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Preface

The aim of this deliverable is to demonstrate the sensitivity analysis module in action
with an application to the Knowledge Economy dataset developed within the KEI project
(cf. deliverables 2.3 and 2.5). The programmes in use are based on an R port of the
original work from the ISPRA team (cf. deliverables D5.1 and 5.2) and on the multiple
imputation module (cf. deliverable 3.2) of the KEI project.

The program developed in this deliverable executes a combined uncertainty and sensitiv-
ity analysis of the KEI composite indicator country scores and ranks that are built using
the KEI framework (a list of about 116 indicators available between 2001 and 2004 for
24 European Union Member States, the USA and Japan). The analysis includes a plural-
ity of scenarios in which different sources of uncertainty (related to the imputation, the
normalization method, the exclusion of an indicator form the dataset and the weighting
scheme) are activated simultaneously.

As a result of the uncertainty analysis, country scores for the KEI composite indicator are
estimated in a Monte Carlo framework. Subsequently, a frequency matrix of the country
ranks is calculated across the different simulations. Such a multi-modeling approach
allows one to deal with the criticism, often made to composite indicators, that ranks are
presented as if they were calculated under conditions of certainty while this is rarely the
case due to the fact that the encoding process of building a composite indicator or a
ranking system is fraught with uncertainties of different order (Saisana et al., 2005).

For the purposes of sensitivity analysis, the Sobol’ method, which belongs to the class of
the variance-based techniques, is used in order to obtain the most complete and general
pattern of sensitivity of the country scores/ranks to the uncertainties in the development
of the composite indicator. The program is based on an easy-to-code implementation
offered in Saltelli et al. (2008), pp. 164-67, which provides all the pairs of first-order
and total effect sensitivity measures. The first order sensitivity measures capture the
direct impact of an input factor, whilst the total effect sensitivity measures capture the
direct and indirect (due to interactions) impact of an input factor. The Sobol’ method
does not rely on any assumption about the linearity or the monotonic nature of the input-
output mapping.

The deliverable is based on a presentation from Michaela Saisana and Luis Huergo given
during the useR!2007 conference in Vienna. Luis Huergo was responsible for the R port.
The Trier team contributed with a front-end and the final implementation of the sensi-
tivity study within this deliverable. Michaela Saisana always took care of an adequate
translation of the ISRPA work.
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Chapter 1

Introduction

The programme elaborated in this deliverable executes a sensitivity analysis on KEI data
sets. The used data are explained in deliverables 2.3 and 2.5 (cf. Thees et al., 2008;
Arundel and Hansen, 2008). In general sensitivity analysis is the study of how the
variation in the output of a model can be apportioned to different sources of variation, and
of how the given model depends upon the information fed into it. The traditional literature
in the evaluation of models refers to probabilistic sensitivity analysis as the process of
assigning probability distributions to uncertain factors, drawing from their distributions
and subsequently analysing the resulting distribution of the output of interest. Among
researchers on the field, this procedure is known as uncertainty analysis. Sensitivity
analysis in a strong sense represents a step further towards an understanding of the causes
of uncertainty by investigating how the output of a model can be apportioned to different
sources of uncertainty in the model input, in this case the KEI data sets. A thorough
overview of sensitivity analysis can be found in Saltelli et al. 2000 or Saltelli et al.
2008. The following details are based on Saisana et al. (2005), Nardo et al. (2005) and
JRC/OECD (2008).

Some methods to portion the variability of the output to the different sources of variation
are currently being used, for example the torpedo graph (cf. Vose, 2006). Although its
easiness of implementation makes it attractive, it is only useful for linear models, since
the correlation coefficient only works for linear relationships. The use of rank correlation
coefficients to circumvent this problem helps only for monotonic models. It is thus desir-
able to have a method, which does not place such restrictions on a model, because it is
sometimes difficult to know a priori whether a complex model behaves linearly or even
monotonically.

The possibility to vary all factors at the same time within their range of variation is another
desirable property of a sensitivity analysis method, which is done in the programme below.
The proposed method, known as method of Sobol’, relies on a high dimensional model
representation of the model in question and the orthogonal decomposition of its variance,
which gives rise to the Sobol’ Sensitivity Measures (First Order and Total Effect). This
method works also for non-monotonic models and can detect and deal with interactions
among the factors. By mean of this method, the contribution to the variance of the
output from every factor (alone and through interactions) can be calculated. Two factors
are said to interact when their effect on the output cannot be expressed as a sum of

KEI-WP5-D5.5



2 Chapter 1. Introduction

their single effects. Interactions may imply, for instance, that extreme values of the
output are uniquely associated with particular combinations of model inputs, in a way
that is not described by the single effects. Interactions represent an important feature
in composite indicators, and are more difficult to be detected and estimated than single
effects. A possible drawback of the method arises from the assumption that the variance
of a distribution is a correct measure of the uncertainty of an output. Although broadly
accepted, this assumption is not free of controversy In this report, uncertainty analysis
is used to estimate, under a plurality of methodological scenarios, the country scores and
ranks in the Knowledge Economy Index for EU Member States, the USA and Japan.
Sensitivity analysis is also used in order to decompose the variance of the country scores
into the uncertainties in four main assumptions made during the development of the
Knowledge Economy Index.

The main programme consists of several subprogrammes. Every single subprogramme has
a clearly defined task to manage.

The sensitivity analysis conducted in the given context is based on four cornerstones:

1. Sample Generation

2. Uncertain Inputs

3. Composite Indicator

4. Sensitivity Indices

The aim of the following chapters is to explain the cornerstones themselves and also the
corresponding interactions.

Figure 1.1: General structure of the sensitivity analysis

c© http://kei.publicstatistics.net - 2008



1.1 Sample Generation 3

1.1 Sample Generation

The initial step for running the programme is to construct a decision matrix which contains
random numbers. Hence, the decision matrix has a dimension of 10240 x 4. The dimension
of the matrix will be explained in the next Section. This decision matrix is the key tool
in creating uncertain inputs.

1.2 Generation of the random numbers

Figure 1.2: generation of the random numbers

First, equally distributed random numbers between 0 and 1 are created by the LPτ pro-
gramme. These random numbers are produced with the help of a sampling scheme named
Sobol’ LPτ sampling. The resulting sequences of LPτ vectors are quasi-random sequences
which are defined as sequences of points without inherent random quality. In general,
sequences of quasi-random vectors V1, ..., Vn should satisfy the following requirements:

KEI-WP5-D5.5



4 Chapter 1. Introduction

• The uniformity of the distribution is to be optimal when the length of the sequence
tends to infinity.

• Uniformity of vectors V1, ..., Vn should be observed for fairly small n.

• The algorithm used for the computation of the vectors should be simple.

Indeed LPτ sequences do fulfill these constraints. In many cases they result in better
convergence than random points in the MC algorithm with finite constructive dimension.
There are widely available programmes, written in C and FORTRAN77, containing the
algorithm to generate the sequences. The theoretical development of the LPτ sequences
is described in Bratley and Fox (1988). The sample points are uniformly distributed in a
hypercube. A two-dimensional pattern of a LPτ sequence is shown in the following plot.
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Figure 1.3: Sequence with 1000 points

The main avantage of using quasi-random points is a fast rate of convergence. For large
n the approximate error can approach 1/n, compared with the error of standard MC
methods, which is of the order 1/

√
n. There are several applications for the use of LPτ

points. For example multidimensional integration or trial points in multicriteria decision
making. Other possible methods are for instance simple random sampling and latin
hypercube sampling. The programme named LPτ seq creates a sequence of LPτ points
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1.3 Execution of the programme PrepBin 5

which are used in the PrepBin programme to create the decision matrix. The sample size
is always 1024, because that is the base sample size required for the computation of an
integral by the Sobol method (see Saltelli et al., 2000 p. 190).

1.3 Execution of the programme PrepBin

In case only the first order and total variance of the output is calculated, PrepBin generates
a LPτ matrix with 8 columns (number of input factors ·2) and n = 1024 rows. After-
wards, PrepBin divides this matrix in two equal submatrices, say SubM1 and SubM2.
It also generates an empty matrix of dimensions 10240 × 4 ([ number of input factors
· 2 + 2]× sample size x number of input factors). This matrix is systematically filled out
with: SubM1, SubM2, SubM2 with the first column replaced by the first of SubM1 and
so on. This program implements a procedure, described in detail in Saltelli et al.
(2008) pp. 164-167, that provides all pairs of first-order and total effect at a cost of
(number of input factors + 2) × sample size model runs. Any interaction term between
two input factors is computed at the additional cost of model evaluations per sensitivity
measure.

Figure 1.4: Generation of the Decision Matrix
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6 Chapter 1. Introduction

Finally exactly the same is done to SubM1. The resulting matrix is the decision matrix
(called www) mentioned above. This is one of the inputs of the composite indicator
programme; the others are uncertain inputs which are explained in the following chapter.
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Chapter 2

Uncertain Inputs

The goal of the Uncertain Inputs programme is to calculate the relevance of the variance
caused by different uncertain inputs. Indeed uncertain inputs are action alternatives to
do a determined task. The set of action alternative of each method is called input factor
or input trigger.

2.1 Aggregation

Figure 2.1: Uncertain Inputs

KEI-WP5-D5.5



8 Chapter 2. Uncertain Inputs

Aggregation is conducted by the composite indicator programme. It includes four input
triggers:

• Imputation,

• normalisation,

• delete one indicator, and

• weighting.

The information provided by the four input triggers determines the way the indicators
included in the KEI dataset is combined into a single number per country and year. In any
case, the aggregation rule that is used is the weighted arithmetic average of the normalized
indicators. We will explain this in more detail in the coming sections.

2.1.1 Imputation

Within the trigger imputation no real imputation is conducted itself. Within the given
context one imputed table of data is selected. Within this study one of five different
datasets can be chosen which is due to the application of a multiple imputation framework
based on Rubin’s work (see Rubin, 1978). The implementation of the multiple imputation
on knowledge economy indicators can be drawn from Huergo et al. (2008).

The associated indicator function for the five imputed datasets can be described as:

Dimp =



dataset1 for x ∈ [0, 0.2]

dataset2 for x ∈ (0.2, 0.4]

dataset3 for x ∈ (0.4, 0.6]

dataset4 for x ∈ (0.6, 0.8]

dataset5 for x ∈ (0.8, 1]

where x is a random number of the decision matrix. For m datasets, the ith table is
chosen with i = bx ·m+ 1c.

2.1.2 Normalisation

The second input trigger is normalisation. Here, five methods are used. Each normaliza-
tion method is then applied to each of the five imputed datasets

The five methods are as follows:

1. Standardisation with subtraction of the mean:

I tqc =
xtqc − xtqc=c
σtqc=c

Where xtqc is the mean value of all countries.

c© http://kei.publicstatistics.net - 2008



2.1 Aggregation 9

2. Standardisation without subtraction of the mean:

I tqc =
xtqc
σtqc=c

3. Distance to a reference country with subtraction of the mean:

I tqc =
xtqc − xtqc=c
xtqc=c

4. Distance to a reference coutry without subtraction of the mean:

I tqc =
xtqc
xtqc=c

5. Cyclical indicators:

I tqc =
xtqc − E(xtqc)

Et(
∣∣xtqc − E(xtqc)

∣∣)
EU-25 was chosen to be reference country.

2.1.3 Deleting one Indicator

The third input trigger is deleting one indicator, similarly to the delete-one-jackknife
method. According to the related random number in the decision matrix it is decided
whether one indicator gets eliminated or not and in case of elimination which one it is.
This input factor is very helpful for data sets in which one single indicator explains a large
part out the output variance. Its indicator function can be written as:

Ddi =


all indicators in for x ∈ [0, 1/(n+ 1)]

first indicator excluded for x ∈ (1/(n+ 1), 2/(n+ 1)]

...

last indicator excluded for x ∈ (n/(n+ 1), 1]

where n is the number of indicators and x a random number of the decision matrix.

As one further option, no indicators are deleted which aims being the standard case of
analysis.

2.1.4 Weighting

The fourth input trigger is weighting. In this deliverable, only two weighting methods are
used, equal weighting or principle component analysis (pca) weighting (cf. JRC/OECD,
2008, pp. 89). The selection of the weighting is conducted by a random number being
either below or not below 0.5.

KEI-WP5-D5.5



10 Chapter 2. Uncertain Inputs

The weighting, however, is dependant on the last input trigger. In case of a deletion of one
indicator, a reweighting has to be applied. Let n be the number of indicators of interest.
If no indicator is excluded by the third trigger, equal weighting simply creates a vector
of weights wi with wi = 1

n
i = 1, ...n . In case one indicator is excluded, the equal weights

have to be

wi =
1

n− 1
i = 1, ..n .

pca weighting can only be done for matrices with more rows than columns. In our example
the data matrix has 29 rows (representing the countries) and 116 columns (representing
the indicators). However, a segmentation into the indicator groups with recursive pca
weighting can be applied.

To solve this problems the following road is chosen: First the seven groups of indicators are
pca weighted to obtain weights wi for each single indicator. This step is possible because
none of the groups contains more than 29 indicators. Afterwards composite indicators
Ig(one for each group) are created:

Ig =
∑
i∈g

Ii · wi g = 1..7 i = 1..116

Then these group indicators are re-pca-weighted in order to receive group weights wg.
Finally each single indicator weight was multiplied by the weight of the group it belonged
to.

Then each single indicator weight is multplied by the indicator group weight of the group it
belongs to. Finally each component of the resulting vector of weights was divided through
the vector’s sum to guarantee that the weights sum up to 1. The indicator function of
the weighting trigger can be written as:

Dwei =

{
equal weights for x ∈ [0, 0.5]

pca weights for x ∈ (0.5, 1]

where x is a random number of the decision matrix.

Independent of the selected weighting method the data matrix is finally multiplied by
the weighting vector (linear aggregation). The results are saved as a matrix of composite
indicator scores.
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Chapter 3

Composite Indicators

Figure 3.1: Composite indicators

The www-matrix if passed to Composite Indicators which runs the aggregation pro-
gramme 10240 times (number of rows of the decision matrix). So it is closely related to
sample generation and uncertain inputs, as shown in Figure 3. The decision matrix is
the same for all countries. The different action alternatives are mixed randomly and the
resulting composite indicators feed the next core programme.
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12 Chapter 3. Composite Indicators

Figure 3.2: Calculation of the Output

Sensitivity Indices is the core programme of the sensitivity analysis. According to
the results (scores) of the Composite Indicator programme SpopCI calculates the first
[S] order and total effect [ST] indices for a total of k input factors. Through the use of
Monte-Carlo integration and resampling techniques the variance of the simulated com-
posite indicators is divided into each input factor’s part of the total variance. The corre-
sponding interactions are also quantified. The first order sensitivity index (Si) of a factor
xi measures the main effect of xi on the output (the fractional contribution of xito the
total variance).

The total effect sensitivity index is defined as the sum of all the sensitivity indices involving
the factor in question. For example, suppose that we have three factors in our model.
The total effect of factor 1 on the output variance, denoted by TS(1), is given by TS(1) =
S1 + S1,2 + S1,3 + S1,2,3, where S1is the first order sensitivity index of factor 1. S1,J is the
second-order sensitivity index for the two of factors 1 and j (j 6= 1), i.e. the interaction
between factors 1 and j (j 6= 1) and so on (see Saltelli et al., 2000 p. 177).
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Chapter 4

Output interpretation

4.1 Sensitivity Analysis Results: Variance decompo-

sition

As mentioned above one of the main goals of the programme is to conduct sensitivity
analysis in order to apportion the variance of the output (in our case the variance of the
countries’ composite indicator scores) to the uncertain input factors.

The middle part of Figure 4.1 shows which part of the output variance is caused by the
four triggers taken singularly. A general result is that normalisation and/or imputation are
responsible for the variance of the countries’ scores. On the other hand, the exclusion of an
indicator from the dataset or the selection of the weighting method (i.e. equal weighting
or PCA-based weighting) does not affect the output variance significantly. All four input
factors, taken singularly, explain about half of the output variance in the majority of the
countries. For few countries - Greece, Ireland, Luxembourg, Italy, EU25, and Japan -
the normalisation method is almost entirely responsible for the output variance and the
impact (first order sensitivity measure) is near 1.0. This implies that no interaction effects
have an impact on the variance of those country scores and hence the differences of the
Total Effect minus First Order sensitivity measures are practically zero (lower part of
Figure 4.1).

This is not, however, the case for the remaining countries, for which about half of the
variance of the countries scores is due to interactions among the factors themselves. The
low part of Figure 4.1 shows the difference (Total Effect - First Order): the greater
the difference, the more that factor is involved in interactions with the other factors.
We can see that imputation and normalisation method are also dominant here. Another
observation is that the chosen weighting method has more influence to the output variance
due to the interactions with the other factors than does the exclusion of an indicator from
the dataset.
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Figure 4.1: First Order and Total Effect Sensitivity Indices for the country scores in the com-
posite indicator due to uncertainties in the Imputation, Normalisation, Exclusion of an indicator
and Weighting

4.2 Uncertainty Analysis Results: Frequencies of Coun-

tries Ranks

The programme also allows for the estimation of the frequencies of the country ranks.
The country scores in the Knowledge Economy Index estimated using all 10240 values
resulting from the Monte Carlo execution of the decision matrix is converted to a vector
containing the values of 1 to 29, representing the rank of each country according to that
composite indicator.

Figure 4.2 shows how often each country achieves which rank. The darker blue a square
is the more often a country takes this place. White squares mean the dedicated country
never takes the associated rank. For example in 47,8 per cent of the cases Finland is
ranked first. According to the ranks which are taken most often, the top countries are
Finland, Sweden and the United Kingdom. In general, interpretation of ranks in such a
way is complicated, because some countries exhibit a wide range of scores, as Malta does.
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Figure 4.2: Country Ranking

Also outliers can appear: though the United Kingdom is ranked third most often, it takes
only the 19th place at some scores.

An alternative way to create a rankings can be achieved by considering all combinations
of triggers. Indeed, in this case a decrease of computation burden is achieved. Instead of
using a decision matrix, each possible trigger combination is selected exactly once which
yields 5850 combinations in this example. This follows from

5850 = (5 imputed datasets × 5 normalisation methods × (116 + 1) sets × 2 weighting methods)

The ranking of these 5850 composite indicators is shown in Figure 4.2.
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Figure 4.3: Country Ranking

It is obvious that the two rankings almost do not differ from each other. This implies
that the ranking schemes are independent from the different ranking computations. How-
ever, the advantage of the Sobol scores is gained from large scale applications where the
computation effort of all combinations is highly non-linear.
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