Developing indicators for a knowledge-based economy

Anthony Arundel MERIT

Role of MERIT in KEI

• WP1: Theoretical and conceptual framework for KBE indicators

- Identify policy needs using scenarios

- WP2: Identify useful indicators to meet user and policy needs
- WP4: Develop novel indicators, plus solutions for 'missing' indicators

Work structure

- All three WPs are related, with similar requirements:
 - Policy relevance crucial
 - Evaluation of *future* needs
 - Eclectic theoretical framework
 - Need to capture multiple characteristics and drivers of a KBE

Characteristics of a KBE

- ICT as a technological driver
 - Change in role of 'knowledge'
 - Organisational change
- Entrepreneurship and creative destruction
- Crucial role of human capital and creativity

Cautionary note:

- ICT and "high-technology" sectors are less of a driver of innovation and of a KBE than sometimes thought.
 - Their most important role is as an *enabling* technology that assists productivity transformations in other economic sectors

Share of ICT sectors and pharmaceuticals out of total US BERD

	United States			European Union		
	Average 92-95	Average 96-99	Percent Change	Average 92-95	Average 96-99	Percent Change
High-tech	10.6	10.7	0.5	8.7	7.7	-11.5
Medium-high tech	3.2	3.3	3.1	2.6	2.4	-8.6
Medium-low tech	0.8	0.7	-12.1	0.6	0.6	-4.3
Low tech	-	_	-	0.2	0.2	0.0

Mean R&D intensities in manufacturing: first and second half of the 1990s

Socio-political drivers for a KBE

- Demographic change
- Environmental challenges
- Globalisation (driven by many other factors, including ICT, demographics etc)

Indicator requirements for a KBE

- Available and timely
- Complete coverage of all relevant factors
- - Not only outcomes but motivations
- Relevance to policy
- Interpretable (composite indicators?)

Types of indicators for a KBE

• Geographical level

City, region, nation, supra-national (EU)

• Firm level

Geographical, sectoral, **global** (MNEs, human capital, etc)

• Main challenge: indicators for linkages across geographical levels

Identifying indicators

- Start with key policy questions:
 - What is the role of organisational change in productivity growth?
 - What is the role of institutions in necessary social changes (waste management)?
 - How can the European policy ensure an appropriate supply of the highly-skilled to increase the innovative capabilities of the EU?

Example: Policy scenario: The supply of highly skilled

- 1. Identify issue or problem from different perspectives
- 2. Identify evidence (role for indicators)
- 3. Assess relevant policy response
- 4. Identify indicators to inform policy

Example below given from three perspectives

1. Knowledge or 'brain' circulation

1. There is a growing global market for the highly skilled, with more circulation of the highly-skilled across borders. Europe must tap into this.

2. Evidence:

- Growth in foreign students (UK and Australian policy)
- Growth in percent of highly-skilled living abroad
- Survey results show that the primary driver for the highly-skilled to go abroad is for better research conditions and equipment

Knowledge or 'brain' circulation view

3. Policy conclusions:

- Mimic the United States by adapting immigration policies to encourage more highly skilled immigrants.
- Strengthen research base to encourage the most highly skilled domestic people to remain at home.

4. Indicator requirements:

- Better data on the flow of the highly-skilled including their motivations for moving.
- OECD project on the careers of doctorate holders.

Demographic perspective

1. The ageing of the population in most OECD countries, combined with a decline in the supply of new cohorts of youth, will require more immigration, not only for the highly skilled, but for the low and medium skilled.

2. Evidence:

– Demographic data for almost all OECD countries.

Demographic perspective

- **3.** Policy conclusions:
 - Adapt immigration policies to encourage immigration of high, medium and low skilled; or encourage indigenous population growth through pro-natal policies, improve work-life balance of women, etc.

4. Indicator requirements:

- Demographic data, fertility rates, etc.
- Number and quality (educational attainment, etc) of immigrants
- Work-life balance and other factors influencing fertility

Dynamic, long-term, global perspective

- 1. As the number of global loci for innovation increases, the physical movement of the highly-skilled could be increasingly replaced with the global movement of *ideas and knowledge*, while the highly-skilled increasingly remain in the same place.
- The highly-skilled may show no preference to move abroad, given adequate opportunities at home.

Dynamic, long-term, *global* perspective

2. Evidence:

- Growing R&D opportunities in India and China
- Highly skilled are 'move-adverse'
 - Only 1% of highly skilled Americans and Japanese live abroad
 - Less than 3% of recent American PhDs intend to move abroad (over half do not follow-through)
- Decline in foreign students (pre-dates 2001)
 - UK: 5.3% decline in tertiary students from outside of the EU between 2003 and 2004
 - Sharp decline in foreign PhD students in US from *1996*, particularly from West and East Asia. Number from East Asia declined 24% between 1996 and 2000, while large increase in PhDs granted in China from 1996 on.

Number of non-US citizens awarded American doctorates in the sciences and in engineering, by region of citizenship and year of doctorate

Doctoral Degrees Awarded in China

Source: Weiguo and Zhaohui, 2004

Dynamic, long-term, *global* perspective

3. Policy response:

- Promote immigration of highly skilled as a *short-term* solution.
- Adapt immigration policy to meet the needs of shortterm (under two years) transfers of the highly skilled.
- Increases indigenous S&E strengths and an interest in science among current elementary and secondary students.
- Support transfer of ideas and knowledge and create forums for their circulation: shared research programs and scholarly exchanges with universities in China and India.

Dynamic, long-term, *global* perspective

- **4. Indicator requirements**: (for both EU and other global loci)
 - Global flows of highly skilled, including short-term movement
 - Motivations for highly skilled to move
 - MNE R&D expenditures by country
 - Demographic data in EU and in 'donor' countries
 - Interest in science and engineering on the part of youth
 - Attractiveness of science careers (income in PPP, etc)
 - Quality of national research base

Lessons for identifying KBE indicators

- Develop different perspectives (scenarios) to identify policy needs
- Globalisation may have a significant impact on many issues for a KBE
- Dynamic analysis is more useful than a static approach

Future challenges

- Which indicators are best for a composite framework?
- Firm level 'global linkages' indicators
 - R&D and innovation
 - Knowledge flows
- Indicators *of* policy?