Handling Missing Data for Indicators

Susanne Rässler

Institute for Employment Research & Federal Employment Agency Nürnberg, Germany

First Workshop on Indicators in the Knowledge Economy, Tübingen, 3-4 March 2005

Agenda

- Missing data
- Multiple imputation principle
- Indicators are missing
- Multivariate MI approach
- Alternative approaches via flexible chained equations
- Conclusions

Missing Data - "everybody has them, nobody wants them"

Unit no.	Gender	Age	Education	Health state	Personal Net-Income	
1	female	40-45	high	good	?	-
2	male	30-35	middle	poor	4500-5000	1222
3	female	>60	?	poor	4000-4500	
4	male	20-25	high	?	?	-
5	male	20-25	low	?	1500-2000	
6	female	30-35	low	good	1500-2000	
100	564 C					

	Case								
Unit no.	Gender	Age	Education	Health state	Personal Net-Income				
2	male	30-35	middle	poor	4500-5000	- 222			
6	female	30-35	low	good	1500-2000				
	364					994.			

Missingness may be either

- MCAR (missing completely at random),
- MAR (missing at random), or
- MNAR (missing not at random)

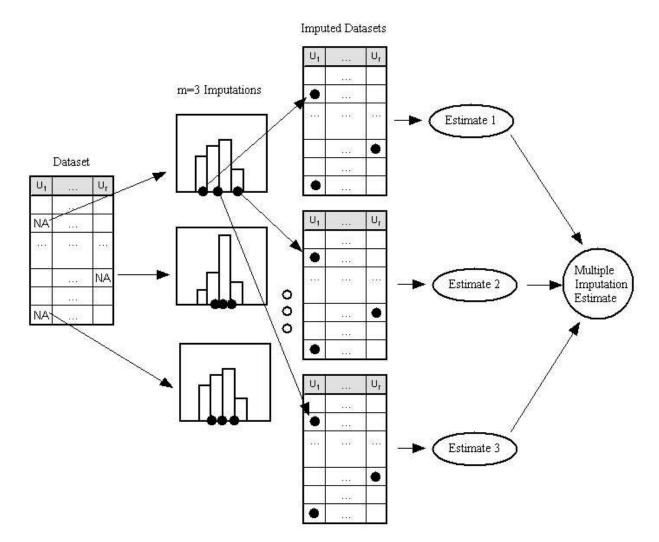
(Rubin and Little 1987, 2002)

 \Rightarrow In multivariate analysis often 30% to 40% of the data are lost with case deletion assuming MCAR!

Handling missing data

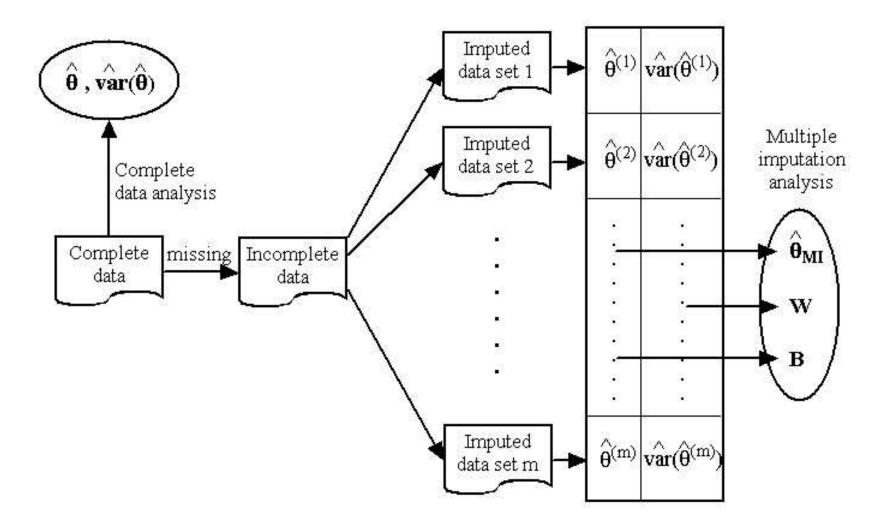
- Procedures based on the available cases only, i.e., only those cases that are completely recorded for the variables of interest
- Weighting procedures such as Horvitz-Thompson type estimators or raking estimators that adjust for nonresponse
- Single imputation and correction of the variance estimates to account for imputation uncertainty
- Multiple imputation (MI) according to Rubin (1978, 1987) and standard complete-case analysis
- Model-based corrections of parameter estimates such as the expectationmaximization (EM) algorithm
 - ⇒ We regard multiple imputation as most flexible for multipurpose complex surveys such as KEI

The Multiple Imputation Principle (1)



 \Rightarrow MI reflects uncertainty about which value to impute

The Multiple Imputation Principle (2)



 \Rightarrow Correct MI analysis is based on an analysis of variance

The Multiple Imputation Principle (3)

• Estimates: with complete data, tests and intervals based on the normal approximation should be appropriate (Rubin 1978, 1987, or *t*-approximation, Barnard and Rubin 1999); i.e.,

$$(\widehat{\theta} - \theta) / \sqrt{\widehat{var}(\widehat{\theta})} \sim N(0, 1)$$

- Produce m completed data sets and calculate $\widehat{\theta}^{(j)}$ and $\widehat{var}(\widehat{\theta}^{(j)})$, $j = 1, 2, \dots, m$
- Multiple imputation estimate $\hat{\theta}_{MI} = \frac{1}{m} \sum_{j=1}^{m} \hat{\theta}^{(j)}$
- Its estimated total variance is $T = W + (1 + \frac{1}{m})B$ with "within-imputation" variance $W = \frac{1}{m}\sum_{j=1}^{m}\widehat{var}(\widehat{\theta}^{(j)})$ and "between-imputation" variance $B = \frac{1}{m-1}\sum_{j=1}^{m}(\widehat{\theta}^{(j)} - \widehat{\theta}_{MI})^2$

 \Rightarrow Tests can be based on $(\hat{\theta}_{MI} - \theta)/\sqrt{T} \sim t_v$ with $v = (m-1)\left(1 + \frac{W}{(1+m^{-1})B}\right)^2$

Basic Principle of Multiple Imputation Procedures

 \bullet Create m independent random draws of the missing data according to their posterior predictive distribution

$$f_{Y_{mis}|Y_{obs}}(y_{mis}|y_{obs}) = \int f_{Y_{mis}|Y_{obs},\Theta}(y_{mis}|y_{obs},\theta) f_{\Theta|Y_{obs}}(\theta|y_{obs}) d\theta$$

• Realization either by

(1) random draws of the parameters Θ according to their observed-data posterior distribution $f_{\Theta|Y_{obs}}$ as well as (2) random draws of Y_{mis} according to their conditional predictive distribution $f_{Y_{mis}|Y_{obs},\Theta}$ for actual draws of Θ .

• or realization iteratively (MCMC, data augmentation) by

(1) random draws of the parameters Θ according to their complete-data posterior distribution $f_{\Theta|Y_{obs},Y_{mis}}$ for actual draws of Y_{mis} as well as (2) random draws of Y_{mis} according to their conditional predictive distribution $f_{Y_{mis}|Y_{obs},\Theta}$ for actual draws of Θ .

Indicators are missing

- Countries: EU + USA + Japan
- Time period: 1995 ... 2002/03, early *estimates* for 2003/04
- Indicators:
 - **GERD** Gross domestic expenditure for R & D per capita (POP)
 - PhD Total new science and technology PhDs per capita
 - **FTE** Total researchers (**FTE**) per capita
 - **GFCF** Total gross fixed capital formation (excl. building) per capita
 - EGov E-government
 - **TEE** Total education expenditure per capita
 - LLL Life-long learning (per population aged 25-64 years participating in education and training; POP1)
 - \Rightarrow Some indicators are missing at the most recent point of time

Where to Go Intermediate: The multivariate model for KEI

• Data augmentation algorithm using the multivariate linear mixed-effects model (Schafer & Yucel 2002)

 $Y_i = X_i\beta + Z_ib_i + \epsilon_i, \quad i = 1, 2, \dots, n$

Y_i	=	(T imes r) matrix of indicators
X_i	=	(T imes p) matrix of covariates
Z_i	=	$(T \times q)$ matrix of covariates with Z_i basically $\in X_i$
eta	=	$(p \times r)$ matrix of fixed effects
$\mathbf{vec}(b_i)$	\sim	$N_{qr}(0,\Psi)$ vector of random effects
$\operatorname{vec}(\epsilon_i)$	\sim	$N_{Tr}(0,\Sigma\otimes I_T)$ vector of random errors
Ψ^{-1}	\sim	$Wishart_{qr}(a, B)$, a, B hyperparameter
Σ^{-1}	\sim	$Wishart_r(c,D)$, c,D hyperparameter

- times of measurement t incorporated into X_i and possibly Z_i .
- allows unequal spacing, time-varying covariates, unbalanced panels for T_i , correlation between indicators.

Univariate Multiple Imputation Models for Complex Data

Simple case with 3 variables A, B and C each with missing data (Rubin 2003, applied in the NMES):

- "Begin by arbitrarily filling in all missing B and C.
- Fit a model of A|B, C using those units where A is observed and impute the missing A values.
- Toss the imputed B values and fit a model of B|A, C using those units where B is observed and impute the missing B values.
- Toss the imputed C values and fit a model of C|A, B using those units where C is observed and impute the missing C values.
- Iterate..."

 \Rightarrow Great flexibility due to the possible conditional specifications!

Univariate KEI-Imputations Based on PAN (1)

- Assume indicators are missing at random (MAR)
- Fit univariate mixed-effects model for each KEI indicator separately (SPLUS library pan by Schafer 1997):

$$y_i = X_i\beta + Z_ib_i + \epsilon_i, \quad i = 1, 2, \dots, n$$

• Leads to model $y_i \sim N_T(X_i\beta, \psi + \sigma^2 I_T)$ for i = 1, 2, ..., n such that

$$Cov(y_{it}, y_{js}) = \begin{cases} \psi, & t, s = 1, 2, \dots, T, t \neq s, i = j \\ \psi + \sigma^2, & t, s = 1, 2, \dots, T, t = s, i = j \\ 0, & \text{else, i.e. for all } i \neq j \end{cases}$$

First Results of KEI-Imputations Based on PAN (2)

- Generate m = 10 imputations after a burn-in period of 1000 Gibbs cycles.
- ACF's of $\psi\text{, }\sigma^2$ and β suggest quick convergence
- Lags of 100 between each imputation are used
- To Do:
 - allow correlation between indicators \Rightarrow Pan for KEI according to Schafer & Yucel (2002)
 - allow for heteroscedasticity \Rightarrow possibly with approach Schafer & Yucel (2002)
 - allow for flexible serial autocorrelation \Rightarrow future research
 - allow for spacial autocorrelation \Rightarrow future research

Conclusions

- MI is in general applicable when the complete-data estimates are asymptotically normal (like ML estimates are) or t distributed.
- The regression switching approach seems to be quite promising in large data sets and for high amounts of missing values.
- Even in the context of "mass imputation", such as split questionnaire survey designs and data fusion we find good frequentist properties.
- In the U.S. applied for MI in the NHANES (split project) and NMES.
- The basic routines are already implemented in MICE (SPLUS and R version) and IVEware, Raghunathan's SAS callable application.
- ⇒ Multiple imputation displays nonresponse uncertainty while using standard complete-case analysis!

References

- Barnard, J., Rubin, D.B. (1999), Small-Sample Degrees of Freedom with Multiple Imputation, Biometrika, 86, 948-955.
- Rubin, D.B. (1978), Multiple Imputations in Sample Surveys A Phenomenological Bayesian Approach to Nonresponse, (with discussion and reply), Proceedings of the Survey Research Methods Section of the American Statistical Association, 20-34.
- Rubin, D.B. (1987), Multiple Imputation for Nonresponse in Surveys, Wiley, New York.
- Little, R.J.A., Rubin, D.B. (1987, 2002), Statistical Analysis with Missing Data, Wiley, New York.
- Schafer, J.L. (1997), Analysis of Incomplete Multivariate Data, Chapman and Hall, London.
- Schafer, J.L., Yucel, R. (2002) Computational Strategies for Multivariate Linear Mixed-Effects Models with Missing Values, Journal of Computational and Graphical Statistics, 11, 437-457.