

On displaying indicators and their accuracy

Beat Hulliger
Statistical Methods Unit
Swiss Federal Statistical Office

KEI Workshop, Tübingen, 3/4 March 2005

Copyright © 2005 Swiss Federal Statistical Office (SFSO) – All rights reserved. Use for non-commercial and non-licensing purposes on condition of acknowledgement of the source permitted

7-Mar-05 © SFSO, 1

Content

- Introduction
- Challenge of displaying indicators
- Displaying accuracy
- Examples of displays with accuracy
 - Categories
 - Time
 - Categories and time
 - League charts
- Some conclusions

Swiss Statistics

Eurostat Structural Indicators on R+D

- Many countries across x-axis
- RD as % of GDP on y-axis
- Two years as paired categories: Change practically invisible
- Missing values
- No footnotes
- No variablity

TV-News

- An indicator in the main TV-news issue may take 10 seconds
- It has to compete with background visual material
- It may have to be animated and colored

Public addressed and purpose of displays of indicators

- Public addressed: politicians and managers with limited statistical knowledge and less time.
- Purpose (of displays) is not to analyse a problem but to give a quick overview and highlight salient features
- 10 seconds on TV, 1 minute (?) in a report
- Displays of indicators must compete with other visual information
- Displays of indicators must be fancy!

Challenge of displaying indicators

- No more than
 - 1 dimension for indicator (y-axis: usually quantitative)
 - 1 dimension for covariate (x-axis: categoric or time)
 - 1 display only!
- No time or space for footnotes
- Display must be self-explaining to a large part
- Accuracy and warnings must be integrated in the display
- The display must look fancy

Displaying accuracy

Bias

- Difficult to display because often bias cannot be quantified
- possible way out: scenarios and/or sensitivity analysis

Variance

- Confidence intervals for point estimates are good but ...
- Testing is the real problem but ...
- Users don't understand tests!

Variance estimation

- Publication of variances is still the exception
- If variances are published then often only sampling variances
- Here: Assume that a variance estimate is published or known to the statistician that plots the graph.

Working horse: Confidence intervals to test equality of two normal means

Confidence interval for normal mean \overline{X} with estimated standard deviation $\hat{\sigma}(\overline{X})$

$$CI(\overline{X}) = \overline{X} \pm z(\beta) \hat{\sigma}_{\overline{X}}$$

where z is the standard normal quantile $z(\beta) = \Phi^{-1} \left(\frac{1+\beta}{2} \right)$

Confidence interval for difference of two means

$$CI(\overline{X} - \overline{Y}) = (\overline{X} - \overline{Y}) \pm z(\beta) \sqrt{\hat{\sigma}_{\overline{X}}^2 + \hat{\sigma}_{\overline{Y}}^2 - 2\rho \hat{\sigma}_{\overline{X}} \hat{\sigma}_{\overline{Y}}}$$

where ρ is the correlation between X and Y.

Usually $\beta=95\%$

Correct test for equality at level 1- β : $0 \notin CI(X-Y)$

is replaced by "overlap test": $CI(\overline{X}) \cap CI(\overline{Y}) = \{ \}$

which corresponds to: $0 \notin \overline{X} - \overline{Y} \pm z(\beta) \left(\hat{\sigma}(\overline{X}) + \hat{\sigma}(\overline{Y}) \right)$

Overlap test is

- Approximate because the correlation ρ is neglected
- Correct under perfect negative correlation (ρ =-1)
- Mildly conservative under negative correlation (ρ <0)
- Conservative under independence (ρ=0) (β≈99.4%)
- Too conservative under positive correlation (ρ >0)

Wiss Statistics

Examples

- Based on indicator for R+D expenditures
- Variances are fictive except for the coefficient of variation of RD expenditures of industry in Switzerland in 2000: 5% (not published).
- Assume independence between countries
- Examples with Excel and with R

Excel with error bars

- Only EU is significantly lower
- Multiple comparison? (No correction! (Goldstein and Healy 1995)
- Error bars (whiskers) are not prominent enough
- Not fancy (in my opinion)

RD industry 2000 (%GDP)

- "Flame" indicates CI enough prominently
- Colored surface reflects lower confidence limit
- Suggests triangular distribution around mean
- Symmetrical

s Statistics

Fancy enough?

Compositions

- Proportions adding up to 1
- Pie chart now seldom used because of its severe perceptual problems
- Stacked bar charts
- Usually two or more groups to compare

On displaying indicators and their accuracy

Financing of RD (industry, government, other) in 2000

Stacked candle plot

Financing of RD (industry, government, other) in 2000

- Problem: Green surface is not lower confidence limit for p₂
- Proportions are negatively correlated: Joint confidence region for proportions needs d-1 dimensions
- Only CI of cumulative proportions make sense:
 CI(p₁+p₂)
- Intuitive? Clear?

On displaying indicators and their accuracy

Multiple time series: Several categories over time

- Line plots adequate (not bars)
- Interest: Comparison of time series
- Test: Difference between time series at specific time points
- Overlapping intervals are not well visible.
- Not fancy
- First guess: Draw confidence lines like for regression

RD expenditures of industry (%GDP)

RD of industry (%GDP) of NL and UK

Multiple line plot with CI at time points

- The CI at the time points are drawn individually.
- To make the overlap visible use small triangles (2-dim!)
- The statistically interesting question, whether NL<UK consistently is not addressed!

Single time series

Line plot shows evolution

s Statistics

- Interest: change between two specific time points
- How to make clear which time points to compare?
- Usually positive correlation (panels)
- Individual CIs for the time points will not convey the correct message

On displaying indicators and their accuracy

RD industry of NL (%GDP)

Funnelplot

 Test for change from x(t) to x(t+1) indicated by a funnel at height x(t)

Statistics

- Funnel opening is CI with length adjusted for correlation
- If line leaves funnel then test for change significant
- Not indicated: change from start etc.!
- Funnels too important?

On displaying indicators and their accuracy

Change and several categories

- A few categories are compared (countries) at two time points
- Difficult to read: Bad plot for indicators!
- Main question: difference between categories
- Secondary question: change significant
- funny candle ????

Bar plot across time

(e.g. Displays in HDR)

- Shows evolution well
- Overlapping CI invisible
- Interesting test: evolution of the differences between categories!

$$\Delta = (\overline{X}_2 - \overline{Y}_2) - (\overline{X}_1 - \overline{Y}_1)$$

- Test for interactions between time and category!
- Conjecture: No simple display for this test possible.

League Tables

- League tables (rankings) use relative benchmarks
- League tables are poor statistical summaries
- Replace relative with absolute benchmarks
- Plot confidence intervals

PISA 2003 mean performance per country

Wiss Statistics

Some conclusions

- It is possible to include information on accuracy in displays without disturbing the user.
- The message of an indicator changes when its accuracy is displayed.
- Complex tests cannot be displayed simply.
- Multiple comparisons cannot be displayed simply.