- •
- •
- •
- •
- •
- •
- •

- •
- •

Internationalisation of STI

Challenges for measurement

Prof. Dr. Reinhilde Veugelers (KUL-EC-BEPA)

Introduction

A complex phenomenon, often discussed, but whose drivers and impact are not yet fully understood

- The multiple channels of internationalisation of STI
- Key Issues for policy makers
- Currently available statistics
- Implications for measurement and indicator building in future

I. The multiple channels of internationalisation of STI

- Wide variety of processes
 - Internationalisation of Science and Technology Development at research institutes/universities
 - International mobility of students & researchers, international collaboration
 - Internationalisation of Technology Development and Innovations by firms
 - Sourcing know-how internationally
 - By doing R&D abroad
 - Importing technology from abroad for R&D done at home
 - International collaboration in S&T, private-public
 - International exploitation of technology
 - licensing, exporting, FDI
- Broadly based across S&T actors
 - Large multinational firms, small high-tech start ups, technology absorbing firms, research institutes, S&T researchers, S&T intermediaries

۲

II. Key issues in internationalisation of STI

Specialisation, concentration in a few centers of excellence worldwide (?)

- Large technology intensive MNEs play a key role in international generation and diffusion of know-how. What drives these firms international R&D strategies? *World-wide learning process, mobilizing dispersed sources of knowledge to build competitive advantage on world-wide markets*
- Impact of Internationalisation of STI on national/regional innovation and growth?
 - Motives for MNEs to transfer know-how abroad
 - Complex reverse and interactive international technology transfers

Some key issues for STI policy

- How to attact innovative companies, research institutes and researchers? What forces determine the location decisions of MNEs in the field of R&D? What are the reasons for R&D clustering in some economic hubs?
 - What is the role of public research organisations and universities as magnets for knowledge intensive foreign investments in regional hubs of global innovations systems?
- Will R&D abroad substitute or complement for R&D at home?
- How will globalisation of firm's R&D strategies change the conditions for S&T output to contribute to economic growth at a national or regional level?
 - What is the impact of cross-border knowledge spillovers and R&D collaborations on the national and regional innovation systems?

- How can a country/region access international know-how?
- How to develop absorptive capacity?

III. Challenges for measurement

Do we have the data to tackle these key issues?

Tacking Stock on Indicators for Internationalisation of STI

Restricted availability of internationally comparable data on all dimensions of STI internationalisation

Reviewing existing data on Internationalisation of STI

- First indicators on internationalisation of STI
 - Internationalisation of R&D through MNEs
- Further indicators on internationalisation

First Indicators on STI internationalisation

Cf OECD Handbook on Economic Globalisation Indicators

- Trade in high-tech products (affiliates & parent companies)
- International technology receipts& payments (licensing, financing of R&D outsourced abroad...)
- FDI: internationalisation of R&D of MNEs (OECD, R&Dsurvey)
 - INWARD: Identifying the foreign affiliates in the host country and assessing their R&D expenditures/personnel and sales...
 - INWARD: R&D expenditures financed from abroad
 - OUTWARD: Identifying the parent firm in home country and assessing their R&D expenditures/personnel at home and abroad.

Further indicators on Internationalisation of STI :

Restricted availability of internationally comparable data on other dimensions of STI internationalisation; especially wrt :

- Internationalisation of science and technology creation (copublishing, cross-border and co-patenting...
- International technology transfers through other channels Migration of S&T workers, International (research) collaborations and alliances, Informal international contacts,... (
- Indicators on :
 - International mobility of human capital
 - Cross-border ownership of inventions
 - International co-operation in S&T

Cross-border ownership of inventions

- Mapping « inventor » countries and « applicant » countries in patent info
 - <u>Inward</u>: Foreign applicants to domestic inventions
 - Foreign Applicants: Foreign based vs Foreign Affiliates at home
 - <u>Outward</u>: Domestic applicants with foreign inventors
 - Domestic applicants: MNEs vs local firms

International Cooperation in S&T

Partners from more than one country jointly research and develop technological knowhow and innovations. Actors here are not only enterprises, but also research institutions.

- Co-patenting
- Co-operative R&D agreements

Co-publishing

Internationalisation of Science

- The international Development of Science at public or private research institutes or universities: the international collaboration among S&T researchers (as witnessed by joint publications or joint projects), through the international mobility of S&T students and researchers; ...
- The international exploitation of Science

International Mobility of Human Capital

- « Brain Drain » receives lots of policy attention, but data that are internationally comparable are scarce
 - Foreign born scientists and engineers, HRST
 Foreign PhD students

Studies on R&D internationalisation strategies and motives of MNEs

On the basis of ad-hoc academic surveys

- Although the %R&D carried out abroad is increasing, most R&D remains at headquarters
- Motives for R&D decentralization: both supply and demand related
- Role of subsidiaries in MNE innovative strategies: mostly interdependent labs; nevertheless adapting still predominant

Studies using patent citations to measure technology transfers

e.g. Branstetter (2000); Almeida (1996)

- If technology sourcing is an (increasingly more) important motive for decentralizing R&D this should be reflected in technology transfers from local sources to foreign subsidiaries .
 - Confirmed with patent citation information on USPTO & Japanese FDI in US; and for US semiconductor industry
- Are innovation active foreign subsidiaries sources of knowledge spillovers to the local economy
 - Confirmed with patent citation information on USPTO & Japanese FDI in US; and for US semiconductor industry

Studies using direct measures of technology transfer

Survey evidence from CIS I-Belgium (Veugelers & Cassiman (2002) on two-way external transfer of knowhow between subsidiaries and local competitors. % R&D active (MAKE) subsidiaries (N=160)

- transferring technology to external national partners:17.5%*
- acquiring know-how from external national partners:50%*
- having cooperative agreements with external national partners:51%

*acquiring/transferring technology through licensing and/or through R&D contracting and/or through consultancy services and/or purchase of another enterprise **and/or hiring skilled employees, and/or other informal forms** IV. Implications for Measurement and Indicator Building

Due to the lack of comparable data on all the different dimensions of internationalisation, it is not yet possible to draw a comprehensive picture on the key issues for policy makers. A first challenge is hence to set up an internationally comparable data structure on the various dimensions of internationalisation of S&T.

Implications for Indicator Building

- Develop a sufficiently international comparable data base on all the different dimensions of internationalisation
 - What are the best indicators of internationalisation of STI?
 - How to measure and evaluate the impact of crossborder knowledge flows on national/regional innovation systems?
 - How can international technology adoption be measured?

Implications for Indicator Building

• First line of actions

- Exploit the internationalisation dimension present through the existing instruments
 - R&D survey instrument for international ownership of R&D
 - R&D survey instrument for international financing of R&D
- (see the OECD Globalisation Indicators efforts)
 - CIS survey instrument for international collaboration, ...
- Second line of actions:
 - Further develop existing instruments to better incorporate the internationalisation dimension (extra questions, identification of MNEs, subsidiaries of foreign firms,
 - R&D survey instrument for quantitative info eg on R&D spent home/abroad
 - CIS-survey instrument for qualitative info eg on dissemination of know-how
- Third line of actions:
 - Develop new instruments to further measure the internationalisation dimensions

۲

- E.g. Surveys of MNEs on location factors
- Labour Mobility
- ...