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Preface

This report is the first deliverable of the work-package 7 (WP7, simulation studies) of
the project KEI (Knowledge Economy Indicators: Development of Innovative and Reli-
able Indicator Systems http://kei.publicstatistics.net). KEI is part of the Policy
Orientated Research section of the specific programme Integrating and Strengthening the
European Research Area in the context of the Sixth Framework Programme of the Euro-
pean Commission.

In WP7 a set of simulations will be carried out to test the accuracy and the reliability
of indicators of the knowledge-based economy in a practical environment under different
realistic assumptions and data quality standards. WP7 will also address the robustness of
the composite indicators to various policy scenarios, data quality and weighting / scaling
approaches. The robustness assessment will be done with regards to various indicator
outcomes, such as scores and rankings for both leaders and laggards, middle-of-the-road
performers, and on status versus progress performances.

The construction of (composite) indicators involves stages where subjective judgement
has to be made: the selection of indicators, the quality of the data, the treatment of
missing values, the choice of aggregation model, the weights of the indicators, etc. These
subjective choices can be used to manipulate the results. It is, thus, important to identify
the sources of subjective choice and of imprecise assessment and use uncertainty and sen-
sitivity analysis to gain useful insights during the process of composite indicators building,
for an appraisal of the reliability of countries’ ranking.

This report is a state-of-the-art of tools of uncertainty and sensitivity analysis that can be
used to assess robustness of indicator-based inferences, increase transparency and make
policy inference more defensible. We will use the Technology Achievement Index (TAI),
a composite indicator developed by the United Nations (2001) (Human Development Re-
port), to elucidate the various steps in the uncertainty and sensitivity analysis (a detailed
description of the composite indicator is given in the Appendix).

The opinions expressed in the present report are those of the authors. The material
contained in it will also feed in the ongoing joint OECD-JRC review of suggested practices
for composite indicators building, see: http://farmweb.jrc.cec.eu.int/CI/.
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Chapter 1

Why robustness analysis

Indicators and composite indicators are increasingly recognized as a useful tool for policy
making and public communication in conveying information on countries’ performance
in fields such as environment, economy, society, or technological development. They are
useful in ranking countries in benchmarking exercises. However, they can send misleading
or non-robust policy messages if they are poorly constructed or misinterpreted.

The construction of (composite) indicators involves making choices. This introduces issues
of uncertainty such as selection of data, imprecision of the data, data imputation methods,
data normalisation, weighting schemes, weights’ values and aggregation methods.

As no model (construction path of the indicator or composite indicator) is a priori better
than another (as each model serves different interests), a plurality of methods should
be initially considered, provided that internal coherence is assured. The (composite)
indicator is no longer a magic number corresponding to crisp data treatment, weighting
set or aggregation method, but reflects uncertainty and ambiguity in a more transparent
and defensible fashion.

All these sources of subjective judgement will affect the message brought by the (compos-
ite) indicator in a way that deserves analysis and corroboration. For example, changes in
weights will almost in all cases lead to changes in rankings of countries. It is seldom that
top performers become worse due to changes in weights but a change in ranking from e.g.
ranking 2 to ranking 4 is not uncommon even in well-constructed composite indicators.

The robustness analysis tries to answer different questions, such as:

(a) Does the use of one construction strategy versus another in building the composite
indicator provide actually a partial picture of the countries’ performance? In other
words, how do the results of the composite indicator compare to a deterministic
approach in building the composite indicator?

(b) How much do the uncertainties affect the results of a composite indicator with
respect to a deterministic approach used in building the composite indicator?

(c) Which countries have large uncertainty bounds in their ranking and which are the
uncertain factors that affect their rankings?

c© http://kei.publicstatistics.net - 2005



2 Chapter 1. Why robustness analysis

Uncertainty and sensitivity analysis can be used iteratively and contribute to the well-
structuring of the composite indicator, to provide information on the robustness of country
rankings and to identify ways to reduce uncertainty in country rankings, for better mon-
itoring and policy-actions.
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Chapter 2

Uncertainty and sensitivity analysis

A combination of uncertainty and sensitivity analysis can help to gauge the robustness of
indicators and composite indicators, to increase their transparency and to help framing
a debate around it. Uncertainty analysis (UA) focuses on how uncertainty in the input
factors propagates through the structure of the (composite) indicator and affects the
(composite) indicator values. Sensitivity analysis (SA) studies how much each individual
source of uncertainty contributes to the output variance. In the field of building composite
indicators, UA is more often adopted than SA (Jamison and Sandbu, 2001; Freudenberg,
2003) and the two types of analysis are almost always treated separately. A synergistic
use of UA and SA is proven to be more powerful ( Saisana et al., 2005 ; Tarantola et al.,
2002).

In this section we describe the general procedures to assess uncertainty in composite
indicators building. In particular, we shall try to tackle all possible sources of uncertainty,
which arise from:

i. selection of component indicators,

ii. data quality,

iii. data editing,

iv. data normalisation,

v. weighting scheme,

vi. weights’ values,

vii. composite indicator formula

We will exemplify it with the example of the Technology Achievement Index (TAI), a
composite indicator developed by the United Nations. We build an error propagation
analysis, as complete as possible given the example, to the effect of showing the ma-
chinery at work on a rather complicate setting, on which we want to test different index
architectures. In practical applications it might happen that the aggregation formula and
the weighting scheme are dictated by the purpose of the index and/or by an agreement
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4 Chapter 2. Uncertainty and sensitivity analysis

among the parties involved in the index construction and use, thus making the UA/SA
simpler.

With reference to the uncertainty sources (i to vii above), the approach taken to propagate
uncertainties could include in theory all of the steps below:

i. inclusion – exclusion of indicators,

ii. modelling of data error, e.g. based of available information on variance estimation.

iii. alternative editing schemes, e.g. multiple imputation.

iv. using alternative data normalisation schemes, to remove the incomparability be-
tween data.

v. using several weighting schemes, i.e. two participatory methods (budget alloca-
tion BAL and analytic hierarchy process AHP), and one based on data endogenous
weighting (benefit of the doubt BOD)

vi. using several aggregation systems, i.e. linear (LIN), geometric (GME) and a non-
compensatory multi-criteria analysis (MCA).

vii. weights’ values, sampled from distributions when appropriate to the weighting scheme.

First TAI analysis. In a first analysis, in order to use the geometric mean aggregation
approach GME, we shall omit (iii), i.e. we shall discard all countries with incomplete
information. This is because with imputation, we might generate zeros that might be
untreatable by GME. In a second analysis described later we shall relax this assumption.
Also modelling of the data error, point (ii) above, will not be included as in the case of
TAI no standard error estimate is available for the indicators. In a general case, based on
estimate of the standard error associated to each individual indicator, we could sample
an error for each one assuming e.g. a Gaussian error distribution.

Furthermore, not all combinations of choices under (i) to (vii) above are feasible with our
TAI index. In particular

A. When using LIN for aggregation and BAL or AHP for weighting, the option use of
raw data for normalisation is a forbidden combination.

B. When using LIN for aggregation and BOD for weighting, the options use of raw
data and standardisation for normalisation are forbidden combinations.

C. When using GME for aggregation, then BOD for weighting is a forbidden combi-
nation1. Furthermore when using BAL and AHP, the option standardisation for
normalisation is a forbidden combination.

1the BoD approach we have applied here is based on a linear optimization approach (see section
2.1.6) , yet BoD using geometric optimization could be found in Charnes et al. (1983) and Banker and
Maindiratta (1986).

KEI-WP7-D7.1



2.1 Set up of the analysis 5

D. When using MCA for aggregation, then BOD and AHP for weighting are forbidden
combinations.

A few technicalities are also worth mentioning.

E. As all weighs for both AHP and BAL are given by the experts, we sample the
expert rather than the weight to preserve coherence among weights, e.g. to avoid
generating combinations of weights that no expert would have advocated for.

F. When using BOD, the exclusion of an indicator leads to a total re-run of the opti-
misation algorithm. When using BAL or AHP a simple rescaling of the weights to
unit is sufficient.

Second TAI analysis. This differs from the first analysis in that we assume that stake-
holders have converged to using LIN aggregation. In this case we can allow for alternative
editing schemes, point (iii) above and consider all countries as in the original TAI. This
analysis aims at answering mainly two questions:

(a) Does the use of one strategy versus another in indicator building (i to vii above)
provide a biased picture of the countries’ performance? How does this compare to
the original TAI?

(b) To what extent do the uncertain input factors (used to generate the alternatives i
to vii above) affect the countries’ rankings with respect to the original TAI?

2.1 Set up of the analysis

2.1.1 Output variables of interest

Let

CIc = frs (I1,c, I2,c, ...IQ,c, ws,1, ws,2, ...ws,Q) (2.1)

be the index value for country c, c = 1, . . . ,M , according the weighting model frs, r =
1, 2, 3, s = 1, 2, 3 where the index r refers to the aggregation system (LIN, GME, MCA)
and the index s refers to the weighting scheme (BAL, AHP, BOD). The composite in-
dicator is based on Q indicators I1,c, I2,c, ...IQ,c for that country and scheme-dependent
weights ws,1, ws,2, ...ws,Q for the indicators.

The ranking assigned by the composite indicator to a given country, i.e. Rank(CIc) will
be an output of interest for the uncertainty – sensitivity analysis.

Additionally, the average shift in countries’ ranking will be explored. This latter statistics
captures in a single number the relative shift in the position of the entire system of
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6 Chapter 2. Uncertainty and sensitivity analysis

countries. It can be quantified as the average of the absolute differences in countries’
ranking with respect to a reference ranking over the M countries:

RS = 1
M

M∑
c=1

|Rankref (CIc)−Rank(CIc)| (2.2)

The reference ranking for the TAI analysis is the original rank given to the country by
the deterministic version of the composite indicator.

The investigation of Rank(CIc)and RS will be the scope of the uncertainty and sensitivity
analysis (in both analyses), targeting the questions raised in the introduction on the
quality of the composite indicator. We always work on Rank(CIc) rather than on the raw
values of CIc as the multi criteria approach MCA only produces rankings for countries.

2.1.2 General framework for the analysis

As described in the following sections, we shall frame the analysis as a single Monte Carlo
experiment, e.g. by plugging all uncertainty sources simultaneously, as to capture all
possible synergistic effects among uncertain input factors. This will involve the use of
triggers, e.g. the use of uncertain input factors used to decide e.g. which aggregation
system and weighting scheme to adopt. To stay with the example, a discrete uncertain
factor which can take integer values between 1 and 3 will be used to decide upon the
aggregation system and another also varying in the same range for the weighting scheme.
Other trigger factors will be generated to select which indicators to omit, the editing
scheme (for the second TAI analysis only), the normalisation scheme and so on, till a full
set of input variables is available to compute for the given run the statisticsRank(CIc), RS

described above.

2.1.3 Inclusion – exclusion of individual indicators

No more than one indicator at a time is excluded for simplicity. A single random variable
is used to decide if any indicator will be omitted and which one. Note that an indicator
can also be practically neglected as a result of the weight assignment procedure. Imagine
a very low weight is assigned by an expert to an indicator q. Every time we select that
expert in a run of the Monte Carlo simulation, the relative indicator q will be almost
neglected for that run.

2.1.4 Data quality

This is not considered here as discussed above.

KEI-WP7-D7.1



2.1 Set up of the analysis 7

2.1.5 Normalisation

Several methods are available to normalise indicators. The methods that are most fre-
quently met in the literature are based on the re-scaled values (equation 2.3) or on the
standardised values (equation 2.4) or on the raw indicator values (equation 2.5).

Iq,c =
xq,c −min(xq)

range(xq)
(2.3)

Iq,c =
xq,c −mean(xq)

std(xq)
(2.4)

Iq,c = xq,c (2.5)

where Iq,c is the normalised and xq,c is the raw value of the indicator xq for country c.

2.1.6 Weighting schemes

The difficulty in assessing properly the relative importance of the indicators is one of the
most debated problems in building composite indicators (Cox et al., 1992). In our analysis
we employ two participatory approaches, budget allocation and analytic hierarchy process,
to allow for an expression of the relative importance of the indicators from the societal
viewpoint. Two pilot surveys have been carried out across 20 informed interviewees at
the authors’ institute.

In the budget allocation (BAL) the interviewees were invited to distribute a budget of
points over the eight indicators, paying more for those indicators whose importance they
wanted to emphasize (Moldan and Billharz, 1997). In the Analytic Hierarchy Process
(AHP) the strength of preference per pairs of indicators was expressed on a semantic scale
of 1 (equality) to 9 (i.e. an indicator can be voted to be 9 times more important than the
one to which it is being compared). The relative weights of the eight indicators were then
calculated using an eigenvector technique, which allows to resolve inconsistencies, e.g a
better than b better than c better than a loops (Saaty, 1980).

Figure 2.1.6 presents the eight scatterplots of the weights for each indicator. Each point
in a scatterplot represents the weight given to the indicator by one interviewee when
requested in a BAL or an AHP approach. The deviation of the weights from the 450

line of perfect agreement between the two weighting schemes is an interesting feature of
this analysis, revealing the human tendency to reply differently to different formulations
of the same question. Both weighting approaches have advantages and limitations. The
weights provided by BAL are less spread than AHP for each indicator and the variance
of the weights across the eight indicators is smaller for BAL than for AHP. However,
AHP is based on pair-wise comparisons, where perception is high enough to make a
distinction between indicators. In BAL all the indicators are compared at a glance, and

c© http://kei.publicstatistics.net - 2005



8 Chapter 2. Uncertainty and sensitivity analysis

this might lead to circular thinking across indicators, creating difficulties in assigning
weights, particularly when the number of indicators is high.

Figure 2.1: Scatterplots of weights (range between 0.0 and 0.5) for the eight indicators of
TAI. The weights have been derived from pilot surveys of 20 informed interviewees using
budget allocation (vertical axes) and analytic hierarchy process (horizontal axes). Best
fit linear regression lines are indicated.

The benefit-of-the-doubt procedure (BOD) (Melyn and Moesen, 1991; Cherchye et al.,
2003) is a particular case of data envelopment analysis. This weighting method can be
seen as a tool for identifying benchmarks without imposing strong normative judgments.
This weighting method involves linear optimisation techniques and allows countries to
emphasise and prioritise those aspects for which they perform relatively well. The weights,
therefore, are country-dependent and sensitive to the benchmarks. In general, even using
the best combination of weights for a given country, other countries may show better
performance. The optimization process could lead to many zero weights if no restrictions
on the weights were imposed. In such cases, many countries would be considered as

KEI-WP7-D7.1



2.1 Set up of the analysis 9

benchmarks. Bounding restrictions on weights are hence necessary for this method to be
of practical use. For the eight indicators in our case we have used absolute restrictions on
weights with the lower bound set to 5% and the upper bound to 30%.

2.1.7 Aggregation systems

The literature of composite indicators offers several examples of aggregation techniques.
Additive techniques are the most frequent ones, whilst less widespread are multiplicative
(or geometric) aggregations or non-linear aggregations (e.g. multi-criteria analysis). In
our analysis we have considered all three types of aggregation.

The linear aggregation (equation 2.6) has been employed as it is the most widely used.
Several authors, however, note that an additive aggregation function for a given set of
indicators exists if and only if these indicators are mutually preferentially independent
(Keeney and Raiffa, 1976). Preferential independence is a very strong condition since
it implies that the trade-off ratio between two indicators is independent of the values of
the remaining indicators (Ting, 1971). Furthermore, an undesirable feature in additive
aggregations might be the full compensability that they imply: poor performance in some
indicators can be compensated by sufficiently high values in other indicators. The use
of a geometric aggregation (equation 2.7) would partially solve the problem. The use
of geometric aggregation can also be justified on the grounds of the different countries’
incentives in a benchmarking exercise. Countries with low values in the indicators would
prefer a linear rather than a geometric aggregation, so as to achieve a higher ranking. On
the other hand, a country would need to increase those sectors/activities with the lowest
value in order to have the highest chance to improve its position in the ranking if the
aggregation is geometric rather than linear (Zimmermann and Zysno, 1983).

CIc =

Q∑
q=1

wqIqc (2.6)

CIc =

Q∏
q=1

(wqIq,c)
1/Q (2.7)

where
∑

q wq = 1, 0 6 wq 6 1, c = 1, . . .,M.

The multi-criteria analysis (MCA) tries to resolve the conflict arising in country compar-
isons as some indicators are in favour of one country while other indicators are in favour
of another. This conflict can be treated in the light of a non-compensatory logic and tak-
ing into account the absence of preference independence within a discrete multi-criteria
approach (Munda, 1995). The approach employs a mathematical formulation (Condorcet
ranking procedure) to rank in a complete pre-order (i.e. without any incomparability
relation) all the countries from the best to the worst one after a pair-wise comparison
of countries across the whole set of the available indicators (Munda and Nardo, 2003).
We offer here a ‘hand waiving’ description of the method. Imagine we have just three
countries, A, B and C, and we want to compare them with one another. We build to this
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10 Chapter 2. Uncertainty and sensitivity analysis

effect an ‘outscoring matrix’ whose entries eijtell us how much country ‘i’ does better than
country ‘j’. The entry eij is in fact the sum of all weights of all indicators for which country
‘i’ does better than country ‘j’. Likewise, ejiwill be the sum of all weights for which the
reverse is true. If the two countries do equally well on one variable, its weight is split be-
tween eij and eji. As a result eij + eji = 1, provided that weights are scaled to unity sum.
We now write down all permutations of county order (ABC,ACB,BAC,BCA,CAB,CBA)
and compute for each of them the ordered sum of the scores, e.g. for ABC we compute
Y = eAB + eAC + eBC . We do this for all permutations and we consider the ranking with
the highest total score Y. Note that this ordering is only based on the weights, and on the
sign of the difference between countries values for a given indicator, the magnitude of the
difference being ignored. Hence, to exemplify, a country that does marginally better on
many indicators comes out better than a country that does much better on a few ones.

We summarise next the combinations of normalisation methods, weighting schemes and
aggregation systems that we have used. Equation 2.3 is used in conjunction with all
weighting schemes (BAL, AHP and BOD) for all aggregation systems (LIN, GME, MCA).
Equation 2.4 is used in conjunction with weighting schemes (BAL, AHP) for aggregation
systems (LIN, MCA). Finally, Equation 2.5 is used in conjunction with weighting schemes
(BAL, AHP) for aggregation systems (GME, MCA).

2.1.8 Uncertainty analysis

All points of the (i) to (vii) chain of composite indicator building can introduce uncertainty
in the output variables Rank(CIc) and RS. Thus we shall translate all these uncertainties
into a set of scalar input factors, to be sampled from their distributions. As a result, all
outputs Rank(CIc) and RS are non-linear functions of the uncertain input factors, and
the estimation of the probability distribution functions (pdf) of Rank(CIc) and RS is the
purpose of the uncertainty analysis. The UA procedure is essentially based on simulations
that are carried out using equation 2.1 that constitutes our model. As the model is in fact
a computer programme that implements steps (i) to (vii) above, the uncertainty analysis
operates on a computational model. Various methods are available for evaluating output
uncertainty.

In the following, the Monte Carlo approach is presented, which is based on performing
multiple evaluations of the model with k randomly selected model input factors. The
procedure involves three steps:

Step 1. Assign a pdf to each input factorXi, i = 1, 2...k. The first input factor,X1 is
used for the selection of the editing scheme (for the second TAI analysis only):

X1 Editing

1 Use bivariate correlation
to impute missing data

2 Assign zero to missing
datum

KEI-WP7-D7.1



2.1 Set up of the analysis 11

The second input factorX2 is the trigger to select the normalisation method.

X2 Normalisation method

1 Rescaling (Equation 2.3)
2 Standardisation (Equation 2.4)
3 None (Equation 2.5)

Both X1 and X2 are discrete random variables. In practice, they are generated drawing a
random number ζ uniformly distributed in [0,1] and applying the so called Russian roulette
algorithm, e.g. for X1 we select 1 if ζ ∈ [0, 0.5) and 2 if ζ ∈ [0.5, 1]. The uncertain factor
X3 is generated to select which indicator –if any, should be omitted. The procedure is

ζ X3, excluded indicator

[0, 1
Q+1

) None ((X3 = 0) all indicators
included)

[ 1
Q+1

, 2
Q+1

) X3 = 1

. . . . . .

[ Q
Q+1

,1] X3 = Q

i.e. with probability 1
Q+1

no indicator will be excluded, while with probability [1- 1
Q+1

] one
of theQ indicators will be excluded with equal probability. Clearly we could have made the
probability of X3 = 0 larger or smaller than 1

Q+1
and still sample the values X3 = 1, 2, ...Q

with equal probability. We anticipate here that a scatter-plot based sensitivity analysis
will allow us to track which indicator – when excluded – affects the output the most. Also
recall that whenever an indicator is excluded, the weights of the other factors are rescaled
to 1 to make the composite index comparable if either BAL or AHP is selected. When
BOD is selected the exclusion of an indicator leads to a re-execution of the optimisation
algorithm.

Trigger X4 is used to select the aggregation system

X4 Aggregation system

1 LIN (Equation 2.6)
2 GME (Equation 2.7)
3 MCA

X5 is the trigger to select the weighting scheme:

The last uncertain factor X6 is used to select the expert. In our experiment we had 20
experts, and once an expert is selected at runtime via the trigger X6, the weights assigned
by that expert (either for the BAL or AHP schemes) are assigned to the data. Clearly,
the selection of the expert has no bearing when BOD is selected (X5 = 3). All the same
this uncertain factor will be generated at each individual Monte Carlo simulation. This
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12 Chapter 2. Uncertainty and sensitivity analysis

X5 Weighting Scheme

1 BAL
2 AHP
3 BOD

is because the row dimension of the Monte Carlo sample (called constructive dimension)
should be fixed in a Monte Carlo experiment, i.e. even if some of the sampled factors
will not be active at a particular run, they will be all the same generated by the random
sample generation algorithm.

The constructive dimension of this Monte Carlo experiment, e.g. the number of random
numbers to be generated for each trial, is hence k = 6.

That described here is only a possible design of the uncertainty/sensitivity analysis. The
analysis could be designed in alternative ways, to investigate particular characteristics of
the model. During the KEI project, several simulations shall be executed.

Step 2. Having generated the input factors distributions in step 1, we can now gen-
erate randomly Ncombinations of independent input factors Xl, l = 1, 2, ...N (a set
Xl = X l

1, X
l
2, ... , X

l
k of input factors is called a sample). For each trial sample Xl the

computational model can be evaluated, generating values for the scalar output variable
Y l, where Y l is either Rank(CIc),the value of the ranking assigned by the composite
indicator to each country, or RS, the averaged shift in countries’ ranking.

Step 3. We can now close the loop over l, and analyse the resulting output vector Yl ,
with l = 1, ..., N .

The sequence of Yl allows the estimation of the empirical probability distribution func-
tion (pdf) of the output. The distribution reflects the uncertainty of the output due to
the uncertainty in the input. Its characteristics such as the variance and higher order
moments, can be estimated with an arbitrary level of precision that is depends on the
number of simulations N .

2.1.9 Sensitivity analysis using variance-based techniques

A necessary step when designing a sensitivity analysis is to identify the output variables
of interest. Ideally these should be relevant to the issue tackled by the model, as opposed
to just relevant to the model per se (Saltelli et al., 2000b,2004).

In the following, we shall apply sensitivity analysis to output variables Rank(CIc),and
RS, for their bearing on the quality assessment of our composite indicator.

It has been noted earlier in this work that composite indicators can be considered as
models. When –as in the present analysis- several layers of uncertainty are simultaneously
activated, composite indicators turn out to be non linear, possibly non additive models.
As argued by practitioners (Saltelli et al., 2000a, Environmental Protection Agency -EPA,
2004), robust, model-free techniques for sensitivity analysis should be used for non linear
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2.1 Set up of the analysis 13

models. Variance-based techniques for sensitivity analysis are model free and display
additional properties convenient for the present analysis:

• they allow an exploration of the whole range of variation of the input factors, instead
of just sampling factors over a limited number of values, as done e.g. in fractional
factorial design (Box et al., 1995);

• they are quantitative, and can distinguish main effects (first order) from interaction
effects (higher order).

• they are easy to interpret and to explain

• they allow for a sensitivity analysis whereby uncertain input factors are treated in
groups instead of individually

• they can be justified in terms of rigorous settings for sensitivity analysis, as we shall
discuss later in this section.

How do we compute a variance based sensitivity measure for a given input factor Xi? We
start from the fractional contribution to the model output variance (i.e. the variance of
Y where Y is either Rank(CIc),and RS ) due to the uncertainty inXi. This is expressed
as:

Vi = VXi
(EX−i

(Y |Xi)) (2.8)

One way of reading Equation 2.8 is the following. Imagine we fix the factorXi, e.g. to a
specific value x∗i in its range, and we compute the mean of the output Y averaging over all
factors but factorXi:EX−i

(Y |Xi = x∗i ) . Imagine then to take the variance of the resulting
function of x∗i over all possible x∗i values. The result is given by Equation 2.8, where the
dependence from x∗i has been dropped, since we have averaged over it. Vi is a number
between 0 (whenXi does not give a contribution to Y at the first order), and V (Y ), the
unconditional variance of Y , when all factors other than Xi are non influential at any
order. The meaning of order will be explained in a moment. Note that it is always true
that:

VXi
(EX−i

(Y |Xi)) + EXi
(VX−i

(Y |Xi)) = V (Y ) (2.9)

where the first term in equation 2.9 is called a main effect, and the second one is
the residual. An important factor should have a small residual, e.g. a small value of
EXi

(VX−i
(Y |Xi)) . This is intuitive as the residual measures the expected reduced vari-

ance that one would achieve if one could fix Xi. Let us write the reduced variance as
VX−i

(Y |Xi = x∗i ) , a variance conditional on x∗i . Then the residual EXi
(VX−i

(Y |Xi)) is
the expected value of such conditional variance, averaged over all possible values of x∗i
and this should be small if Xi is influential. A first order sensitivity index is obtained by
dividing the first order term by the unconditional variance:
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14 Chapter 2. Uncertainty and sensitivity analysis

Si =
VXi

(EX−i
(Y |Xi))

V (Y )
=

Vi

V (Y )
(2.10)

One can compute conditional variances corresponding to more than one factor, e.g. for
two factors Xi and Xj one can compute VXiXj

(EX−ij
(Y |Xi , Xj)), and from this a second

order variance contribution can be written as:

Vij = VXiXj
(EX−ij

(Y |Xi , Xj))− VXi
(EX−i

(Y |Xi ))− VXj
(EX−j

(Y |Xj )) (2.11)

where clearly Vij is only different from zero if VXiXj
(EX−ij

(Y |Xi , Xj)) is larger than the
sum of the first order terms relative to factors Xi and Xj.

When all k factors are mutually independent, the sensitivity indices can be computed
using the following decomposition formula for the total output variance V (Y )

V (Y ) =
∑

i

Vi+
∑

i

∑
j>i

Vij+
∑

i

∑
j>i

∑
l > j
j > i

Vijl+...+ V12...k (2.12)

Terms above the first order in equation 2.12 are known as interactions. A model without

interactions among its input factors is said to be additive. In this case,
k∑

i=1

Vi = V (Y ),

k∑
i=1

Si = 1 and the first order conditional variances of equation 2.8 are all what we need to

know to decompose the model output variance. For a non-additive model, higher order
sensitivity indices, responsible for interaction effects among sets of input factors, have to
be computed. However, higher order sensitivity indices are usually not estimated, as in
a model with kfactors the total number of indices (including the Si ’s) that should be
estimated is as high as 2k-1. For this reason, a more compact sensitivity measure is used.
This is the total effect sensitivity index, which concentrates in one single term all the
interactions involving a given factor Xi. To exemplify, for a model of k=3 independent
factors, the three total sensitivity indices would be:

ST1 =
V (Y )− VX2X3(EX1(Y |X2, X3 ))

V (Y )
= S1 + S12 + S13 + S123 (2.13)

And analogously:

ST2 = S2 + S12 + S23 + S123

ST3 = S3 + S13 + S23 + S123
(2.14)
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2.1 Set up of the analysis 15

The conditional variance VX2X3(EX1(Y |X2, X3 ))in equation 2.13 can be written in general
terms as VX−i

(EXi
(Y |X−i )) (Homma and Saltelli, 1996). It expresses the total contri-

bution to the variance of Y due to non-Xi i.e. to the k-1 remaining factors, so that
V (Y ) − VX−i

(EXi
(Y |X−i )) includes all terms, i.e. a first order as well as interactions in

equation 2.12, that involve factor Xi. In general
k∑

i=1

ST i > 1. Given the algebraic relation

2.9, the total effect sensitivity index can also be written as:

ST i =
V (Y )− VX−i

(EXi
(Y |X−i ))

V (Y )
=
EX−i

(VXi
(Y |X−i ))

V (Y )
(2.15)

For a given factor Xi a significant difference between ST i and Si flags an important role
of interactions for that factor in Y . Highlighting interactions among input factors helps
us improving our understanding of the model structure. Estimators for both (Si, ST i)
are provided by a variety of methods reviewed in Chan et al. (2000). Here the method
of Sobol’ (1993), in its improved version by Saltelli (2002), is used. The method of
Sobol’ is based on LPτ sequences, which are quasi random sequences, to produce sample
points that best scan the entire space of possible combinations between the input factors
(Sobol’, 1976). Quasi-random sequences are used in place of random points to guarantee
convergence of estimates in the classical sense. Moreover, Sobol’ sequences usually result
in better convergence when employed in numerical integration (see Bratley and Fox (1988)
for a good summary description). The pair (Si, ST i) gives a fairly good description of
the model sensitivities at a reasonable cost, which for the improved Sobol’ method is of
2n(k+1) model evaluations, where nrepresents the sample size required to approximate
the multidimensional integrations implicit in the E and V operators above to a plain sum.
n can vary in the hundred-to-thousand range.

When the uncertain input factors Xi are dependent, the output variance cannot be decom-
posed as in equation 12.12. The Si, ST i indices, as defined by equation 2.8 and equation
2.15 are still valid sensitivity measures for Xi, though their interpretation changes as,
e.g. Si carries over also the effects of other factors that can be positively or negatively
correlated to Xi (see Saltelli and Tarantola, 2002), while ST i can no longer be decomposed
meaningfully into main effect and interaction effects. The usefulness of Si, ST i, also for
the case of non-independent input factors, is also linked to their interpretation in terms
of settings for sensitivity analysis. We offer here a description of two settings linked to
Si, ST i. A justification is in Saltelli et al. (2004).

Factors’ Prioritisation (FP) Setting. One must bet on a factor that, once discovered in
its true value and fixed, would reduce the most V(Y). Of course one does not know where
the true values are for the factors. The best choice one can make is the factor with the
highest Si, whether the model is additive or not and whether the factors are independent
or not.

Factors’ Fixing (FF) Setting: Can one fix a factor [or a subset of input factors] at any
given value over their range of uncertainty without reducing significantly the variance of
the output? One can only fix those (sets of) factors whose ST i is zero.

The extended variance-based methods, including the improved version of Sobol’, for both
dependent and independent input factors, are implemented in the freely distributed soft-
ware SIMLAB (Saltelli et al., 2004).
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16 Chapter 2. Uncertainty and sensitivity analysis

2.2 Results

2.2.1 First analysis

The first analysis was run without imputation, i.e. by censoring all countries with missing
data. As a result, only 34 countries could in theory be analysed. We further dropped
countries from ranking 24 (original TAI), Hong Kong, as this is the first country with
missing data, and it was preferred to analyse the set of countries whose ranking was not
altered the omission of missing records. The uncertainty analysis for the remaining 23
countries is given in Figure 2.2.1 for the rankings, with countries ordered by their original
TAI position, going from Finland, ranking = 1, to Slovenia, ranking = 23. The width of
the 5th – 95th percentile bounds, and the fact that the ordering by the median values (black
mark) often is at odd with the ordering of the original TAI (grey mark), shows that the
acknowledgement of all uncertainty sources, including 3 alternative aggregation systems,
results in considerable differences between the new and the original TAI, although one still
sees the difference between the group of leaders and that of laggards. If the uncertainty
plugged into the system were a true reflection of the status of knowledge and of the (lack
of) consensus among experts on how TAI should be built, we would have to conclude that
TAI is not a robust measure of country technology achievement.

Figure 2.2: Uncertainty analysis results showing the countries’ ranking according to the
original TAI 2001 (light grey marks), and the median (black marks) and the correspond-
ing 5th and 95th percentiles (bounds) of the distribution of the MC-TAI for 23 countries.
Uncertain input factors: normalisation method, inclusion-exclusion of an indicator aggre-
gation system, weighting scheme, expert selection. Countries are ordered according to the
original TAI values.

Keeping up with this example, we show in Figure 2.2.1 a sensitivity analysis based on the
first order indices calculated using the method of Sobol’ (1993) in its improved version due
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2.2 Results 17

to Saltelli (2002). In fact we present the total variance for each country’s ranking and how
much of it can be decomposed according to the first order conditional variances. We can
roughly say that aggregation system, followed by the inclusion-exclusion of indicator and
expert selection are the most influential input factors. The countries with the highest total
variance in rankings are the middle-performing countries in Figure 2.2.1, while the leaders
and laggards in technology achievement present low total variance. The non-additive, part
of the variances that is not explained by the first order sensitivity indices ranges from 35%
for the Netherlands to 73% for United Kingdom, whilst for most countries it exceeds 50%.
This underlines the necessity for computing higher order sensitivity indices that capture
the interaction effects among the input factors.

Figure 2.2.1 shows the total effect sensitivity indices for the variances of each country’s
rankings. The total effect sensitivity indices concentrate in one single term all the inter-
actions involving each input factor and they clearly add up to a number greater than one
due to the existing interactions. Again interactions seem to exist among the influential
factors already identified.

Figure 2.3: Sensitivity analysis results based on the first order indices. Decomposition of
country’s variance according to the first order conditional variances. Aggregation system,
followed by the inclusion-exclusion of indicator and expert selection are the most influen-
tial input factors. The part of the variance that is not explained by the first order indices
is noted as non-additive. Countries are ordered in ascending order of total variance.
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18 Chapter 2. Uncertainty and sensitivity analysis

Figure 2.4: Sensitivity analysis results based on the total effect indices. Aggregation
system inclusion-exclusion of indicator and expert selection present most of the interaction
effects. Countries are ordered in ascending order of total variance.

If the TAI model was additive with no interactions between the input factors, the non-
additive part of the variance in Figure 2.2.1 would have been zero (in other words the
first order sensitivity indices would have summed to 1) and the sum of the total effect
sensitivity indices in Figure 2.2.1 would have been 1. Yet, the sensitivity indices show the
high degree of non linearity and additivity for the TAI model, and of the importance of
the interactions. For instance, the high effect of interactions for Netherlands, which also
had a large percentile bounds, can be further explored. In Figure 2.2.1 we see that this
country is favoured by combination of geometric mean system with BAL weighing and
unfavoured by combination of Multi criteria system with AHP weighting. This is a clear
interaction effect. In depth analysis of the output data reveals that as far as inclusion
– exclusion is concerned, it is the exclusion of the indicator Royalties leading to worse
ranking for the Netherlands under any aggregation system.
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2.2 Results 19

Figure 2.5: Ranking of the Netherlands for different combinations of aggregation system
and weighting scheme. Average ranking per case is indicated in the box. The interaction
effect between aggregation system and weighting scheme is clear.

Coming to the output variable average shift in ranking (Equation 2.2) with respect to
the original TAI ranking we see in Figure 2.2.1 the histogram of the values. The mean
value is almost 3 positions, with a standard deviation slightly above 1 position. The input
factors affecting this variable the most are aggregation system plus inclusion – exclusion at
the first order, while if the interactions are considered both weighting scheme and expert
choice become important (Table 2.2.1). This effect can be seen in Figure 2.2.1 where the
effect of MCA in spreading the countries rankings can be appreciated. In some cases the
average shift in country’s ranking when using MCA can be as high as 9 places.

Input Factors First order (Si) Total effect (ST i) ST i - Si

Normalisation 0.000 0.008 0.008
Exclusion/Inclusion of indicator 0.148 0.435 0.286
Aggregation system 0.245 0.425 0.180
Weighting Scheme 0.038 0.327 0.288
Expert selection 0.068 0.402 0.334
Sum 0.499 1.597

Table 2.1: Sobol’ sensitivity measures of first order and total effect for the output: Av-
erage shift in countries’ ranking with respect to the original TAI. Significant values are
underlined.
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20 Chapter 2. Uncertainty and sensitivity analysis

Figure 2.6: Result of UA for the output variable. Average shift in countries’ ranking with
respect to the original TAI. Uncertain input factors: normalisation method, inclusion-
exclusion of an indicator, aggregation system, weighting scheme, expert selection.

Figure 2.7: Average shift in countries’ ranking with respect to the original TAI for different
combinations of aggregation system and weighting scheme. Average value per case is
indicated in the box.
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2.2 Results 21

2.2.2 Second analysis

In the second analysis we consider that TAI stakeholders have eventually converged to
the linear aggregation system, as in the original TAI. This analysis is conducted using
zeros for the missing values in the full data set. As a result, all 72 countries have been
included. The uncertainty analysis plot (Figure 2.2.2) shows now a much more robust
behaviour of the composite indicator, with fewer inversion of ranking when median-TAI
and original TAI are compared. As far as the sensitivity is concerned, the consideration
of uncertainty arising from imputation does not seem to make a significant contribution
to the output uncertainties, which are also in this case dominated by weighting, inclusion-
exclusion, expert selection. Even when, as in the case of Malaysia, imputation by bivariate
approach ends into an unrealistic number of patents being imputed for this country (234
patents granted to residents per million people), the uncertainty of its ranking is insensitive
to imputation. The sensitivity analysis results for the variable average shift in ranking
(Equation 2.2) is shown in Table 2.2.2. Interactions are now between expert selection and
weighting, and considerably less with interaction with inclusion-exclusion.

Figure 2.8: Uncertainty analysis results showing the countries’ ranking according to the
original TAI 2001 (light grey marks), and the median (black mark) and the correspond-
ing 5th and 95th percentiles (bounds) of the distribution of the MC-TAI for 72 countries.
Uncertain input factors: imputation, normalisation method, inclusion-exclusion of an indi-
cator, weighting scheme, expert selection. A linear aggregation system is used. Countries
are ordered according to the original TAI values.
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22 Chapter 2. Uncertainty and sensitivity analysis

Input Factors First order (Si) Total effect (ST i) ST i - Si

Imputation 0.001 0.005 0.004
Normalisation 0.000 0.021 0.021
Exclusion/Inclusion of indicator 0.135 0.214 0.078
Weighting Scheme 0.212 0.623 0.410
Expert selection 0.202 0.592 0.390
Sum 0.550 1.453

Table 2.2: Sobol’ sensitivity measure of first order and total effect for the output: Av-
erage shift in countries’ ranking with respect to the original TAI. Significant values are
underlined.
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Chapter 3

Conclusions

The exercise carried out in this report gives an overview of the stat-of-the-art meth-
ods available for the robustness assessment of (composite) indicators and illustrates the
methodologies that will be used in the simulation studies that will be conducted during
KEI on the knowledge-based economy.

The analyses carried out in this report on the TAI index answer the following questions:

(a) Does the use of one strategy versus another in indicator building (the steps i to vii
described above) provide a biased picture of the countries’ performance? How does this
compare to the original TAI index?

The answer to this question is that much depends on the severity of the uncertainties. As
shown by the two analyses, if the builders of the composite indicator disagree on the aggre-
gation system, there is not much hope that a robust composite indicator will emerge, not
even by the best provision of uncertainty and sensitivity analysis. If uncertainties exist in
the context of a well established theoretical approach, e.g. the developer of the composite
indicator favours a participatory approach within a linear aggregation scheme, then the
analysis shows that the countries ranking is fairly robust in spite of the uncertainties.

(b) To what extent do the uncertain input factors (used to generate the alternatives i to
vii above) affect the countries’ rankings with respect to the original, deterministic TAI?

Both imputation and normalisation do not affect significantly countries ranking when un-
certainties of higher order are present. In this exercise the most relevant uncertainties were
expert selection and weighing scheme. In other words, when the weights are uncertain, it
is unlikely that normalisation and editing will affect sensibly the country ranks.

In this example, the choice of the aggregation system is of paramount importance. Once
the system is fixed, then it is the choice of the aggregation methods and of the experts
that – together with indicator inclusion – exclusion, dominates the uncertainty in the
country rankings. It is important to mention that even in the second analysis, when
the aggregation system is fixed, the composite indicator model is strongly non additive,
which reinforces the case for the use of quantitative, Monte Carlo based approaches to
robustness analysis.
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Appendix A

Appendix

TAI focuses on four dimensions of technological capacity (Table A):

(a) Creation of technology. Two indicators are used to capture the level of innovation
in a society: the number of patents granted per capita (to reflect the current level
of invention activities), and the receipts of royalty and license fees from abroad per
capita (to reflect the stock of successful innovations of the past that are still useful
and hence have market value).

(b) Diffusion of recent innovations. This diffusion is measured by two indicators: dif-
fusion of the Internet (indispensable to participation), and by exports of high-and
medium-technology products as a share of all exports.

(c) Diffusion of old innovations. Two indicators are included here, telephones and elec-
tricity, which are especially important because they are needed to use newer tech-
nologies and are also pervasive inputs to a multitude of human activities. Both
indicators are expressed as logarithms, as they are important at the earlier stages of
technological advance but not at the most advanced stages. Expressing the measure
in logarithms ensures that as the level increases, it contributes less to the technology
achievement.

(d) Human skills. A critical mass of skills is indispensable to technological dynamism.
The foundations of such ability are basic education to develop cognitive skills and
skills in science and mathematics. Two indicators are used to reflect the human
skills needed to create and absorb innovations: mean years of schooling and gross
enrolment ratio of tertiary students enrolled in science, mathematics and engineer-
ing.

Table A shows the raw data for the eight indicators for a set of 72 countries (original).
However the original data set contains a large number of missing values, mainly due
to missing data in Patents and Royalties. Note that for the first analysis described in
Section 2.2.1, the set of the first 23 countries (from Finland to Slovenia) is used. The
second analysis described in Section 2.2.2 is based on the entire set of 72 countries.
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Indicator Unit Definition

Creation of technology
PATENTS Patents granted

per 1,000,000
people

Number of patents granted to residents, so as to
reflect the current level of invention activities (1998)

ROYALTIES US $ per 1,000
people

Receipts of royalty and license fees from abroad per
capita, so as to reflect the stock of successful innova-
tions of the past that are still useful and hence have
market value (1999)

Diffusion of recent innovations
INTERNET Internet hosts

per 1,000 people
Diffusion of the Internet, which is indispensable to
participation in the network age (2000)

EXPORTS % Exports of high and medium technology products as
a share of total goods exports (1999)

Diffusion of old innovations
TELEPHONES Telephone lines

per 1,000 people
(log)

Number of telephone lines (mainline and cellular),
which represents old innovation needed to use newer
technologies and is also pervasive input to a multi-
tude of human activities (1999)

ELECTRICITY kWh per capita
(log)

Electricity consumption, which represents old inno-
vation needed to use newer technologies and is also
pervasive input to a multitude of human activities
(1998)

Human skills
SCHOOLING years Mean years of schooling (age 15 and above), which

represents the basic education needed to develop
cognitive skills (2000)

ENROLMENT % Gross enrolment ratio of tertiary students enrolled
in science, mathematics and engineering, which re-
flects the human skills needed to create and absorb
innovations (1995-1997)

Table A.1: List of indicators of the Technology Achievement Index
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1 Finland 187 125.6 200.2 50.7 3.08 4.15 10 27.4
2 United States 289 130 179.1 66.2 3.00 4.07 12 13.9
3 Sweden 271 156.6 125.8 59.7 3.10 4.14 11.4 15.3
4 Japan 994 64.6 49 80.8 3.00 3.86 9.5 10
5 Korea, Rep. of 779 9.8 4.8 66.7 2.97 3.65 10.8 23.2
6 Netherlands 189 151.2 136 50.9 3.02 3.77 9.4 9.5
7 United Kingdom 82 134 57.4 61.9 3.02 3.73 9.4 14.9
8 Canada 31 38.6 108 48.7 2.94 4.18 11.6 14.2
9 Australia 75 18.2 125.9 16.2 2.94 3.94 10.9 25.3
10 Singapore 8 25.5 72.3 74.9 2.95 3.83 7.1 24.2
11 Germany 235 36.8 41.2 64.2 2.94 3.75 10.2 14.4
12 Norway 103 20.2 193.6 19 3.12 4.39 11.9 11.2
13 Ireland 106 110.3 48.6 53.6 2.97 3.68 9.4 12.3
14 Belgium 72 73.9 58.9 47.6 2.91 3.86 9.3 13.6
15 New Zealand 103 13 146.7 15.4 2.86 3.91 11.7 13.1
16 Austria 165 14.8 84.2 50.3 2.99 3.79 8.4 13.6
17 France 205 33.6 36.4 58.9 2.97 3.80 7.9 12.6
18 Israel 74 43.6 43.2 45 2.96 3.74 9.6 11
19 Spain 42 8.6 21 53.4 2.86 3.62 7.3 15.6
20 Italy 13 9.8 30.4 51 3.00 3.65 7.2 13
21 Czech Republic 28 4.2 25 51.7 2.75 3.68 9.5 8.2
22 Hungary 26 6.2 21.6 63.5 2.73 3.46 9.1 7.7
23 Slovenia 105 4 20.3 49.5 2.84 3.71 7.1 10.6
24 Hong Kong, China (SAR) 6 33.6 33.6 3.08 3.72 9.4 9.8
25 Slovakia 24 2.7 10.2 48.7 2.68 3.59 9.3 9.5
26 Greece 16.4 17.9 2.92 3.57 8.7 17.2
27 Portugal 6 2.7 17.7 40.7 2.95 3.53 5.9 12
28 Bulgaria 23 3.7 30 2.60 3.50 9.5 10.3
29 Poland 30 0.6 11.4 36.2 2.56 3.39 9.8 6.6
30 Malaysia 2.4 67.4 2.53 3.41 6.8 3.3
31 Croatia 9 6.7 41.7 2.63 3.39 6.3 10.6
32 Mexico 1 0.4 9.2 66.3 2.28 3.18 7.2 5
33 Cyprus 16.9 23 2.87 3.54 9.2 4
34 Argentina 8 0.5 8.7 19 2.51 3.28 8.8 12
35 Romania 71 0.2 2.7 25.3 2.36 3.21 9.5 7.2
36 Costa Rica 0.3 4.1 52.6 2.38 3.16 6.1 5.7
37 Chile 6.6 6.2 6.1 2.55 3.32 7.6 13.2
38 Uruguay 2 19.6 13.3 2.56 3.25 7.6 7.3
39 South Africa 1.7 8.4 30.2 2.43 3.58 6.1 3.4
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40 Thailand 1 0.3 1.6 48.9 2.09 3.13 6.5 4.6
41 Trinidad and Tobago 7.7 14.2 2.39 3.54 7.8 3.3
42 Panama 1.9 5.1 2.40 3.08 8.6 8.5
43 Brazil 2 0.8 7.2 32.9 2.38 3.25 4.9 3.4
44 Philippines 0.1 0.4 32.8 1.89 2.65 8.2 5.2
45 China 1 0.1 0.1 39 2.08 2.87 6.4 3.2
46 Bolivia 1 0.2 0.3 26 2.05 2.61 5.6 7.7
47 Colombia 1 0.2 1.9 13.7 2.37 2.94 5.3 5.2
48 Peru 0.2 0.7 2.9 2.03 2.81 7.6 7.5
49 Jamaica 2.4 0.4 1.5 2.41 3.35 5.3 1.6
50 Iran, Islamic Rep. of 1 2 2.12 3.13 5.3 6.5
51 Tunisia 1.1 19.7 1.98 2.92 5 3.8
52 Paraguay 35.3 0.5 2 2.14 2.88 6.2 2.2
53 Ecuador 0.3 3.2 2.09 2.80 6.4 6
54 El Salvador 0.2 0.3 19.2 2.14 2.75 5.2 3.6
55 Dominican Republic 1.7 5.7 2.17 2.80 4.9 5.7
56 Syrian Arab Republic 1.2 2.01 2.92 5.8 4.6
57 Egypt 0.7 0.1 8.8 1.89 2.94 5.5 2.9
58 Algeria 1 1.73 2.75 5.4 6
59 Zimbabwe 0.5 12 1.56 2.95 5.4 1.6
60 Indonesia 0.2 17.9 1.60 2.51 5 3.1
61 Honduras 8.2 1.76 2.65 4.8 3
62 Sri Lanka 0.2 5.2 1.69 2.39 6.9 1.4
63 India 1 0.1 16.6 1.45 2.58 5.1 1.7
64 Nicaragua 0.4 3.6 1.59 2.45 4.6 3.8
65 Pakistan 0.1 7.9 1.38 2.53 3.9 1.4
66 Senegal 0.2 28.5 1.43 2.05 2.6 0.5
67 Ghana 4.1 1.08 2.46 3.9 0.4
68 Kenya 0.2 7.2 1.04 2.11 4.2 0.3
69 Nepal 0.1 1.9 1.08 1.67 2.4 0.7
70 Tanzania, U. Rep. of 6.7 0.78 1.73 2.7 0.2
71 Sudan 0.4 0.95 1.67 2.1 0.7
72 Mozambique 12.2 0.70 1.73 1.1 0.2

Table A.2: Raw data for the indicators of the Technology Achievement Index. The first
23 countries are used in the first analysis (Section 2.2.1), while in the second analysis
(Section 2.2.2) the entire set is used. Units are given in Table A.
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