

Price and Quantity Indices as Role Models for Composite Indicators

Bert M. Balk

Erasmus Research Institute of Management and Statistics Netherlands

bbalk@rsm.nl

KEI Workshop, Leuven, 5-6 September 2006

Types of measures

- Measuring change (intertemporal).
- Measuring difference (interspatial).
- Ratio-type measure (p/p') will be called *index*.
- Difference-type measure (p-p') will be called indicator.

Three approaches for measuring aggregate price or quantity change (1)

- Economic approach.
- Keywords: preference order (consumer) or technology (producer); optimization; decomposition of value change.
- Literature: CPI Manual (ILO, Geneva, 2004) or PPI Manual (IMF, Washington DC, 2004).
- Stochastic approach.
- Keywords: price change = common component + specific component + random component; estimation.
- Literature: Clements, Izan and Selvanathan, International Statistical Review 2006.

Three approaches for measuring aggregate price or quantity change (2)

- Axiomatic approach.
- Keywords: properties; tests; functional equations.
- Literature: Balk, International Statistical Review 1995.

Notation

- Commodities n = 1,...,N
- **Periods t = 0,1,...,T**
- **Prices** p_n^t

Rotterdam School of Economics

- Quantities x_n^t
- Single price indices p_n^{1}/p_n^{0} (n = 1,...,N)
- Single quantity indices x_n^{1}/x_n^{0} (n = 1,...,N)

Price index P(p¹, x¹, p⁰, x⁰): axioms

- A1: Monotonous in prices.
- A2: Linearly homogeneous in period 1 prices: $P(\lambda p^1, x^1, p^0, x^0) = \lambda P(p^1, x^1, p^0, x^0)$ ($\lambda > 0$).
- A3: Identity test: P(p⁰, x¹, p⁰, x⁰) = 1.
- A4: Homogeneous of degree 0 in prices: P(λp¹, x¹, λp⁰, x⁰) = P(p¹, x¹, p⁰, x⁰) (λ>0).
- A5: Invariant to changes in units of measurement: P(p¹Λ, x¹Λ⁻¹, p⁰Λ, x⁰Λ⁻¹) = P(p¹, x¹, p⁰, x⁰) (Λ diagonal with positive elements).

Quantity index Q(p¹, x¹, p⁰, x⁰): axioms

- A1': Monotonous in quantities.
- A2': Linearly homogeneous in period 1 quantities: $Q(p^1, \lambda x^1, p^0, x^0) = \lambda Q(p^1, x^1, p^0, x^0)$ ($\lambda > 0$).
- A3': Identity test: Q(p¹, x⁰, p⁰, x⁰) = 1.
- A4': Homogeneous of degree 0 in quantities: $Q(p^1, \lambda x^1, p^0, \lambda x^0) = Q(p^1, x^1, p^0, x^0) (\lambda > 0).$
- A5': Invariant to changes in units of measurement: Q(p¹Λ, x¹Λ⁻¹, p⁰Λ, x⁰Λ⁻¹) = Q(p¹, x¹, p⁰, x⁰) (Λ diagonal with positive elements).

Research Institute of Managemen

Some implications

- A2 and A3 imply A6: Proportionality: P(λp⁰, x¹, p⁰, x⁰) = λ (λ>0).
- A1 and A6 imply A7: Mean value property: min{p_n¹/ p_n⁰} ≤ P(p¹, x¹, p⁰, x⁰) ≤ max{p_n¹/ p_n⁰}.
- A2' and A3' imply A6'.
- A1' and A6' imply A7'.

Important tests

- T1: Circularity (transitivity) : P(p², x², p¹, x¹) × P(p¹, x¹, p⁰, x⁰) = P(p², x², p⁰, x⁰).
- T2: Time reversal: P(p¹, x¹, p⁰, x⁰) = 1/P(p⁰, x⁰, p¹, x¹).
- T1' and T2' similarly.
- T3=T3': Product: P(p¹, x¹, p⁰, x⁰) × Q(p¹, x¹, p⁰, x⁰) = V¹/V⁰ (value ratio).
- T4=T4': Factor reversal: P(p¹, x¹, p⁰, x⁰) × P(x¹, p¹, x⁰, p⁰) = V¹/V⁰ or Q(x¹, p¹, x⁰, p⁰) × Q(p¹, x¹, p⁰, x⁰) = V¹/V⁰.

Other tests

- T5 and T5': Value dependence.
- T6 and T6': Consistency-in-aggregation.
- T7 and T7': Equality.
-

Main areas of research in the axiomatic approach

- Consistency of combinations of axioms and tests.
- Characterization of index formulas by axioms and tests.

An important example (1)

- T1 (transitivity) implies that P(p¹, x¹, p⁰, x⁰) = g(p¹, x¹)/ g(p⁰, x⁰).
- A3 (identity) implies that g(p, x) = g(p).
- A5 (invariance to u-o-m) implies that g(p)/g(1) is a multiplicative function.
- A1 (monotonicity) implies (Aczél 1966) that g(p)/g(1) = Π_np_n^{αn} for some α_n > 0.
- A2 (linear homogeneity) implies that $\sum_n \alpha_n = 1$.

An important example (2)

- Conclusion: A1, A2, A3, A5 and T1 imply that $P(p^1, x^1, p^0, x^0) = \prod_n (p_n^{1/} p_n^{0})^{\alpha_n}$ with $\alpha_n > 0$ and $\sum \alpha_n = 1$.
- This is known as the Cobb-Douglas (price) index.
- The α_n are constants.
- In practice one chooses α_n to be value share of period 0 or 1 or average \rightarrow T1 violated.

An important example (3)

- Similarly, A1', A2', A3', A5' and T1' imply that $Q(p^1, x^1, p^0, x^0) = \prod_n (x_n^{1/} x_n^{0})^{\beta_n}$ with $\beta_n > 0$ and $\sum \beta_n = 1$.
- The β_n are (other) constants.
- In general ∏_n(p_n¹/ p_n⁰)^{αn} × ∏_n(x_n¹/ x_n⁰)^{βn} ≠ V¹/V⁰; that is, T4 violated.

Application (1)

- Re-interpret (p, x) as vector of attributes, with p measured (as positive real variables) and x unmeasured.
- Composite index compares situation 1 to situation 0: I(p¹, x¹, p⁰, x⁰).
- Invariance to units of measurement: (pΛ, x) describes the same situation as (p, x).

• Or, $I(p^1\Lambda, x^1, p^0\Lambda, x^0) = I(p^1, x^1, p^0, x^0)$.

Application (2)

- Transitivity: l(p², x², p¹, x¹) × l(p¹, x¹, p⁰, x⁰) = l(p², x², p⁰, x⁰). This implies that l(p¹, x¹, p⁰, x⁰) = g(p¹, x¹) / g(p⁰, x⁰).
- Identity: I(p⁰, x¹, p⁰, x⁰) = 1. This means that unmeasured variables are not relevant for comparing situations.
- Transitivity + Identity implies that g(p⁰, x¹) = g(p⁰, x⁰), thus g(p, x) = g(p).

• Or, $I(p^1, x^1, p^0, x^0) = g(p^1) / g(p^0)$.

Application (3)

- Invariance to u-o-m then implies that g(p¹Λ) / g(p⁰Λ) = g(p¹) / g(p⁰); that is, g(p) / g(1) is a multiplicative function.
- If g(p) is strictly *increasing*, which is a natural assumption, then Aczél's (1966) result implies that I(p¹, x¹, p⁰, x⁰) = ∏_n(p_n¹/ p_n⁰)^{αn} for some α_n > 0.
- Imposing *linear homogeneity* means imposing that $\sum_n \alpha_n = 1$.

Conclusion

- Requirements like transitivity, identity, and invariance to u-o-m have implications for the form of the composite index.
- Theory, however, does not tell us how to choose the weights α_n of the single indices $p_n^{1/}p_n^{0}$.

