior distributions P (Ymis | Yobs) and P (θ | Yobs). For large t
this sequence converges to a draw from the joint posterior distribution P (θ, Ymis | Yobs)
(Little and Rubin, 2002, p. 201).

2.5.3 Structure of the Data Augmentation algorithm

The DA algorithm is an iterative method which bears a striking resemblance to the EM al-
gorithm. Indeed, it combines the properties of the EM algorithm and multiple imputation
to simulate the posterior distribution of θ. The main difference with the EM algorithm is
that the deterministic e- and m-steps get replaced by the stochastic i- and p-steps:
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2.6 Extensions to EM and DA 21

(a) Imputation-Step (i-step)

To impute missing values, a current estimation of θ is needed. The parameter
estimate θ already calculated by the EM algorithm can serve as a starting value. In
contrast to the EM algorithm, which makes use of conditional expectations, the DA
algorithm applies draws from the conditional predictive distribution of the missing
data given the observed values and the current parameters. The imputation step
(i-step) can be stated as follows:

Y
(t+1)
mis ∼ P (Ymis | Yobs, θ(t)) .

(b) Posterior-Step (p-step)

New estimators for the parameters can be calculated with the augmented dataset
Y (t+1) = (Yobs, Y

(t+1)
mis ) from the i-step. These parameters represent what is known

about the parameter values which are contained in the data. Thus, the new distri-
bution will be combined with the already known prior distribution. In doing so, one
obtains a new posterior distribution from which the new parameters can be drawn.
This is called the posterior step (p-step)

θ(t+1) ∼ P (θ | Yobs, Y (t+1)
mis ) .

2.6 Extensions to EM and DA

2.6.1 The ECM Algorithm

In cases where the m-step turns out to be complicated, a possible approach is to let Q
increase rather than maximize it. This is the idea behind the GEM algorithm (Dempster
et al., 1977). A special case of it is the ECM algorithm (Meng and Rubin, 1993), which
shares its convergence properties with the EM algorithm, such as monotone convergence.
However, the ECM algorithm takes advantage of the simplicity of complete-data conditio-
nal maximization. A m-step of the EM algorithm will be replaced with S > 1 conditional
maximization (CM) steps. In doing so, each CM step maximizes the Q-function with
respect to one subvector of θ, (θ1, θ2, . . . , θs), holding the other S − 1 fixed, which turns
out to be computationally simpler than a maximization over the whole parameter space
of θ as is done in a m-step.

2.6.2 The ECME Algorithm

The expectation-conditional maximization either (ECME) algorithm (Liu and Rubin,
1994) is a generalization of the ECM algorithm that maximizes either the constrained
expected loglikelihood, this is the Q-function, or the correspondingly constrained actual
loglikelihood function. Moreover, ECME shares the same convergence properties of EM
or ECM but has a faster convergence because it maximizes the actual likelihood (condi-
tionally) and not an approximation of it.
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22 Chapter 2. EM and Data Augmentation

2.6.3 The PX-EM Algorithm

A further extension to EM is the so-called parameter-expanded EM (PX-EM) algorithm
which can be used to speed up the convergence. Liu et al. (1998) provide the basic theory
of PX-EM. However, in this work only a simple adjustment proposed by Kent et al.
(1994) will be implemented in the robust models in Chapter 5.
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Chapter 3

Multivariate Normal Model

3.1 The Sweep Operator

3.1.1 Purpose

The Sweep Operator is an important tool when applying the EM algorithm on missing
data. The sweep operator itself is also an algorithm that involves a finite sequence of
relatively easy steps. It delivers a conditional distribution of a dataset with multivariate
normal distributed random variables given another dataset. In doing so, this approach is
a powerful and simple tool to impute missing values and to compute conditional expec-
tations. Its functionality is presented in Appendix B.1. A detailed introduction on the
sweep operator is given in Goodnights’ tutorial (Goodnight, 1979). Further informa-
tion and properties in case of missing-data problems are presented in Little and Rubin
(1987) and Schafer (1997) at full length.

3.1.2 Alternative Parameterizations of the Normal Distribution

The sweep operator is a very useful tool, which can convert the response variables of
a multivariate normal distribution into predictors. Assume that z ∼ MVN(µ,Σ) is a
p-dimensional random vector. If 1 ≤ p1 < p, one can partion z into two random vectors
z′ = (z′1, z

′
2), where z1 contains the first p1 elements and z2 the last p− p1 elements. Then

µ and Σ can be stated as follows

µ′ = (µ′1, µ
′
2) ,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where E[zi] = µi, Cov[zi] = Σii and Cov[z1, z2] = Σ12 = Σ
′
21. Now one has to know, that

in case of a multivariate normal distribution the conditional distribution of z2 given z1 is
also normally distributed with

E[z2 | z1 = x] = µ2 + Σ21Σ−1
11 (x− µ1) = (µ2 − Σ21Σ−1

11 µ1)︸ ︷︷ ︸
α2·1

+ (Σ21Σ−1
11 )︸ ︷︷ ︸

β2·1

x (3.1)
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24 Chapter 3. Multivariate Normal Model

and

V ar[z2 | z1 = x] = Σ22 − Σ21Σ−1
11 Σ12︸ ︷︷ ︸

Σ2·1

, (3.2)

where α2·1 is the vector of intercepts, β2·1 the matrix of slope coefficients and Σ2·1 the
variance-covariance matrix of the residuals when realizing a multivariate regression of z2

on z1.

With a correct sweep operation of the parameters of the multivariate normal distribution
into an alternate form, the results of Equations (3.1) and (3.2) can be derived. Next, one
arranges for θ:

θ =

[
−1 µ

′

µ Σ

]
=

 −1 µ
′
1 µ

′
2

µ1 Σ11 Σ12

µ2 Σ21 Σ22

 ,

where the first position of θ has to be labeled with 0. Then, a sweep operation of θ at
positions 1, . . . , p1 results in

SWP [1, . . . , p1] θ =

 −1− µ′1Σ−1
11 µ1 µ

′
1Σ−1

11 µ
′
2 − µ

′
1Σ−1

11 Σ12

Σ−1
11 µ1 −Σ−1

11 Σ−1
11 Σ12

µ2 − Σ21Σ−1
11 µ1 Σ21Σ−1

11 Σ22 − Σ21Σ−1
11 Σ12

 .

This swept matrix contains the parameters of the conditional distribution of z2 given z1,
as described above, whereas the upper left submatrix, with dimensions (p1 + 1)× (p1 + 1)[

−1 µ
′
1

µ1 Σ11

]
⇒

[
−1− µ′1Σ−1

11 µ1 µ
′
1Σ−1

11

Σ−1
11 µ1 −Σ−1

11

]
includes the marginal distribution of z1 in swept form. The reason why the upper left cell
of θ contains −1 can be explained by the fact, that the parameter matrix θ is assumed to
be already swept on position 0. A reverse sweep operation of θ on position 0,

RSWP [0] θ =

[
1 µ

′

µ Σ + µµ
′

]
, (3.3)

yields the parameters of the unconditional multivariate normal distribution, expressed in
terms of the first two moments. This unswept form of the matrix can be used to compute
the MLEs.

In the following sections the EM and DA algorithms will be implemented to multivariate
normally distributed data with missing values.

3.2 Parametrization

To do an imputation in a multivariate dataset, one has to compute the conditional dis-
tribution of the missing data given the observed data. To perform this task the sweep
operator turns the response variables into predictors. Suppose, that Y is a matrix of
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independent observations of the multivariate normal distribution MVN(µ,Σ) which be-
longs to the exponential family of distributions. Therefore, the loglikelihood in Equation
(2.9) is not linear in the data but rather linear in a set of sufficient statistics whose ex-
pectations have to be computed. The sufficient statistics for this model can be stated as
follows: T1 = Y ′1, where 1 = (1, 1, . . . , 1)′, and T2 = Y ′Y , which can be arranged in a
(p+ 1)× (p+ 1) matrix

T =

[
n T

′
1

T1 T2

]
.

To make the sweep operator feasible, one arranges the parameters µ and Σ into the
following matrix

θ =

[
−1 µ

′

µ Σ

]
.

The moment equations of a ML estimation in this model can be expressed in terms of a
reverse sweep operator, similar to Equation (3.3) . The ML estimators of µ and Σ have
to solve

RSWP [0] θ = n−1T .

Hence, this can be done by following sweep operation:

θ̂ = SWP [0]n−1T . (3.4)

The result can be used to provide a concise description of the EM algorithm, as long as
the two steps of the algorithm, as described in Section 2.4.1, can be summarized in the
following equation

θ(t+1) = SWP [0]n−1E
[
T | Yobs, θ(t)

]
, (3.5)

where θ(t) and θ(t+1) denote the successive parameter estimates. The term in Equa-
tion (3.5) is basically a linear regression of Ymis on Yobs, whose computation needs evidence
of the parameters of the conditional distribution Ymis | Yobs. These parameters can be
estimated by means of the sweep operator.

There are miscellaneous methods for the use of the EM algorithm. So, Schafer describes an
implementation that sorts the rows in Y by patterns of missingness as a first step. In doing
so, the number of sweep operations can be kept to a minimum. But the implementation is
only meaningful when the rows in Y are i.i.d. This method works excellently for datasets
that aren’t too large and is technically simple and realizable as long as it provides an
explicit and easily implementable design of the EM operator.

3.3 Implementation of the EM Algorithm

3.3.1 Preliminary Preparation of the Data

As already mentioned, in a first step the data must be manipulated so as to minimize
the number of sweep operations. Therefore, the rows in the data matrix Y have to be
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26 Chapter 3. Multivariate Normal Model

sorted into S groups by all S occurring patterns of missingness. The groups are indexed by
s = 1, . . . , S. Observations that only have missing values must be excluded, because they
make no contribution to the observed data likelihood (see Equation (2.3)). Furthermore,
they just slow down the convergence of the EM algorithm because the proportion of
missing information increases. However, the models to be imputed within the KEI project
were chosen such as to avoid exclusions.

To arrange the data suppose the initially introduced indicator matrix R and simply change
its dimensions to S × p, so that

rsj =

{
1, if Yj in group S is observed
0, if Yj in group S is missing.

Next, one introduces O(s) and M(s) to label the observed and missing values of the
variables for each of the S patterns. This can be done using the subset {1, . . . , p}:

O(s) = {j : rsj = 1},
M(s) = {j : rsj = 0}.

Then determine I(s) with the subset {1, . . . , n}, which gives the corresponding rows of
pattern s of the data matrix Y .

3.3.2 The E-step

With that information the expected value of the sufficient statistics for an assumed value
of θ can be computed. Because of the met assumption of independent rows one can write

P (Ymis | Yobs, θ) =
n∏
i=1

P (yi(mis) | yi(obs), θ) , (3.6)

where yi(mis) and yi(obs) are the subvectors with the corresponding missing and observed
values. To apply a multivariate normal linear regression of Ymis on Yobs, which is equivalent
to Equation (3.6), one has to sweep the parameter matrix θ at the corresponding positions.
This happens successively for each of the S groups. One then obtains the parameters for
P (yi(mis) | yi(obs), θ), if row i belongs to the corresponding pattern s, by a sweep operation
in the respective rows and columns, which are labeled by M(s). Then, the swept matrix
of this regression reads as follows:

A = SWP [O(s)]θ , (3.7)

where ajk represents the (j,k)th element, (j, k = 0, . . . , p).

As long as it is about observed values - that is j ∈ O(s) - one can make clear for the first
moment:

E(yi(obs) | Yobs, θ) = yi(obs)
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and for the second moment (the covariance is built with a yi(obs), which is assumed to be
fixed):

Cov(yi(obs), yik | Yobs, θ) = 0

(with an arbitrary k). For unobserved values it has to be picked from the swept matrix:

E(yi(mis) | Yobs, θ) = a0(mis) +
∑
k

a(obs)(mis)yi(obs)

and

Cov(yi(mis1), yi(mis2) | Yobs, θ) = a(mis1)(mis2).

Somewhat more generally:

E(yij, yik | Yobs, θ) = Cov(yij, yik | Yobs, θ) + E(yij | Yobs, θ)E(yik | Yobs, θ) ,

where

Cov(yij, yik | Yobs, θ) =

{
0, if j ∈ O(s)
ajk, if j, k ∈M(s) .

Thus, for the expected values of yij and yijyik

E(yij | Yobs, θ) =

{
yij, if j ∈ O(s)
y∗ij, if j ∈M(s)

and

E(yijyik | Yobs, θ) =


yijyik, if j, k ∈ O(s)
y∗ijyik, if j ∈M(s), k ∈ O(s)
ajk + y∗ijy

∗
ik, if j, k ∈M(s) ,

where y∗ij = a0j +
∑

k akjyik represents the value of the sufficient matrices, completed by
the correction factor. In the e-step this expectation will be summarized over all rows
for each j and k. Practically, one at first adds up the expectations of all rows within a
pattern. The S patterns then have to be added up and one obtains the output of the
e-step:

E [T | Yobs, θ ] ,

where T represents the sufficient statistics.

3.3.3 The M-step

To obtain the parameter matrix θ from the result above, one simply needs to apply
Equation (3.4), a sweep operation on position 0. Thus, one leaves an iteration step
behind. The maximization-step is a simple repetition of the e-step above. But instead
of the initializing matrix θ(0) one puts the newly computed θ(t) into the sweep operator
and obtains θ(t+1) as already shown in Equation (3.5). This happens until an iteration
criterion stops the algorithm.
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28 Chapter 3. Multivariate Normal Model

3.3.4 Iteration Criterion

The means and covariance matrix from the observed values turn out to be the most
appropriate starting value for the EM algorithm:

θ(0) =

[
−1 µ

(0)′

obs

µ
(0)
obs Σ

(0)
obs

]
.

A simpler, alternative approach is to assume that mean and covariances are 0 and variances
1. Little and Rubin (1987) discuss further possibilities for configurating starting values.

The algorithm proceeds until the estimation converges. A tolerance can be defined as abort
criterion (e.g., if a further iteration step yields no further improvement in the parameters,
the algorithm can be stopped).

3.4 Implementation of the DA Algorithm

3.4.1 The I-step

Because it is assumed, that the rows in Y are conditionally independent given θ, each
missing yi(mis) can be drawn independently:

y
(t+1)
i(mis) ∼ P (yi(mis) | yi(obs), θ(t)) .

Hence, the i-step is an independent simulation of random normal vectors for each row of
the data matrix Y , with means and covariances according to E(yij | Yobs, θ) = y∗ij and
Cov(yij, yik | Yobs, θ) = ajk, where j, k ∈ M(s). The calculation is mostly similar to that
of the EM algorithm.

A Cholesky factorization enables simulating random normal vectors. To draw from the
distribution of yi(mis) given yi(obs) and θ, one just computes the Cholesky factor of the
submatrix in Equation (3.7) corresponding to the rows and columns, which are labeled
by M(s). The remaining elements of A remain unaffected

A := CholSA .

With the effected Cholesky factorization, the i-step is just a straight routine computation
through all occurring patterns s = 1, . . . , S

CholM(s)SWP [O(s)]θ ,

with a following simulation of the missing values yi(mis) for each i ∈ I(s).
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3.4.2 The P-step

As described in Schafer (1997, Ch. 5.2.2 and 5.2.3), the complete data posterior distri-
bution P (θ | Yobs, Ymis) is a normal inverted Wishart distribution. Therefore, the p-step
is merely meant as a simulation of the normal inverted Wishart distribution:

µ | Σ ∼ N(µ0, τ
−1Σ) ,

Σ ∼ W−1(m,Λ) ,

where (τ,m, µ0,Λ) are derived from the prior distribution and the missing data Y
(t)
mis from

the last i-step.

To obtain a normal inverted Wishart distribution, one arranges a matrix B in such a way
that the elements of its minor diagonal are χ2-distributed and the elements above that
diagonal are standard normal distributed. The cross product has the property B′B ∼
W (m, I), which implies that

M = (B′)−1C ,

where C is the Cholesky factor of Λ−1 = C ′C. In calculating the cross product of M , one
maintains normal inverted Wishart distributed matrices, because

(M ′M)−1 = C−1B′B(C ′)−1 ∼ W (m,Λ) . (3.8)

This method of obtaining a normal inverted Wishart distribution is known as a Bartlett
Decomposition. Next, the expectations have to be determined

µ = µ0 + τ−1/2M ′z | Σ ∼ N(µ0, τ
−1Σ), (3.9)

where z ∼ N(0, I) is a p×1 vector with independent standard normal distributed variables.

Hence, the p-step runs as follows: In a first step Σ will be drawn from Equation (3.8) and
then µ conditioned on Σ from Equation (3.9).

Example: Predictive distribution of a missing values (NA) in the case of a multivariate
normal distribution (taken from Huergo, 2008).

Setup: Starting point of the simulation is a sample of size 400 from a 5-Variate normal
distribution with the following Parameters

µ =


2
3
4
2
1

 Σ =


4,000 1,340 1,200 0,304 0,144
1,340 1,000 0,750 0,208 0,120
1,200 0,750 2,250 0,744 0,531
0,304 0,208 0,744 0,640 0,264
0,144 0,120 0,531 0,264 0,360

 , (3.10)

which are assumed unknown and allow a comparison of the simulation results.

For the purposes of the simulation, 400 values from the sample were set as NA. These
values were appropriately chosen to make sure that no row of the data set was completely
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Figure 3.1: NA structure of the data.

The green dots flag the values, whose joint distribution has to be estimated. (Source: Huergo, 2008.)

observed. The resulting structure of the data set can be seen in Figure 3.1. The goal of
the exercise is the simulation of the predictive distribution of an arbitrary pair of missing
values, given the available data, in order to proceed to its imputation.

In order to simulate the predictive distribution of these missing values, a Data Augmen-
tation Algorithm will be used.

Let θ denote the unknown parameters µ und Σ, with resulting joint distribution fΣ(·)·fµ|Σ.
Further let X denote the underlying data set. Because of the presence of missing data let
X be composed of two parts, the observed data Y and the missing data Z. Thus it holds
X := (Y, Z).

The density function f(θ|X) = f(µ,Σ|Y, Z) denotes thus the posterior distribution of the
parameters µ und Σ given the information contained in the partially observed sample X.

In the case of a fully observed data set, Bayes’ theorem would suggest the following
structure for this posterior distribution:

f(θ|X) ∝ f(θ)f(X|θ) , (3.11)

where f(θ) denotes the prior distribution of µ and Σ, and the Symbol ∝ makes clear, that
this distribution is uniquely characterized up to a proportionality constant

∫
f(θ)f(X|θ)δθ.

In the considered case of a multivariate normal distribution it is straightforward to calcu-
late f(θ|X) in closed form.
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The calculation of the posterior distribution of the parameters under both conjugate and
noninformative priors is extensively discussed in Gelman et al. (2004, pp. 87-88).

In the presence of missing data the situation changes considerably: The expression f(θ|X)
cannot be calculated analytically and one has to resort to simulative methods.

Let f(Z|Y ) denote the predictive distribution of the missing data given the observed ones,
whereby the dependence to the parameters θ was eliminated by means of integration. It
holds thus

f(Z|Y ) =

∫
f(Z|θ, Y )f(θ|Y )δθ . (3.12)

The integrator in 3.12 is not available in closed form and thus the predictive distribution
f(Z|Y ) must be simulated as well.

The Data Augmentation algorithm proceeds as follows:

1. Starting values θ0 = {Σ0, µ0} for θ = {Σ, µ} must be chosen.

2. Conditional on the chosen values θ0 and the observed data Y , values Z0 for the
missing data are drawn from f(Z|θ0, Y ), which is a normal distribution with vector
of expected values φ resulting from the multivariate linear regression of Z on Y and
variance-covariance matrix Ψ, equal the variance-covariance matrix of the residuals
of this regression. The imputation step is now complete.

3. With the completed data it is now possible to estimate the parameters of the joint
distribution:

(a) Given the new set of complete data X0 is the new variance-covariance matrix

Wishart1 distributed with scaling parameter Σ̂0, where

Σ̂0 = 1
n

(X ′0X0 − x0x
′
0) and (3.13)

x·, j0 = 1
n

n∑
i=1

xi,j0 for j ∈ {1 : k}, k = Number of dimensions. (3.14)

x = (x·, 1, . . . , x·, k) is thus the vector of the columnwise computed mean values
of the completed data.

(b) Conditional on Σ0 and X0, µ1 is a draw from a normal distribution with pa-
rameters (x,Σ0/n), where n represents the number of rows of the completed
data matrix X0 bezeichnet. The Posterior -Step is now complete.

4. The algorithm continues iterating between Imputation and Posterior steps until a
konvergence criterion is reached.

1The Wishart distribution is a multivariate generalization of the Chi squared distribution.
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Simulation of the joint predictive distribution of a pair of missing values: The
values of the 106-th row, columns four an five of the data set were set to NA for the
purposes of the simulation. From now on these values will be referred to as z106,4 and
z106,5. The choice of the row is arbitrary and is not expected to affect the accuracy of the
simulation.

The aim of the example is the simulation of the joint predictive distribution of both values,
given the observed data, f(z106,4, z106,5|Y ).

After a burn in period of 2000 cycles, 1000 iterations of the Data Augmentation algorithm
will be used to estimate the joint distribution of the missing data. The results will be
compared to the following distributions:

1. The distribution of z106,4 and z106,5 given the observed values of the 106-th row and
under the assumption of known parameters. The resulting distribution is normal
with the following parameters:

• Vector of expected values: Results from the linear regression of z106,4 and z106,5

on the observed values of the 106-th row.

• Variance-covariance matrix: Equals the variance-covariance matrix of the Re-
sidals of this Regression.

The regression parameters result from the factorization of the parameters of the
multivariate normal distribution. This factorization can easily be computed for all
combinations of observed an missing values by means of the Sweep Operator.

The conditional distribution of the missing values given the parameters and the
observed values of the 106-th row f(z106,4, z106,5|φ, x106,{1,2,3})

2, represent the the
maximal achievable knowledge of the missing values. This distribution will be used
as a benchmark to test the accuracy of the results from the Data Augmentation
algorithm.

2. The predictive distribution of the values to be imputed, given a completely observed
data set.

In this case the imputation has the properties of a forecast: a fully observed data
set allows the estimation of the parameters of the underlying distribution. An
additional row with two NAs enlarges the data set. The estimated parameters and
the additional data can be used for the estimation of the conditional distribution of
the missing data f(z106,4, z106,5|φ = φ̂, X). In order to eliminate the dependence on
estimated parameters it is usual in a bayesian context to construct the predictive
distribution of the missing data given the observed data:

f(z106,4, z106,5|X) =

∫
φ

f(z106,4, z106,5|φ,X)f(φ|X)δφ .

This distribution will be simulated as well.

Because of the availability of a completely observed data set, the distribution can
be simulated with conventional Monte Carlo methods and there is no need to resort
to iterative algorithms.
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Figure 3.2: Comparison of the marginal distributions.

The figure shows the conditional distribution of the missing values in the case of known parameters
(black solid line), along with the kernel density estimation of the predictive distribution with: -completely
observed data (red solid line) and -data with missing values (green solid line). The dashed lines flag the
original data, which were set to NA for the simulation. The dotted line flags the estimate from the
EM-Algorithm. (Source: Huergo, 2008.)

Figure 3.2 shows the results of the simulation. In spite of the high number of missing
values are the by means of the Data Augmentation algorithm simulated marginals a close
approximation to the theoretical conditional distribution (black solid line). The fact that
the predictive distributions are a bit wider and lower is a natural consequence of the fact
that the parameters had to be integrated out of the distribution.

Additionally, the EM algorithm was applied to the data. The results are flagged with a
dotted black line in Figure 3.2. After convergence, the estimates of the EM-Algorithm
are ẑ106,4 : 1,686 and ẑ106,5 : 0,785. Both values are quite close to the modal values of the
respective theoretical distributions.

The theoretical correlation between z106,4 and z106,5 amounts to 0,281. Because of the avai-
lable correlation structure of the observed data it is not possible to completely reconstruct
the original correlation of 0,55 between the fifth and sixth columns. The simulation in the
case of completely observed data and unknown parameters yields a correlation coefficient
of 0,246. The simulated sample in the presence of missing values yields a correlation of
0,309. Figure 3.3 shows simulated data from the three settings. All of them show a similar
correlation structure.

2In the case of known parameters the data from rows other than the 106-th are not involved in the
estimation of the predictive distribution and can be safely ignored.
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Figure 3.3: Comparison of the scatterplots.

The three scatterplots show the bivariate distributions in the three cases compared. The first panel
depicts the expected correlation structure. It is evident that the Data Augmentation algorithm was able
to reconstruct this correlation structure to a high amount, in spite of the missing data. (Source: Huergo,
2008.)
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Chapter 4

Power Transformation to induce
approximate Normality

4.1 Justification of correcting the shape of the Data

Since most of the KEI indicators deviate from normality, the data must be transformed.
Figure 4.1 presents an illustrative example of why there is a need for such a transformation.
The proposed power transformation introduced in this chapter goes back to Huergo
(2008).

−4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

f(
x)

Figure 4.1: Justification of correcting the shape of the data. (Source: Huergo, 2008.)

The diagonally hatched density function in the front corresponds to the original data-
set. The EM algorithm computes mean and variance of these data as these parameters
characterize a normal distribution completely. Then it constructs a normal distribution
to impute the missing data using these parameters (note that both densities have an

c© http://kei.publicstatistics.net - 2008



36 Chapter 4. Power Transformation to induce approximate Normality

identical mean and variance). The assumed distribution is the one in the background.
The red area represents values that are not valid under the original distribution since
the data are defined on R+. The normal distribution is, unformally speaking, what the
(classical) EM algorithm for normally distributed data sees when it receives data from a
right-skewed density function. Figure 4.2 compares imputed values of the EM algorithm
with and without transformation. While the former imputes negative values, the proposed
transformation provides a valid imputation. Also Schafer confirms to this suggestion:

Datasets encountered in the real world often deviate from multivariate norma-
lity, but in many cases the normal model will be useful even when the actual
data are nonnormal. [...] Sometimes the normality assumption may be made
more plausible by applying suitable transformations to one or more variables
(Schafer, 1997, pp. 29 and 147)
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Figure 4.2: Comparison of the imputations.

A sample is drawn from a bivariate normal distribution and then raised to powers in such a way that
the resulting marginal distributions are skewed to the right but with different skewnesses. Due to the
different skewnesses, the cloud of points has a curved form. Both variables are defined on R+. Only
variable two has missing values, which have to be imputed. In order to simplify matters, the comparison
is performed by the EM-algorithm and not the Data Augmentation algorithm. The classical EM-algorithm
for normal data imputes linearly (and so does the DA algorithm) thus yielding invalid (i.e. negative)
values (left panel). To avoid that, the objective is to transform the dataset by a still to be presented
power transformation before imputing the missing values. After the imputation, the augmented dataset
can be transformed back. The better fit of the imputed values in the transformed dataset is evident (right
panel). (Source: Huergo, 2008.)
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4.2 Univariate Transformation

4.2.1 Purpose

As already mentioned, it is necessary to transform the KEI dataset to adjust the empirical
distributions of the indicators to approximate normality. Beside location and dispersion,
a further characterization of the data includes skewness and kurtosis. They are measures
of the lack of symmetry and of the peakedness of a distribution. Skewness and kurtosis
for a normal distribution are respectively zero and three. Hence, the main task of the
transformation is to find a transformation parameter such that these values can be ap-
proximated as best as possible. A justification of why the proposed optimization routine
only makes use of the third and fourth central moments is discussed in Appendix B.2.3.

Since the minimization cannot be carried out analytically, a numerical optimization rou-
tine is needed. The proposed algorithm uses a power transformation and has a structure
which resembles a GMM estimation procedure.

4.2.2 The Transformation Algorithm

The proposed algorithm to search for the power transformation parameter works as fol-
lows:

1. Sample Moments: In a first step, the ML estimators µ and σ2 have to be calcu-
lated for the transformed dataset y? = yθobs:

y = 1
n

∑
y?i ,

s =
√

1
n

∑
(y?i − y)2 .

2. Z-Score To prevent a collapse of the distributions, the transformed dataset has to
be standardized. Therefore each value must be subjected to a z transformation:

zi =
y?

i−y
s

.

Then z has a mean value of zero and a variance of one.

3. Moment conditions: The moment conditions of the third and fourth central
moments of these z-variables have to be stated:

m(θ̂) =

[
m1

m2

]
=

[
0
0

]
,

with

m1 = 1
n

n∑
i=1

(zi − µz)3 = 1
n

n∑
i=1

z3
i ,

c© http://kei.publicstatistics.net - 2008



38 Chapter 4. Power Transformation to induce approximate Normality

m2 = 1
n

n∑
i=1

(
(zi − µz)4 − 3σ4

)
= 1

n

n∑
i=1

z4
i − 3 .

The arranged moment conditions can be seen as the mean estimation errors, i.e. the
average deviation between the standardized variables and their expected values.

There are more moment restrictions (m1 and m2) than parameters to estimate (θ).

Therefore, there is no estimator θ̂ which solves the sample moment conditions uni-
quely. The GMM-like idea is to look for a θ such that m is as close as possible to
zero.

4. Minimization: The search can be done by using a quadratical form of m and
minimizing it. In analogy to GMM a more general quadratic form using a weighting
matrix has to be employed. Without loss of generality an identity matrix In can be
used, so that both moment conditions receive an equal weight. But also other choices
of weights are possible and discussed in literature. Formally, the transformation
parameter is then defined to be the estimator that solves the following minimization
problem:

arg min Q(θ) = m′ Inm.

To solve this optimization problem a numerical procedure must be used that searches
the interval from a lower to an upper endpoint for a minimum of the moment
conditions with respect to θ.

As already mentioned, because of the use of higher moments of the normal distri-
bution, this transformation would be more suitable for large sample sizes.

4.2.3 Properties

In order to explore the properties of the transformation parameter, a series of simulations
was carried out. This section shows some of the results of these simulations.

(a) Convergence of the transformation parameter

One important feature of a transformation method is its ability to recognize whether a
transformation is necessary or not. In other words, it should not transform data which
already have the right shape. In order to test the behavior of the power transformation a
simulation was carried out in which samples of increasing size from a normal distribution
were drawn and subject to the transformation method. Except for sample effects the
optimal transformation parameter in such cases should be one, since the data are already
normally distributed. It is also to be expected that asystematic sample biases cancel out
and that the amplitude of the deviations decreases with increasing sample sizes. Figure
4.3 shows the results of the simulation.
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Figure 4.3: Convergence of the transformation parameter.

The normally distributed data - X ∼ N(8, 1.44) - used for the simulation are drawn with the rnorm()
function of the R program. (Source: Huergo, 2008.)

(b) Consistency3 of the transformation parameter

Three sets of Monte-Carlo simulations yield means and variances of transformation para-
meters (of 500 repetitions) which transform the given samples to approximate normality.
The data are drawn with increasing sample sizes

b1) from a normal distribution where X ∼ N(8, 1.44). The transformation parameter
must be on average one, because, except for stochastic effects, there is no need to
transform a normal distribution. As it can be seen in Figure 4.4, the mean of the
transformation parameters asymptotically converges to 1 and the variance decreases
monotonically.

3It must be emphatically pointed out, that the word consistency as used in this section is in the sense
of a Monte Carlo simulation. A further investigation of the theoretical properties of the transformation
parameter is needed to establish its consistency. The same is valid for expressions such as unbiasedness.
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Figure 4.4: Evolution of the mean and the variance of the transformation parameter (1).

Evolution of the mean and the variance of the transformation parameter with increasing sample size.
Samples from a N(8, 1.44). The data are drawn with the rnorm() function of the R program. (Source:
Huergo, 2008.)

b2) from a transformed normal distribution f(X) = X3 where X ∼ N(8, 1.44). Thus,
the transformation parameter must be 1

3
to transform the data to normality. It can

be seen in Figure 4.5 that the mean of the transformation parameters converges
asymptotically to 1

3
and the variance decreases monotonically.

b3) from a Gamma distribution where X ∼ Γ(4, 1). In contrast to the other cases
it is not clear what the optimal transformation value should be. However it is
interesting to see whether the transformation routine converges to a plausible value
and to observe the behavior of the variance. Figure 4.6 shows that the mean of the
transformation parameters converges asymptotically to 1

3
and the variance decreases

monotonically.
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Figure 4.5: Evolution of the mean and the variance of the transformation parameter (2).

Evolution of the mean and the variance of the transformation parameter with increasing sample size.
Samples from a transformedN(8, 1.44). The transformed data - f(X) = X3 - are drawn with a Metropolis-
Hastings algorithm. (Source: Huergo, 2008.)
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Figure 4.6: Evolution of the mean and the variance of the transformation parameter (3).

Evolution of the mean and the variance of the transformation parameter with increasing sample size.
Samples from a Γ(4, 1). The data are drawn with the rgamma() function of the R program. (Source:
Huergo, 2008.)
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42 Chapter 4. Power Transformation to induce approximate Normality

(c) Asymptotic distribution of the transformation parameter

The empirical distributions of the resulting transformation parameters from b1) and b3)
have been subjected to a Shapiro-Wilk normality test (where the significance level α is
0.05). Figure 4.7 shows the behavior of the acceptance rate of the test for different sample
sizes. The acceptance rate increases approximately monotonically with increasing sample
sizes. Huergo (2008) offers a more detailed explanation of the steps followed for this
analysis.

It must be pointed out, however, that the simulative examination of the distribution of
the transformation parameter can only be taken as a preliminary result. In order to draw
definitive conclusions, this must be proven analytically by an appropriate central limit
theorem (CLT).

(d) Comparison to the logarithmic transformation

Another frequently used non-linear transformation is the logarithm(ic) transformation.
This transformation is often able to correct right-skewed data to a roughly symmetric and
often normal-looking shape. Further advantages are its simplicity and its reversibility, i.e.
elog(Y ) = Y .

Because the proposed power transformation requires an numerical optimization algorithm
and is in general of a more detailed structure, it is necessary to test whether the extra
complexity is justified. In the next simulation, the two approaches for transforming data
were compared.

Frequently occurring shapes of data (in the KEI dataset) skewed to the right and multi-
modal distributions:

d.1) The data in Figure 4.8 are drawn from an exponential distribution (i.e. skewed to
the right). It is evident, that the proposed power transformation yields a better
approximation to normality than the logarithmic transformation. Furthermore, the
quality of the approximation improves with increasing sample sizes.

d.2) A random variable is said to have a lognormal distribution if its logarithm is nor-
mally distributed. That is, if Y is a random variable with a lognormal distribution,
then log(Y ) is normally distributed. The data for the test in Figure 4.9 are drawn
from a lognormal distribution (i.e. skewed to the right) and thus represent the best
possible case for the logarithmic transformation. The objective is to test the perfor-
mance of the proposed power- against the logarithmic transformation in a setting
favorable to the latter. To test the accuracy of the transformations, the p-values
of the Shapiro-Wilk normality test are computed for the transformed data yielded
by both approaches. The null hypothesis, that the data come from a normal dis-
tribution, must be rejected with a p-value smaller than or equal to a significance
level α (set at 0.05). Figure 4.9 shows the discrepancy between both approaches by
counting the number of non-identical results (whether rejected or not). On average,
the two approaches differ only in approximatively one case out of 100 repetitions
(independent from the sample size).
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Figure 4.7: Empirical distributions of the transformation parameter by means of Shapiro-
Wilk normality tests.

Upper figure: The normally distributed data - X ∼ N(8, 1.44) - used for the simulation are drawn with
the rnorm() function of the R program. Lower figure: The gamma distributed data - X ∼ Γ(4, 1) - used
for the simulation are drawn with the rgamma() function of the R program. (Source: Huergo, 2008.)

d.3) For the seek of completeness a counterexample is offered, in which the power trans-
formation is not able to correct the shape of the data. The data for the following
example were drawn from a uniform distribution. Figure 4.10 shows that neither
the power transformation nor the logarithm transformation are able to correct the
data in such a situation. Since uniformly distributed data can be brought to almost
any distribution shape by the well known Inverse Transform Method (see Fishman,
2006, p. 77), this weakness of the power transformation is more of theoretical than
of practical relevance.
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Figure 4.8: Power transformation and right-skewed data.

The exponentially distributed data - X ∼ Exponential(λ) where λ = 1 - used for the simulation are drawn
with the rexp() function of the R program. (Source: Huergo, 2008.)

(e) Reversibility

The proposed power transformation is invertible in the sense that the dataset can be
transformed back to its originally empirical distribution after the imputation step. Inver-
tibility is a very important property for a transformation method. The following example
illustrates the invertibility property on indicator A2a3. While Figure 4.11 presents the
density of indicator A2a3 that has been transformed to normality and back to its original
shape, Table 4.1 shows the computed values. The obtained values are rounded off to the
8th decimal place. A proof (in the real case) of the invertibility property of the power
transformation is given in Appendix B.2.1.
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Figure 4.9: Comparison to logarithmization in case of lognormal data.

The lognormally distributed data - X ∼ Log-N(0, 1) - used for the simulation are drawn with the rlnorm()
function of the R program. (Source: Huergo, 2008.)
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Figure 4.10: Power transformation and uniformly distributed data.

The uniformly distributed data - X ∼ U(0, 1) - used for the simulation are drawn with the runif()
function of the R program. (Source: Huergo, 2008.)
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Figure 4.11: Reverse transformation of indicator A2a3.

The density of indicator A2a3 (in 2004) has been transformed to normality and back to its original shape.
The transformation parameter θ is 3.868025. (A Shapiro-Wilk normality test yields a p-value of 0 for
indicator A2a3 and 0.79 for the transformed data.) (Source: Enderle, 2008.)
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Country Original data Power transformation Reverse transformation
at 0.858 0.54602946 0.858
be 0.818 0.45216666 0.818
cy 0.776 0.36716103 0.776
cz 0.914 0.70097576 0.914
de 0.728 0.28529703 0.728
dk 0.762 0.34167872 0.762
ee 0.803 0.42028346 0.803
es 0.612 0.14370765 0.612
eu15 0.743 0.30923734 0.743
eu25 0.772 0.35974033 0.772
fi 0.845 0.51406666 0.845
fr 0.814 0.44349375 0.814
gr 0.830 0.47894653 0.830
hu 0.835 0.49044741 0.835
ie 0.853 0.53356548 0.853
it 0.734 0.29470051 0.734
jp NA NA NA
lt 0.850 0.52618983 0.850
lu 0.725 0.28068024 0.725
lv 0.795 0.40398218 0.795
mt 0.510 0.06992687 0.510
nl 0.750 0.32090886 0.750
pl 0.909 0.68594732 0.909
pt 0.496 0.06264463 0.496
se 0.860 0.55107545 0.860
si 0.905 0.67409890 0.905
sk 0.917 0.71011005 0.917
uk 0.770 0.35607228 0.770
us NA NA NA

Table 4.1: Reverse transformation of indicator A2a3. (Source: Enderle, 2008.)
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(f) Simulative examination of the variance of the transformation
parameter as a function of the sample size

To test its behavior, the variance of the transformation parameter will be estimated by a
constant elasticity model where the logarithm of the variance is regressed on the logarithm
of the sample size:

log
(
var(θ̂)

)
= β0 + β1 log(n) + error .

Thus, the variance can be expressed as a function of the sample size. Figure 4.12 shows
the variance of the simulation in b1) which is used to estimate the order of var(θ̂). Under
the assumption of valid Monte Carlo results it holds that

var(θ̂) ≈ 100
n1,13

var(θ̂)n1,13 ≈ 100

var(θ̂)n1,13 ≈ c

var(θ̂) ∈ O(n−1,13) .

Hence, the variance of the transformation parameter is of the order n−1.13 (for more details
see Appendix B.2.2).
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Figure 4.12: Variance of the transformation parameter.

Figure 4.4 continued. The red line is an estimation of the variance (from a log-log or constant elasticity
model): log

(
var(θ̂)

)
= 4, 57− 1, 13 log(n). (Source: Huergo, 2008.)
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4.3 Multivariate Transformation

4.3.1 Complete Dataset

Since the primary algorithm is merely thought to univariately transform the indica-
tors, a proposed extension to deal with multivariate datasets is now discussed. Suppose
v = (v1, v2, . . . , vp) is such a dataset with p indicators which have to be transformed to
approximate multivariate normality. The multivariate algorithm works as follows:

1. First of all, the marginal distribution of the first indicator4, v1, must be transformed
with the univariate algorithm. This univariate transformation yields parameter θ1.

2. The second step takes into account the fact that indicator v1 has alread been trans-
formed. To account for that, the univariate algorithm is replaced by a multivariate
one. This new algorithm has two sets of moment conditions:

(a) y-conditions: Two moment conditions for the marginal distributions, in ana-
logy to the univariate transformation algorithm (i.e. m1 and m2).

(b) e-conditions: Two moment conditions for the distribution of the residuals,
when a linear regression of the new variables on the already transformed va-
riable(s) is performed.

As a result, the second indicator v2 is transformed in such a way that both the
marginal distribution and the distribution of the residuals of a linear regression on
the already transfomed indicator v1 are corrected to an approximate normal shape.

3. At each additional iteration step a further variable of the remaining p−2 indicators
(v3, . . . , vp) gets transformed. The number of regressors increases with each step.
The number of moment conditions remains constant.

Comment on the e-conditions: The idea behind the e-conditions is simple, since
all conditional distributions of a joint normal distribution are also normal, the residuals
of a regression of two normally distributed variables are normally distributed as well.
For this reason, when regressing some indicators on already transformed (or normally
distributed) indicators, one can assume normally distributed residuals. Thus, since the
e-conditions control the normality of the residuals, the new indicators become by and by
approximatively normal. The formal derivation of the e-conditions proceeds as follows:

Run a regression of y on X to obtain the residuals

e = y∗ −X (X ′X)−1X ′y∗ ,

which must be standardized by a z transformation:

ze = e−e
σe

= e
σe
,

4Without loss of generality the natural order was chosen.
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where σe =
√

1
n

∑
e2 and the residuals add to zero by definition. Once again, ze is assumed

to be N(µz, σ
2
ze

) = N(0, 1). Then, the moment conditions of the third and fourth central
moments of these ze-variables can be stated:

m3 = 1
n

n∑
i=1

(ze,i − µze)
3 = 1

n

n∑
i=1

(ze,i)
3 ,

m4 = 1
n

n∑
i=1

((ze,i − µze)
4 − 3σ4

ze
) = 1

n

n∑
i=1

(ze,i)
4 − 3 .

Apart from two more moment conditions being included (i.e. all in all four), the minimi-
zation task of the second step turns out to be identical to the univariate approach. Note,
that the y- and e-conditions are necessary but not sufficient conditions for the multivariate
normality.

To obtain all p transformation parameters, such a minimization must be achieved p − 1
times. At each iteration step, a further indicator of the dataset will be included as
dependent variable whereas the newly transformed indicator (i.e., the dependent variable
from the iteration step before) will then be added to the regressor(s). In doing so, the
number of moment conditions doesn’t increase with the number of variables.

4.3.2 Incomplete Dataset

So far, the transformation algorithms have dealt with completely observed data. However,
the presence of missing values is the reason for the imputation procedures and hence for
the present algorithms.

One possibility when dealing with datasets with missing values is to univariately trans-
form the observed data. In analogy to the general imputation problem, and depending on
the mechanism of missingness, there may occur a rough bias when the univariate trans-
formation is applied to the observed data. Indeed, this effect increases with the amount
of missing data. For example, a high amount of missing data on a sample from a skewed
distribution can cause a shift in the skewness, which causes the transformation algorithm
to deliver an incorrect transformation parameter. This is more likely to occur under MAR
or NMAR mechanisms.

The described multivariate algorithm is based upon regressions and therefore designed
for complete datasets. It is then natural to look for a way to suitably complete the data
before the transformation.

The proposed idea is to develop an iterative tandem approach between the transformation-
and the EM-algorithm:

1. In a first step, the EM algorithm must be applied to the still untransformed data in
order to get a complete dataset.
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2. All variables (including the imputed data) undertake an univariate transformation.
The resulting transformation parameters, θ0 are saved.

3. The EM algorithm is applied to the θ0-transformed variables.

4. The expanded variables are multivariately transformed and a new vector of para-
meters, θ1, results.

5. The EM algorithm is applied to the (θ0 · θ1)-transformed variables.

6. The iteration runs until the product of the parameters does not change with addi-
tional iterations.

Extensive simulations have shown that the proposed algorithm performs fairly well in
practice, and that the resulting imputations in general settings are more accurate than
the imputations of the uncorrected data. However, further work is necessary, especially
concerning the moment conditions and the tandem with the EM-algorithm, in order to
identify the conditions under which the algorithm is likely to perform well, as well as
possible pitfalls. Until then it is advisable to consider it a prototype.
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Chapter 5

Robust Models

5.1 General Mixture Model

5.1.1 Parametrization

In addition to the classical normal model, some positive unobserved scalars qi (i =
1, 2, . . . , n) which are an i.i.d. sample from the density h(q) will be taken into account, so
that the new models’ supposed multivariate distribution of Y will read as follows

(yi | θ, qi)
ind∼ MVNk(µ,Ψ/qi) , (5.1)

where k is the number of variables. Because this multivariate normal distribution belongs
to the exponential family of distributions, the loglikelihood in Equation (2.9) is not linear
in the data but rather linear in a set of sufficient statistics. For the extended model the
complete-data sufficient statistics are: T0 =

∑n
i=1 qi, T1 =

∑n
i=1 qiyi and T2 =

∑n
i=1 qi yiy

′
i,

which can be arranged in a (p+ 1)× (p+ 1) matrix

T =

[
T0 T

′
1

T1 T2

]
.

For a complete setting, this is if q and Y are completely observed, the ML estimates of
θ = (µ,Ψ) could be found by weighted least squares:

µ̂ = T1

T0
, (5.2)

Ψ̂ = 1
n

(
T2 − T1T ′1

T0

)
. (5.3)

But in case of missing data and unknown weights, some extensions to the EM algorithm
have to be accommodated:
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5.1.2 Implementation

In the e-step, the complete-data sufficient statistics will be estimated by their conditional
expectations:

E [T0 | Yobs, θ] = E

(
n∑
i=1

qi | Yobs, θ

)
=

n∑
i=1

w
(t)
i

with the estimated weights w
(t)
i = E(qi | Yobs, θ(t)).

The jth component of E [T1 | Yobs ] is

E

(
n∑
i=1

qiyij | Yobs, θ

)
=

n∑
i=1

E
{
qiE(yij | Yobs, qi, θ) | Yobs, θ

}
=

n∑
i=1

w
(t)
i E(yij | Yobs, θ)

or E(qiyij | Yobs, θ) =

{
w

(t)
i yij, if j ∈ O(s)

w
(t)
i y
∗
ij, if j ∈M(s)

and the (j, k)th element of E [T2 | Yobs ]

E

(
n∑
i=1

qiyijyik | Yobs, θ

)
=

n∑
i=1

E{qiE(yijyik | Yobs, qi, θ) | Yobs, θ}

=
n∑
i=1

E

{
qi
[
E(yij | Yobs, θ)E(yik | Yobs, θ)

+ cov(yijyik | Yobs, qi, θ)
] ∣∣Yobs, θ}

=
n∑
i=1

wiE(yij | Yobs, θ)E(yik | Yobs, θ) + Ψik,obs,i

or E(qiyijyik | Yobs, θ) =


wi yijyik, if j, k ∈ O(s)
wi y

∗
ijyik, if j ∈M(s), k ∈ O(s)

wi y
∗
ijy
∗
ik + ajk, if j, k ∈M(s)

.

The m-step turns out to calculate the new estimates (µ(t+1),Ψ(t+1)) from Equations (5.2)
and (5.3) as done in the classical model but with T0, T1 and T2 replaced by their estimates
from the e-step. The PX-EM speeds the convergence by replacing the denominator n in
Equation (5.3) by the sum of the current weights,

∑n
i=1 w

(t)
i .

Before stating different models, i.e. defining a distribution for the weights, a measure for
detecting outliers has to be defined.
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5.1.3 Mahalanobis Distance

The size and shape of the distribution of a multivariate dataset are quantified by its co-
variance matrix. A very useful distance measure which takes into account the covariance
among variables is the Mahalanobis distance (Mahalanobis, 1936). It measures the dis-
tance of a case from the centroid (multivariate mean) of a distribution, given the covariance
(multivariate variance) of the distribution. Therefore it is often used as a multivariate
outlier detection method, which turns out to be useful for weighting observations.

The squared distance from the mean for observed variables in case i reads as follows

d
(t)
i =

√
(yobs,i − µ(t)

obs,i)
′Ψ

(t)−1
obs,i (yobs,i − µ(t)

obs,i) ,

where µobs,i is the a vector of means and Ψobs,i is the variance covariance matrix. Large
squared distances d2

i denote outliers and involve downweighting of cases depending on the
purposed model.

5.2 Contaminated Normal Model

To derive the contaminated (multivariate) normal model, following distribution for qi = wi
must be assumed:

h(wi) =


1− δ if wi = 1
δ if wi = λ
0 otherwise,

(5.4)

where 0 < δ < 1 , λ > 0 with known probability of contamination δ and known λ. Then
the marginal distribution for yi is a mixture of the two distributions

N(µ,Ψ) and N(µ,Ψ/λ) .

For the contaminated normal model, one sets λ� 1 (say 0.1). Little and Rubin (2002)
show that the weight can be derived by a simple application of Bayes’ theorem. For case
i the distribution in Equation (5.4) yields the weight

w
(t)
i =

1−δ+δλ1+
ki

2 exp

{
(1−λ)

d
(t)2
i

2

}

1−δ+δλ
ki

2 exp

{
(1−λ)

d
(t)2
i

2

} .

Whereas the contaminated normal model is designed for especially downweighting outliers,
the following t-model produces smoothly declining weights with increasing d2

i .

5.3 Multivariate t-Model

5.3.1 t-Model (with known ν)

Another choice of deriving a form of the weights is to suppose the weights wi are such that
wiν is chi-squared distributed with degrees of freedom ν, that is wi ∼ind χ2

ν/ν. Therefore,
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by mixing Equation (5.1) with the scaling variable q = w, the marginal distribution for
yi is defined by

yi ∼ind tk(µ,Ψ, ν),

where tk denotes a k-variate Student’s t-distribution with the probability function

P (Y | µ,Ψ, ν) =
Γ

(
ν+k

2

)
|Ψ|−

1
2

Γ(ν2 )
{

Γ
(

1
2

)}k
ν
k
2

×
(

1 + (Y−µ)Ψ−1(Y−µ)′

ν

)−(
ν+k

2
)

.

The weights can be yielded by a application of Bayes’ theorem. Hence, for case i results

w
(t)
i = E(qi | Yobs, θ(t)) = (ν+ki)

(ν+d
(t)2
i )

. (5.5)

Whereas both the contaminated normal model as well as the t-model assume fixed para-
meters to calculate the weights, they are said to not be very flexible.

5.3.2 Adaptive t-Model (with unknown ν)

Therefore, a further extension to the t-model relaxes the assumption of a fixed parameter ν
such that it becomes more flexible. Thus, the degrees of freedom ν in Equation (5.5) must
be replaced by a current estimate ν(t). Then, the m-step which calculates new estimates
(µ(t+1),Ψ(t+1)) has to be extended by also computing a new ν(t+1). To make this feasible,
one applies the ECME algorithm, which splits up the m-step in two CM steps:

CM1: To find new parameters (µ(t+1),Ψ(t+1)), maximize the Q-function with respect to
θ = (µ,Ψ).

CM2: Maximization of the observed, true likelihood with respect to ν with fixed para-
meters (µ(t+1),Ψ(t+1)) to find new parameter ν(t+1). This can be done by a one-
dimensional maximization of the observed likelihood

`(ν, µ,Ψ | Yobs, µ(t+1),Ψ(t+1)) = −n
2

log |Ψ | +n log
(
Γ(ν+k

2
)
)

−nk
2

log(ν) − n log
(
Γ(ν

2
)
)

−ν+k
2

n∑
i=1

(
log(1 + (yi−µ)Ψ−1(yi−µ)′

ν
)
)
,

this is the sum of the logarithm of the density of a multivariate Student’s t distri-
bution over all i.
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5.4 Draws from the Posterior Distribution

Since the aforementioned accommodations are presented for the EM algorithm, this sec-
tion touches on how to implement draws from the posterior distribution of the parameters.
Whereas the modifications to the models in Sections 5.2 and 5.3.1 are straightforward wi-
thout any larger obstacles, the adaptive multivariate t-model must be expanded by draws
of ν. But these cannot be drawn directly due to numerical underflow which means that
numerical values can’t be displayed by a computer due to their length. Since probabilities
range in the interval 0 to 1, where infinitely many values can be assumed, one needs a
method that can exploit the range of the computer and reduce rounding errors.

At first, the p-step has to be split up in two sub-steps P1 and P2 as follows:

P1: In analogy to the p-step for the normal model, new parameters Ψ(t+1) and µ(t+1)

will be drawn from the distributions in Equations (3.8) and (3.9).

P2: Given the computed parameters (Ψ(t+1), µ(t+1)) and a constant prior for ν, a new
estimation of the degrees of freedom must be drawn from the posterior distribution.

Since it cannot be drawn directly from the posterior distribution, an approximation to the
inverse cumulative distribution function (cdf) must be formed. This can be done by the
simple and intuitive Griddy Gibbs sampler (Tanner, 1991, pp. 101) which is based on
the empirical distribution method. Following steps are required to create such a Griddy
Gibbs sampler:

1. Compute a grid of points v1, v2, . . ., such that most of them are in the neighborhood
of high mass and fewer points of low mass. The proposed approach is that the grid
is based on the slope of the first derivatives rather than spaced uniformly. So, it will
result in a finer grid near to the maximum and computer time can be reduced.

2. Evaluate P (ν(t+1) | Y,Ψ(t+1), µ(t+1)) at these points to form an approximation of
the inverse cdf. Generally, the inverse cdf is used to obtain the original values that
were used for calculating the cdf. If the distribution is continuous, the result of the
inverse cdf is the original value.

3. Sample a random variate p from a continuous uniform distribution on the interval
[0, 1] and draw ν from the inverse cdf via an approximation of the p-th quantile of
the distribution.
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Chapter 6

Imputation Round

6.1 Purpose

The main objective of this work was to implement and develop suitable methods which
allow for an imputation of the challenging KEI dataset. Therefore, it is important to
show how the results in the underlying work have been implemented. The imputation of
missing data within the KEI project is, in contrast to the examination and improvement
of imputation models, predominantly a practical task. Its results can have an impact
on the whole project. Hence, the imputation of such a voluminous dataset is not at all
capable of being automated but rather must be undertaken manually with care.

In the course of the last imputation rounds some graphical tools were used and to some
extent specially developed for this task. Thus, next section will throw a glance at these
tools.

6.2 Graphical Tools

6.2.1 The Correlation Map

The correlation map is a matrix graphic, which converts correlation matrices into colored
matrices by assigning a color to each cell of the matrix, where the scale conforms to
the absolute value of the correlations. Whereas in recent imputation rounds one had to
examine the correlation matrix with its huge dimension (p × p), this graphic enables to
get a quick overview of the the underlying data situation. In doing so, it is much easier to
construct models on the basis of correlations. Figure 6.1 shows the correlation structure
of the whole dataset. The graphic used for the imputation is a modification of the add-on
library spatstat (Baddeley, 2008).

6.2.2 The Exploration Graphic

The purpose-built exploration graphic for the project is also a matrix graphic. It provides
different information for a (small) dataset, which is very useful when constructing and
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Correlation Map (KEI dataset)  
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Figure 6.1: Correlation map of the whole KEI dataset. (Source: Enderle, 2008.)

verifying models for the imputation. Figure 6.2 shows an example of this tool. The main
diagonal contains:

• a kernel density estimation of the empirical (marginal) distributions and probability
functions of normal distribution which are parameterized by the empirical arithmetic
mean and variance,

• the proportion of missing data (NAs) of the marginal distributions and

• the p-values of the Kolmogorov-Smirnov tests for normality of the marginal distri-
butions. The null hypothesis of normality has to be rejected with a p-value smaller
than or equal to a significance level α (often set at 0.05).

Furthermore, the remaining cells of the graphic provide:

• the proportions of pairwise completely observed data (below the main diagonal),

• the correlations of all observed pairs of variables (above the main diagonal) and

• the scatter plots of all available pairs of variables, featured with a smooth regression
curve (i.e. a non-parametric Lowess (Cleveland, 1981, 1979) regression to correct
for extreme outliers and check the linearity of the relation between indicators).
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Figure 6.2: Exploration Graphic of a dataset.

6.2.3 The Cluster Dendrogram

The cluster dendrogram is a graphical output of the Cluster Analysis which strives to
bundle objects. Its aim is to cluster these objects into groups such that the objects
within groups are as similar as possible (high intra-correlation) and that the groups among
themselves are as dissimilar as possible (low inter-correlation). The typical approach of
a cluster analysis is to measure the differences between objects (i.e. indicators). For the
KEI project, a simple correction was applied: To obtain differences, correlations between
indicators (within the v-th model) have been used as distance as follows

Dv = 1− |ρv| ,

where ρv presents the correlation matrix of model v.

The distance matrix was computed by using the Euclidean distance measure to weight
larger differences more strongly. Then, the cluster analysis must be carried out by trying
to build homogenous clusters, i.e. such that the variance within groups is small. This
can be achieved by the Ward method, which computes a heterogeneity measure and
is conservative in the sense that it builds equally large groups. A dendrogram of the
indicators of the KEI dataset is given in Figure A.2 (p. 74). Only 94 indicators were used
because the others had to few complete pairwise observations.
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6.2.4 The Multiway Dot Plot

Relating to the KEI project, the Multiway Dot Plot (Cleveland, 1994) is a graphical
approach that compares the imputed values of both implicit and multiple imputation
methods. An example of the graphic is given in Figure 6.3.
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Figure 6.3: Example of the Multiway Dot Plot.

The graphic compares the values computed by two different methods (represented by circles and crosses)
for all observations (i.e. countries).

6.3 The Sequence of the Imputation

As already mentioned the imputation within the KEI project is not an automated routine
and consists of several steps. Each of them has been carried out with care. The steps for
the actual imputation round are documented as follows:

1. Transformation of the dataset

At first, the KEI dataset was subjected to an univariate power transformation as
described in Chapter 4. The transformation parameters have been saved for a later
reverse transformation. No multivariate power transformations were carried out for
lack of time (these would actually go between steps 3 and 4).

2. Graphical Analysis and Preliminary Grouping of the Data

Since the KEI dataset consists of 125 indicators, the exploratory data analysis began
with a graphical overview of the correlations. The correlation map for all indicators
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is given in Figure 6.1. Then those indicators that had too few observations to
compute correlations with other indicators were excluded from the examination.
These indicators are distinguishable by the white (i.e. low correlation) horizontals,
verticals and rectangles on the correlation matrix map. The remaining 94 indicators
were hierarchically clustered to obtain groups with high intra-correlations. For that
purpose, the correlation matrix of the data (with pairwise complete observations)
was used. The dendrogram in Figure A.2 (p. 74) presents the proposed clusters
with high intra-correlations. However, it turned out that the models couldn’t been
created that simply. The example in Appendix A.4 uses an earlier dataset (which
was updated for the actual imputation round) in order to clearly exhibit several
problems.

Hence, the transformed dataset was analyzed and classified into preliminary groups.
However, these shortcomings show the need for a thorough control of the imputation
process and the time consuming handwork involved in it.

3. Building of the Models

When the preliminary grouping was done, the models were finally created by adding
dummy variables. Altogether, 46 models v were built, which can be assigned to one
of three types:

(a) Contaminated Dummy Model: Only when the data situation guaranteed
enough observed values for all four years, was it able to build contaminated nor-
mal models which account for dummy variables for all years (i.e. 3 dummies).
Examples are models m01 to m20.

(b) Contaminated Dummy Model + LVCF: Since the countries had collected
indicators for only two or three years, these indicators were used to construct a
contaminated dummy model with dummies corresponding to these years (i.e.
1 or 2 dummies). Afterwards, the missing values for the remaining year(s) were
replaced by the LVCF routine. An example is model m21, where the years 2003
and 2004 were imputed using the contaminated dummy model and where 2001
and 2002 were augmented by 2003.

(c) Contaminated Model + LVCF: The contaminated normal model without
dummy variables was built when indicators were only available for one year.
Afterwards the missing values for the remaining three years were replaced using
the LVCF routine. So for example in model m31 the years 2001 to 2003 were
augmented by the values of 2004 which were imputed using the contaminated
model.

4. Documentation of the models

To allow conclusions to be drawn in subsequent processing with the imputed KEI
dataset, the quality of the built models has been recorded and transferred to Tables
A.1 and A.2 (pp. 70 and 71):

• indicators: These two columns identify which indicators were finally used
to build the models. Whereas direct marks the indicators that actually were
imputed, auxiliary indicators only permitted imputations (because of high cor-
relations to the direct indicators or to improve the multivariate setting).
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• how the imputation was done: These columns highlight according to the
chosen type (from step 3) how the imputation was done with respect to the
years concerned. It can be noted that in 18 models all four years, in 5 mo-
dels three years and in 7 models two years were involved in the imputation.
The remaining years have been augmented by LVCF (the year given in paren-
theses). Then, 16 models without a dummy structure were built. Out of these
7 occurred in 2004 .

• observed correlations: The pairwise computed correlations between the in-
dicators within the v-th model have been averaged, rv and evaluated using the
following criterion:

(correlation quality)v =


very bad if rv < 0.1
bad if 0.1 6 rv < 0.3
middle if 0.3 6 rv < 0.5
good if 0.5 6 rv < 0.7
very good if 0.7 6 rv .

• quality: A model score has been computed for the potential model quality
with respect to the proportion of missing values and the observed correlations:

κv =̂ rv · # of observed values in model v
# of indicators in model v ·# of years ·# of countries

.

Then the v-th model was evaluated using the following criterion:

(model quality)v =


very bad if κ

100
< 0.1

bad if 0.1 6 κ
100

< 0.3
middle if 0.3 6 κ

100
< 0.5

good if 0.5 6 κ
100

< 0.7
very good if 0.7 6 κ

100
.

The following table summarizes the evaluation results of the 46 models given in
Table A.2 (p. 71):

Criterion very bad bad middle good very good

Correlation quality - 2 20 17 7
Potential model quality - 5 22 19 -

Table 6.1: Summary of the models’ quality.

Remarks:

• Several completely observed indicators were used as auxiliary covariates mul-
tiple times because of their completeness and (good) correlations to many other
indicators (i.e. B1a2, B1c2, B2a1 and B2b1).

• A very high correlation (almost equal to 1.00) between certain indicators pre-
vented the construction of models because of multicollinearity. Thus, a parti-
cular model has been built for each of the affected indicators .

• Some very adverse indicators were standardized in addition to the power trans-
formation to prevent their distributions from collapsing (here as well these
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64 Chapter 6. Imputation Round

transformations have been arranged such that the indicators could be trans-
formed back after the imputation).

• Because of the bad data situation, in only one model (i.e. m42) were the
indicators able to impute themselves without the help of auxiliary indicators.

5. Calculation of the Starting Values

According to model chosen in step 3, a contaminated EM algorithm yielded the
starting values for the DA algorithm. The obtained imputation was saved as well
as the starting values.

6. Generation of k = 5 Multiple Imputes

After a burn-in phase of 1000 iterations, a robust DA algorithm according to the
chosen model yielded 5 multiple imputes for each missing value. Thus, 5 augmented
datasets including observed and imputed values were stored in addition to those
from the previous step have been stored.

7. Reverse transformation and plausibility check

When the imputation was done, the data was transformed back with the saved
parameters. Although the reversibility of the power transformation and the stan-
dardization is given, a subsequent plausibility check of the new datasets was carried
out to guarantee a correct proceeding in the former steps and to exclude human
failure. This was done by a straight routine comparison of the observed values of
each new generated dataset with the original one.

8. Implicit Method: Spline Imputation + LVCF

The implicit method, a combined approach of the described spline imputation and
LVCF method (see Section 1.4 on page 6), was applied to the original KEI dataset.
Then, the output was stored.

9. Weighting function

The weighting function is a simple routine that asks, for a given indicator, how
many years are available for a given country. Depending on the number of years, it
yields

αj =


1 if u=4
0.85 if u=3
0.7 if u=2
0.25 if u=1
0 if u=0 ,

(6.1)

where u is the number of years and αj has the dimensions (29 × 1). The weights
have been saved for the final convex combination.

10. Sensitivity Analysis

As described in Section 6.2.4 both approaches the implicit and the imputation me-
thod were compared by a Multiway Dot Plot. In doing so, the quality of the methods
and approaches used was recorded. Figure 6.4 gives an example.
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Figure 6.4: Sensitivity analysis of indicator A2a4.

The Multiway Dot Plot compares the average of the k = 5 imputes with the result from the implicit
method. As can be seen for Malta, there are different imputation results in 2004. Therefore, it seems
that one needs more robust results, which can be achieved by the convex combination as described in
step 11. (Source: Enderle, 2008.)

11. Convex Combination

In the last step, final convex combinations of the augmented data were carried
out using the implicit method and multiple imputation, weighted by the calculated
weights from the penultimate step. The convex combination reads as follows

CoCoj,k = αj IMj + (1− αj) MIj,k ,

where IM and MI stand respectively for the dataset generated by the implicit method
and the k-th (single or multiple) imputation.
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Chapter 7

Conclusion

Because of the high rate of missing information, the KEI dataset was completed by mul-
tiple imputations, which are

a device for representing missing-data uncertainty. (Schafer, 1999, p. 8)

As already described, the KEI project had to make several investigations in order to cope
with the adverse data situation. However, it can be assumed that the project will make
a contribution to the improvement of the situation for the following reasons:

• The results of the project will cause a sensitization such that the statistical de-
partments of the different countries see the need for well-timed surveys and supply
timely estimates for the indicators.

• Because even the particular indicators are a result of aggregation processes, the
sensitization can cause an improvement in the collection of data on the micro level.
The imputation of microdata would produce better estimations especially because
of the improvement of the quality regarding two problems listed in Section 1.3:

1. The i.i.d. assumptions is more realistic on the micro level.

2. The sample sizes are larger, which improves the whole imputation process: On
the one hand, the proposed transformation is more suitable. On the other
hand, larger models can be constructed and thus more attention can be paid
to the correlations. In doing so, the quality of the imputation increases.

• Fewer outliers will occur because of the unification or at least the convergence of
the indicators’ construction methods.

Thus, it is expected that the results of the project can contribute to an increase in the
quality of the indicators, a harmonization of their construction and measurement and a
reduction of the number of missing values. When this aim is achieved, the whole process
can be automated and higher developed imputation methods can be used.
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Appendix A

The KEI Dataset

A.1 Description of the KEI Dataset

The treated KEI dataset was composed of 29 countries or country groups (i.e. 25 Euro-
pean countries, Japan, US, EU15, EU25) over a time period of 4 years (hence the panel
structure). Originally, it was intended to collect 125 indicators but 9 indicators have not
been collected so far. These have been excluded from the imputation. This results in an
array with dimensions 29 × 116 × 4 or 116 × 116 (when stringing the 4 years together
vertically).

So each country can notice 4 observations per indicator at most, what will act as reference
number.

A.1.1 Indicators

16 indicators (A1a1, A1a2, A3e1, A4b3, A4b5, B1a1, B1a2, B1b3, B1c2, B2a1, B2a2,
B2b1, B2b2, B2b6, B2b7, C1a1) are observed completely.

67 indicators have an average number of observations, which is smaller than 3. This means
that on average there are less than 3 observations per country.

The average number of observations per indicator is 2.35.

28 indicators (A1b5, A4b7, C1b7, A3c2, A3d3, A3d4, A3d5, A4b4, A4d1, A4d2, A4d4,
A4d3, A4d5, C1d3, C1d4, A2a1, A2a2, A2a5, A2a6, A3d1, A4e1, C1c1, A3d2, B2c7,
C1d5, A2a7, C1b3, B2c2) have on average less than one observed value per country.

These data suggest that there is a high heterogeneity between the indicators. The variation
coefficient of the averaged values is 0.52.
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68 Appendix A. The KEI Dataset

A.1.2 Countries

Not even one country has collected all values completely.

The highest average number of observations per indicator is 2.89 (Finland). The US, Japan
and Malta bring up the rear with 1.66, 1.6 and 1.5 values per indicator respectively. In
total, there are 7 countries which have collected less than 2 observations per indicator on
average.

The countries’ dispersion about the averaged value of 2.35 observations per indicator
is much smaller than the dispersion indikatorweise. The Variations coefficient for the
countries is 0.17.

In total, there are 42 % missing values but with big differences between the indicators
which exacerbates the imputation.
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Model Correlation quality Potential model quality
m01 middle middle
m02 good middle
m03 good good
m04 good middle
m05 middle bad
m06 good good
m07 middle middle
m08 good middle
m09 middle middle
m10 middle bad
m12 bad bad
m13 middle bad
m14 good middle
m15 very good middle
m16 good middle
m17 middle bad
m18 middle middle
m19 middle middle
m20 middle middle
m30 good middle
m31 good middle
m32 good middle
m33 good middle
m40 very good good
m41 very good good
m42 very good middle
m45 middle middle
m50 good bad
m51 very good bad
m52 good bad
m53 middle bad
m54 good bad
m70 middle bad
m71 bad bad
m72 good middle
m73 very good good
m74 middle bad
m75 middle bad
m77 middle bad
m78 middle bad
m79 middle bad
m81 very good middle
m82 middle bad
m83 middle bad
m84 good middle
m86 good middle

Table A.2: Evaluation of the models. (Source: Enderle, 2008.)
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Indicator Country (plus year)
A1b3 several
A1b4 several
A1b4 ee
A1b5 se in 2004
A1b6 hu, lv and sk
A1b7 hu, lv and sk
A1c1 lv
A1c2 several
A1c3 lv
A1c4 several
A1c5 several
A1d1 several
A1d2 several
A1d3 several
A2a4 mt and fi in 2004
A2b2 lu in 2001 and 2002
A2b3 lu in 2001 and 2002
A2b4 dk and nl
A2b5 gr, fr, mt and fi
A2c3 ie and cz
A2e1 se
A3a10 se and lu
A3a12 pt and lu
A3a3 lu
A3a4 se in 2001 and 2004
A3a5 at
A3a8 se in 2002
A4d1 jp
B2a3 se, it and be
B2a5 eu15
B2b4 several
B2c1 several
B2c3 several in 2003
B2c6 ie, es and cz
C1a2 lu
C1a3 lu
C1b1 ie and fi in 2004
C1b4 pl and lu
C1b6 mt and gr
C1b7 lu
C1c1 too few data
C1c2 gr, dk, lu and be
C1d4 us and lu
C1d5 lu

Table A.3: Sensitivity analysis. (Source: Enderle, 2008.)
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A.4 An Exemplification

An example is given by the first cluster (from the left hand side) in Figure A.1, which
combines the following indicators into a group: A3a9, A3d1, A3d2, B2c6, A3a12 and
A4d2. Then the group was analyzed by its correlation map, given in Figure A.3. The
graph shows that two inner-groups (A3a9, A3d1, A3d2) and (A3a12, A4d2) with very
high intra-correlations result. Going back to the dendrogram, one can see that the result
goes hand in hand with the graph: (1) first these two inner-groups were clustered and then
(2) indicators A3a12 and (A3d1, A3d2) ensured that the two inner-groups were clustered
together.

 
A3a9 A3d1 A3d2 B2c6 A3a12 A4d2

A4d2

A3a12

B2c6

A3d2

A3d1

A3a9

Figure A.3: Correlation map of the 1st cluster. (Source: Enderle, 2008.)

But due to the bad data situation and different patterns of missingness between indicators,
the models often couldn’t be created as suggested by these approaches. The cluster must
be explored more precisely to reveal some of its shortcomings:

• The exploration graphic for the cluster is given in Figure A.4. Since the missing
values have been deleted pairwise for the computed correlations, some correlations
are based upon very few observations. So, for example, the correlation between
A3a12 and A4d2 is based upon just 4 observations (i.e. 96.6 % missing values).
Thus, the high correlation of 0.99 must be handled with care.

• A further problem comes up when the correlation of 0.95 between A3d1 and A3d2
is analyzed more precisely in Table A.4 (a). The value is based upon 19 pairs, all
in the year 2004. Indicator A3d1 has a total of 9 missing values. All of them are
present in the indicator A3d2 as well. As a consequence of that, these indicators
cannot impute themselves.
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• In Table A.4 (b) indicator B2c6 shows the already mentioned problem for 4 countries,
that there are no values at all. This is an undesirable situation as well and the panel
structure has a reduced impact.
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Figure A.4: Exploration graphic of the 1st cluster. (Source: Enderle, 2008.)
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Country A3d1 A3d2
at NA NA
be 0.0377 0.0232
cy 0.0275 0.0279
cz 0.0301 0.0139
de 0.0340 0.0141
dk 0.0327 0.0048
ee 0.0327 0.0211
es 0.0317 0.0441
eu15 NA NA
eu25 NA NA
fi 0.0490 0.0237
fr 0.0233 0.0200
gr 0.0438 0.0229
hu 0.0472 0.0119
ie 0.0267 0.0276
it 0.0198 0.0102
jp NA NA
lt 0.0112 0.0206
lu 0.0542 0.0443
lv NA NA
mt 0.0278 NA
nl 0.0256 0.0200
pl 0.0347 0.0416
pt 0.1945 0.1857
se NA NA
si NA NA
sk 0.1800 0.1289
uk NA NA
us NA NA

Country 2001 2002 2003 2004
at 0.099 0.092 0.094 0.089
be 0.045 0.042 0.042 0.044
cy 0.015 0.012 0.011 0.009
cz NA 0.040 0.048 0.060
de NA NA NA NA
dk 0.079 0.070 0.070 0.080
ee 0.073 0.079 0.088 0.095
es 0.037 NA NA 0.035
eu15 0.070 0.075 0.075 0.077
eu25 0.066 0.070 0.072 0.074
fi 0.094 0.091 0.093 0.097
fr 0.049 0.050 0.065 0.071
gr 0.044 0.042 0.041 0.043
hu 0.072 0.069 0.059 0.055
ie 0.057 NA 0.057 0.054
it 0.051 0.051 0.051 0.085
jp NA NA NA NA
lt 0.021 0.025 0.027 0.032
lu 0.030 0.034 0.044 0.043
lv NA 0.081 0.079 0.057
mt 0.097 0.090 0.100 0.107
nl NA NA NA NA
pl 0.036 0.047 0.051 0.053
pt 0.083 0.080 0.081 0.081
se 0.072 0.075 0.044 0.041
si 0.074 0.064 0.068 0.088
sk 0.102 0.119 0.130 0.138
uk 0.123 0.123 0.120 0.119
us NA NA NA NA

(a) (b)

Table A.4: An exemplification. (Source: Enderle, 2008.)
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Appendix B

Some Mathematics

B.1 The Sweep Operator

The sweep operator is defined for symmetric matrices: Assume a symmetric p× p matrix
G, whose (i, j)th element is given by gij. Sweeping this matrix G on position k (for any
k ∈ 1, . . . , p), SWP [k], the sweep operator creates another p× p matrix H

SWP [k]G = H ,

whose elements are given by:

hkk = −1/gkk

hjk = hkj = gjk/gkk for j 6= k

hjl = hlj = gjl − gjkgkl/gkk for j 6= k and l 6= k .

As long as a sweep operation of matrix G in all positions contains no division by 0, we
obtain the negative inverse of matrix G

SWP [1, . . . , p]G = SWP [1] . . . SWP [p]G = −G−1 . (B.1)

A mentionable property of the Sweep Operator is its commutativity

SWP [k1]SWP [k2]G = SWP [k2]SWP [k1]G

for any k1 6= k2 with k1, k2 ∈ 1, . . . , p. Thus, the order of the sweeps in Equation (B.1) is
not of interest.

Furthermore, we can define the reverse sweep operator. In sweeping matrix G on po-
sition k we receive a new matrix H

RSWP [k]G = H ,
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with its elements

hkk = −1/gkk

hjk = hkj = −gjk/gkk for j 6= k

hjl = hlj = gjl − gjkgkl/gkk for j 6= k and l 6= k .

Also the reverse sweep operator is commutative, wherewith it can be shown that it returns
a swept matrix to its original form

RSWP [k]SWP [k]G = G ,

for any k ∈ 1, . . . , p.

B.2 The Power Transformation

B.2.1 Reversibility of the Power Transformation

Real-valued version (Königsberger, 2000, p. 31):

Let f : X → R be injective, where X ⊂ R. Injective signifies that there exists for every
function value y ∈ f(X) exactly one x ∈ X where y = f(x). The function g, which
specifies a so-called preimage to every y ∈ f(x), is called the inverse function of f :

g : f(X)→ R, g(f(x)) = x .

Injective are for example all strictly monotonic functions. Consequently any strictly mo-
notonic function f : X → R has an inverse function : f(X)→ R, which is monotonic in
the same sense.

the power function xr, x > 0, r ∈ R is strictly monotonic increasing for r > 0 and strictly

monotonic decreasing for r < 0. Moreover, g(x) = x
1
r is the inverse funtion of f(x) = xr.

B.2.2 Asymptotical Properties of Sequences and Functions

Deterministic version (Mittelhammer, 1996, p. 231)

Let {xn}, n ∈ N be a real number sequence, which is said to be at most of order nk,denoted
by O(nk), if there exists a finite real number c such that |n−kxn| ≤ c ∀n.

Stochastic version (Mittelhammer, 1996, p. 248)

Let {xn} be a sequence of random scalars, X ∈ R andn ∈ N. This sequence is said to
be at most of order nk in probability, denoted by Op(nk), if for every ε > 0 there exists a
positive constant c(ε) <∞ with the property that P(n−k|Xn| ≤ c(ε)) ≥ 1− ε,∀n.
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B.2.3 Justification of the Plug-in

In a first step it will be shown that both methods ML (Greene, 2003, p. 472, Ex. 17.2)
and MM (Greene, 2003, pp. 527f., Ex. 18.2) yield the same estimates for a normal
distribution with mean µ and variance σ2. Furthermore it will be shown that the GMM
method (with two more moment conditions) achieves the Cramér-Rao bound, which is
a small sample property of an estimator, as well as the ML method. The Crámer-Rao
bound provides a lower bound for the variance of an estimator obtained by any estimation
method. An unbiased estimator which achieves this bound is said to be efficient. Thus,
additional moment conditions have no further effect on the efficiency of the estimator.
Therefore, instead of stating the conditions for the first two moments, the MLEs µ̂ and
σ̂2 can serve as plug-in, for the third and fourth central moment conditions as proposed
in Chapter 4.

ML and MM estimators

(i) Maximum Likelihood estimator

The loglikelihood for a normal distribution is

l(µ, σ2) = −n
2

log(2π)− n
2

log(σ2)− 1
2

n∑
i=1

[
(yi−µ)2

σ2

]
.

To compute the MLEs are then computed from the equation system based on the first
derivatives of the loglikelihood with respect to the parameters respectively:

∂l
∂µ

= 1
σ2

n∑
i=1

(yi − µ) = 0

and

∂l
∂σ2 = − n

2σ2 + 1
2σ4

n∑
i=1

(yi − µ)2 = 0 .

Then, to obtain the MLEs for a normal distribution both likelihood equations must be
solved for the parameters

µ̂ML = y

and

σ̂2
ML =

n∑
i=1

(yi − y)2/n .

These empirical estimators are efficient and can be used to state the third and fourth
central moment conditions without further moment conditions.
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(ii) Method of Moments Estimator

In random sampling from N(µ, σ2),

plim 1
n

n∑
i=1

yi = plimm′1 = E(yi) = µ

and

plim 1
n

n∑
i=1

y2
i = plimm′2 = var(yi) + µ2 = σ2 + µ2 .

Equating both sides of the probability limits gives the two moment estimators

µ̂MM = m′1 = 1
n

n∑
i=1

yi = y

and

σ̂2
MM = m′2 −m′21 =

(
1
n

n∑
i=1

y2
i

)
−

(
1
n

n∑
i=1

yi

)2

=
n∑
i=1

(yi − y)2/n .

Hence, it has been shown, that both methods ML and MM yield the identical estimators
such that holds

µ̂ML = µ̂MM = y

and

σ̂2
ML = σ̂2

MM =
∑

(yi − y)2/n .

Cramér-Rao bounds of ML and MM

(i) Maximum Likelihood

At first the second derivatives ∂2l
∂µ∂µ

and ∂2l
∂σ2∂σ2 that are collected in the Hessian matrix

must be computed

H(µ, σ2) =

[
− n
σ2 − 1

σ4

∑
(yi − µ)

− 1
σ4

∑
(yi − µ) n

2σ4 − 1
σ6

∑
(yi − µ)2

]
.

The negative value of the expected Hessian matrix is called the information matrix

I ≡ −E[H(µ, σ2)] =

[
n
σ2 0
0 n

2σ4

]
.

Under valid regularity conditions the estimator of a parameter vector will always be as
large as the inverse of the information matrix, i.e. the Cramér-Rao bound

I[(µ, σ2)] = 1
n

[
σ2 0
0 2σ4

]
.
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(ii) (Generalized) Methods of Moments

Hansen (1982) showed that the inverse of the variance covariance matrix of the moment
conditions S−1 is a optimal weighting matrix to achieve a minimal variance covariance
matrix V.

So first, the variance covariance matrix of the moment conditions must be derived:

S = E[mt(Θ̂)mt(Θ̂)′]

= E


(xt − µ)
(xt − µ)2 − σ2

(xt − µ)3

(xt − µ)4 − 3σ4




(xt − µ)
(xt − µ)2 − σ2

(xt − µ)3

(xt − µ)4 − 3σ4


′

= E


(xt − µ)2 (xt − µ)(xt − µ)2 − (xt − µ)σ2︸ ︷︷ ︸

=0

· · ·

· · · (xt − µ)4 (xt − µ)5 − (xt − µ)3σ4︸ ︷︷ ︸
=0

...
...



=


σ2 0 3σ4 0
0 2σ4 0 12σ6

3σ4 0 15σ6 0
0 12σ6 0 96σ8

 ,

where

E(xt − µ) = 0

E(xt − µ)2 = σ2

E(xt − µ)3+2k = 0 for k = 0, 1 . . .

E(xt − µ)4 = 3σ4 .

The partial first derivatives of the moment conditions are

D = E


∂m1

∂µ
∂m1

∂σ2

∂m2

∂µ
∂m2

∂σ2

∂m3

∂µ
∂m3

∂σ2

∂m4

∂µ
∂m4

∂σ2

 = E


−1 0
−2(xt − µ) −1
−3(xt − µ)2 0
−4(xt − µ)3 −6σ2

 =


−1 0
0 −1
−3σ2 0

0 −6σ2

 .

With S−1 as weighting matrix, the optimal variance covariance matrix for the GMM
estimator is then found to be

Asy.Cov(Θ) = V = 1
n (D′ S−1 D)−1

= 1
n

[ −1 0 −3σ2 0
0 −1 0 −6σ2

]
5

2σ2 0 −1
2σ4 0

0 2
σ4 0 −1

4σ6
−1
2σ4 0 −1

6σ6 0
0 −1

4σ6 0 1
24σ8



−1 0
0 −1
−3σ2 0

0 −6σ2



−1
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=
1

n 1
σ2

1
2σ4

[
1

2σ4 0
0 1

σ2

]

= 1
n

[
σ2 0
0 2σ4

]
Cramer-Rao bound for µ̂ and σ̂2.
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84 Appendix B. Some Mathematics

B.2.4 Transformed Normal Distribution

Let X be a normally distributed random variable with parameters over a probability space
(Ω,F,P)

X ∼ N(µ, σ2) .

Furthermore, define the following bijective image:

ψ : R→ R; X 7→ ψ(X) = X3 .

The density function of the transformed random variable can be obtained via the density
transformation theorem.

For that purpose, the following terms are necessary:

ψ(x) = x3 =: y

ψ−1(y) = y
1
3

(ψ−1(y))
′
= 1

3
y
−2
3

then it holds

gY (y) = fX(y
1
3 )

∣∣∣∣13y−2
3

∣∣∣∣ for y ∈ R

= 1√
2πσ2

∣∣∣∣13y−2
3

∣∣∣∣ e −1
2σ2 (y1/3−µ)2 .

One can draw from this distribution via a Metropolis-Hasting algorithm (e.g. Tanner
and Wong, 1987).
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Fishman, G. S. (2006): A first Course in Monte Carlo. Thomson.

Gelfand, A. E. and Smith, A. F. M. (1990): Sampling Based Approaches to Calcula-
ting Marginal Densities. Journal of the American Statistical Association, 85 (410), pp.
398–409.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004): Bayesian Data
Analysis. Chapman & Hall, second ed.

c© http://kei.publicstatistics.net - 2008



86 Bibliography

Geman, S. and Geman, D. (1984): Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, pp. 721–741.

Goodnight, J. H. (1979): A Tutorial on the SWEEP Operator. The American Statis-
tician, 33 (3), pp. 149–158.

Greene, W. H. (2003): Econometric Analysis. Prince & Hall.

Hansen, L. P. (1982): Large Sample Properties of Generalized Method of Moments.
Econometrica, 50 (4), pp. 1029–1054.

Hayashi, F. (2000): Econometrics. Princeton University Press.

Huergo, L. (2008): Markov Chain Monte Carlo Methoden zur multiplen Imputation für
die Knowledge Economy Indicators: Anwendung und Verbesserungsvorschläge. Ph.D.
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