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Introduction

KEI-Datasets have missing data . . .
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Introduction

KEI-Datasets have missing data. . . lots of them.
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Introduction

In order to build Composite Indicators, those missing
values must be imputed.
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Introduction

How should imputations be? (Little and Rubin, 2002) I

Conditional on observed variables, to reduce bias due to
nonresponse, improve precision and preserve association between
missing and observed variables.

Multivariate, to preserve associations between missing variables.
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Introduction

How should imputations be? (Little and Rubin, 2002) II

Draws from the predictive distribution rather than means, to
provide valid estimates of a wide range of estimands.

Multiple, in order to account for imputation uncertainty.
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Introduction

However, datasets for Composite Indicators have special, stable
features which must be taken into account

The number of variables in the dataset is usually bigger than the
sample size.

Rows represent countries.

Variables (columns) are subject to political decision.

Panel structure: small number of time periods.

Non normal data with nonlinear relationships between variables.

As a rule, one should expect missing values to occur
nonmonotonically, on all variables.
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Introduction

With following consequences

Imputation models must restrict themselves to estimable ones (in
spite of loss of generality)→ Sample sizes are almost invariably
too small for parameter estimation of large multivariate models.

Possibilities to enlarge the effective sample size must be
considered → time dimension.

No row deletion allowed.

No column deletion allowed → In general, it is not possible to
reduce the number of variables in the data set.
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Introduction

Which in turn determine the applicability of imputation methods

Hot deck methods are not applicable.

It is not possible (as a general rule) to estimate monotone
missing patterns by factorizing the (log-)likelihood function.

It is not possible to estimate autoregressive relationships.
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Methodological section
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The general strategy: EM Algorithm + MCMC

EM Algorithm         MCMC

 Joint distribution of the data  P(ymis| yobs, θ)  -Imputation-
T1 T2 Tp

7,60 5,84 4,02 T11 T12 T1pNA NA 3,15
11,95 NA -0,70 T22 T2p20,21 4,82 -1,56
NA 1,90 0,34 Tpp23,87 3,65 3,71

-7,47 7,24 NA
8,13 NA NA

18,76 6,68 -1,91
1,31 NA 0,21
NA 2,46 NA
NA 8,18 -0,58

-4,78 5,95 -0,16 μ2,18 4,55 NA
NA 6,01 1,13

-6,94 1,94 -0,07

μ Σ
5,46 NA NA
6,77 1,20 4,34
NA 4,15 NA
7,08 11,85 NA

 P( θ| yobs, ymis)  -Posterior-

Y1

Y2

Y3

Ym

Expectation

Maximization
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The EM Algorithm

The Expectation Maximization Algorithm (Dempster,
Laird and Rubin; 1977) is an iterative method for
calculation of Maximum Likelihood estimates in
incomplete data settings.
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The EM Algorithm

Some definitions

In a slight abuse of notation, let fy (y |θ) where y = (yobs , ymis) denote the
joint distribution of the complete data, fyobs

(yobs |θ) the joint distribution
of the observed data and fymis (ymis |θ) the joint distribution of the missing
data.

Furthermore, let L(θ|y) denote the likelihood of the complete data and
L(θ|yobs) the likelihood of the observed data.

Analogously, let l(θ|y) denote the log-likelihood of the complete data and
l(θ|yobs) the log-likelihood of the observed data.

Luis Huergo A MI Approach to Indicators 5th September 2006 13 / 53



The EM Algorithm

The main problem

In many cases l(θ|yobs) has a complex structure which makes its
maximization very difficult or even impossible. On the other hand, l(θ|y)
has usually a much easier structure.

However, the information about l(θ|y) is incomplete, since a part of y is
missing. The stochastics proposes as the best estimation of l(θ|y) its
conditional expectation given the informaton contained in yobs (and some
parameter vector θ(i)).

How do l(θ|yobs) and E [l(θ|y)|yobs ] relate to each other?
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The EM Algorithm

From elementary probability theory

fymis (ymis |yobs , θ) =
fy (y |θ)

fyobs
(yobs |θ)

and hence

fyobs
(yobs |θ) =

fy (y |θ)
fymis (ymis |yobs , θ)

Taking logarithms

log fyobs
(yobs |θ) = log fy (y |θ)− log fymis (ymis |yobs , θ)

l(θ|yobs) = l(θ|y)− log fymis (ymis |yobs , θ)
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The EM Algorithm

and building an expectation over the predictive distribution of ymis given
yobs and θ(i)

E[l(θ|yobs)] = E[l(θ|y)]− E[log fymis (ymis |yobs , θ)]

l(θ|yobs) = E[l(θ|y)]︸ ︷︷ ︸
Q

− E[log fymis (ymis |yobs , θ)]︸ ︷︷ ︸
H

If the log-likelihood is linear in the data, then its expectation can be
computed by imputing the missing data with their conditional expectation
given the observed data (and some parameter vector θ(i))
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The EM Algorithm

If the data belong to the Exponential family of distributions then the
loglikelihood l(θ|y) is not linear in the data, but rather is linear in a set of
sufficient statistics (T)
Example(bivariate case)

T1 =
n∑

i=1

yi1, T2 =
n∑

i=1

yi2, T11 =
n∑

i=1

y2
i1, T22 =

n∑
i=1

y2
i2, T12 =

n∑
i=1

yi1yi2

Filling in missing values in the E-step does not work. The expectations of
the sufficient statistics must be computed.
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The EM Algorithm

The computation of expected values already suggests the iterative nature
of the algorithm: In order to build an expected value, distribution
parameters are needed, which in turn represent the objective of the
estimation.

The typical steps are:

1 Choose a set of starting values.

2 Expectation: Compute the expected value of the Likelihood given
the current values of the parameters.

3 Maximization: Compute new parameter values which maximize this
Likelihood.

4 Iterate to convergence.
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The core of the EM Algorithm for normal data:
the Sweep Operator (Schafer, 1997)

Alternative parameterizations of the normal distribution

Suppose that z is a p x1 random vector distributed as N(µ,Σ), which we
partition as z ′ = (z ′

1, z
′
2) where z1 and z2 are subvectors of length p1 and

p2 = p − p1 respectively.

It is well known that the marginal distributions of z1 and z2 are N(µ1,Σ11)
and N(µ2,Σ22), where µ′ = (µ′

1, µ
′
2) and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
are the partitions of µ and Σ corresponding to z ′ = (z ′

1, z
′
2).
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The Sweep Operator (Schafer, 1997)

Moreover, the conditional distributions are also normal; in particular, the
distribution of z2 given z1 is normal with mean

E(z2|z1) = α2·1 + β2·1z1

and covariance matrix Σ22·1, where

α2·1 = µ2 − Σ21Σ
−1
11 µ1,

β2·1 = Σ21Σ
−1
11 ,

Σ22·1 = Σ22 − Σ21Σ
−1
11 Σ12.

are the vector of intercepts, matrix of slopes and matrix of residual
covariances, respectively, from the (multivariate) regression of z2 on z1.
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The Sweep Operator (Schafer, 1997)

Because specifying the joint distribution of z1 and z2 is equivalent to
specifying the marginal distribution of z1 and the conditional distribution
of z2 given z1, it is possible to characterize the parameters of the
distribution of z either by θ = (µ,Σ) or by φ = (φ1, φ2) where

φ1 = (µ1,Σ11) and

φ2 = (α2·1, β2·1,Σ22·1)
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The Sweep Operator (Little and Rubin, 2002)

Sweeping

The sweep operator is defined for symmetric matrices as follows. A p x p
symmetric matrix G is said to be swept on row and column k if it is
replaced by another p x p symmetric matrix H with elements defined as
follows

hkk =
−1

gkk

hjk = hkj =
gjk

gkk
, j 6= k,

hjl = gjl −
gjkgkl

gkk
, j 6= k, l 6= k.
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The Sweep Operator

The operation of sweeping on a variable turns that variable from a
dependent variable into a predictor or independent variable.

The swept matrix contains the corresponding regression coefficients along
with the variance-covariance matrix of the residuals.

By means of the Sweep Operator, it is possible to compute all possible uni-
and multivariate regressions among the variables of the joint distribution of
the data without having to use sets of completely observed values to do it.
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The Data Augmentation Algorithm (Schafer, 1997)

Consider the following iterative sampling scheme: given a current guess
θ(t) of the parameter, first draw a value of the missing data from the
conditional predictive distribution of Ymis

Y
(t+1)
mis ∼ P(Ymis |Yobs , θ

(t)) (1)

Then, conditioning on Y
(t+1)
mis , draw a new value of θ from its

complete-data posterior,

θ(t+1) ∼ P(θ|Yobs ,Y
(t+1)
mis ) (2)
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The Data Augmentation Algorithm (Schafer, 1997)

Repeating this scheme from a starting value θ(0) yields a stochastic

sequence {θ(t),Y
(t)
mis : t = 1, 2, . . .} whose stationary distribution is

P(θ,Ymis |Yobs).

The subsequences
{
θ(t), : t = 1, 2, . . .

}
and {Y (t)

mis : t = 1, 2, . . .} have
P(θ|Yobs) and P(Ymis |Yobs) as their respective stationary distributions.
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The Data Augmentation Algorithm (Schafer, 1997)

Tanner and Wong (1987) refer to (1) as the Imputation or I-step and (2)
as the Posterior or P-step, because (1) corresponds to imputing a value of
the missing data Ymis and (2) corresponds to drawing a value of θ from a
complete-data posterior.

For a value of t that is suitably large, we car regard θ(t) as an approximate
draw from P(θ|Yobs).

Alternatively, we can regard Y
(t)
mis as an approximate draw from

P(Ymis |Yobs).
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Empirical section
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EM vs. LS
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A simple example

Without NA’s

-0.2317790 1.5645425
1.3977843 3.4177385
1.0965123 1.5624080
4.2057202 5.0685650
5.1601624 6.3115680
-0.6176621 0.3965697
2.1914055 2.5698609
0.6822623 0.8115055
0.8397043 1.0817316
2.4754820 3.5060047
0.2276409 0.2446433
-1.1512896 1.8198668
0.8433541 3.0730297
1.8972929 2.8986880
3.5244921 4.0894709
2.4650780 5.0531604
1.9660875 3.2031609
1.0907652 3.0170962
-0.4410336 3.7961236
-1.1765625 -1.7791738
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A simple example

Without NA’s With NA’s

-0.2317790 1.5645425 -0.2317790 NA
1.3977843 3.4177385 NA 3.4177385
1.0965123 1.5624080 NA 1.5624080
4.2057202 5.0685650 4.2057202 NA
5.1601624 6.3115680 NA 6.3115680
-0.6176621 0.3965697 -0.6176621 0.3965697
2.1914055 2.5698609 NA 2.5698609
0.6822623 0.8115055 NA 0.8115055
0.8397043 1.0817316 0.8397043 1.0817316
2.4754820 3.5060047 NA 3.5060047
0.2276409 0.2446433 0.2276409 NA
-1.1512896 1.8198668 -1.1512896 NA
0.8433541 3.0730297 NA 3.0730297
1.8972929 2.8986880 1.8972929 2.8986880
3.5244921 4.0894709 NA 4.0894709
2.4650780 5.0531604 2.4650780 NA
1.9660875 3.2031609 1.9660875 NA
1.0907652 3.0170962 1.0907652 NA
-0.4410336 3.7961236 -0.4410336 3.7961236
-1.1765625 -1.7791738 -1.1765625 NA
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A simple example

Without NA’s With NA’s

-0.2317790 1.5645425 -0.2317790 NA
1.3977843 3.4177385 NA 3.4177385
1.0965123 1.5624080 NA 1.5624080
4.2057202 5.0685650 4.2057202 NA
5.1601624 6.3115680 NA 6.3115680
-0.6176621 0.3965697 -0.6176621 0.3965697
2.1914055 2.5698609 NA 2.5698609
0.6822623 0.8115055 NA 0.8115055
0.8397043 1.0817316 0.8397043 1.0817316
2.4754820 3.5060047 NA 3.5060047
0.2276409 0.2446433 0.2276409 NA
-1.1512896 1.8198668 -1.1512896 NA
0.8433541 3.0730297 NA 3.0730297
1.8972929 2.8986880 1.8972929 2.8986880
3.5244921 4.0894709 NA 4.0894709
2.4650780 5.0531604 2.4650780 NA
1.9660875 3.2031609 1.9660875 NA
1.0907652 3.0170962 1.0907652 NA
-0.4410336 3.7961236 -0.4410336 3.7961236
-1.1765625 -1.7791738 -1.1765625 NA
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Scatterplot of the real data
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True (sample) regression line
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Pairs of fully observed data
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LS-regression
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EM-regression
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Visualizing multivariate data
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Normally distributed multivariate data with missing values

NA's :  24 % ; p(ks):  0.991
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NA's :  12 % ; p(ks):  0.509
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NA's :  11 % ; p(ks):  0.998

var 4
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Exploration of the data I

NA's :  0 % ; p(ks):  0.969
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Exploration of the data II

NA's :  0 % ; p(ks):  0.969
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Exploration of the data III

NA's :  0 % ; p(ks):  0.969
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Exploration of the (transformed) data

NA's :  0 % ; p(ks):  0.969
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Experiences from the first imputation round

Setting

The presented methods for normal data were tested on a real
KEI-Dataset.

Several Models of increasing complexity were used.

An attempt was made to apply traditional imputation methods to the
data in order to compare its performance.
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Experiences from the first imputation round

Results

The nonnormality of the variables slowed down the convergence of
the Algorithm. The parameters were also poorly estimated.

The nonlinearity of the relationships diminished the quality of the
imputation.

Simple models seemed to perform better than bigger ones: even when
the EM Algorithm was able to estimate the parameters of the joint
distribution, the resulting parameters were probably just to poorly
estimated and provided imprecise imputed values.

The high proportion of missing data rendered methods not basing on
the EM Algorithm completely useless.
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Although no model can utterly cope with all the problems
found, the following models give partial answers to them:

 
Parametric
estimation?

Semiparametric 
model +
Resampling

t -Model

Additional 
information?

Yes

Normality
achievable?

Hierarchical Bayes Model 
(Schafer & Yucel)

Panel
structure?

YesNo

Bivariate normal
Informative prior

Uninformative prior

No

Grouth Curves Model

Fixed Effects Model

Yes

No

Yes

No
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Further reading

Casella, G. and George, E. I. Explaining the Gibbs Sampler. The
American Statistician, 46, 167-174. 1992.

Little, R. J. A. and Rubin, D. B. Statistical Analysis with Missing
Data. Second edition. Wiley. 2002

Schafer, J.L. Analysis of Incomplete Multivariate Data. Chapman and
Hall. 1997

Tanner, M.A. Tools for statistical inference, Methods for the
Exploration of Posterior Distributions and Likelihood Functions.
Second Edition. Springer-Verlag. 1993.

Tanner, M.A. and Wong, W. H. The calculation of posterior
distributions by data augmentation. Journal of the American
Statistical Association, 82, 528-550.
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Procedures based on Completely Recorded Units:

When some variables are not recorded for some of the units, a simple
expedient mentioned in Section 1.1 is simply to discard incompletely
recorded units and to analyse only the units with complete data (Nie et.
al., 1975). [. . .]. It is generally easy to carry out and may be satisfactory
with small amounts of missing data. It can lead to serious biases,
however, and it is not usually very efficient, especially when drawing
inferences for subpopulations.

Little and Rubin, 2002; p. 19.
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Ignorability

The missing data mechanism is ignorable for likelihood inference if:

MAR: the missing data are missing at random.
Distinctness: the parameters θ and ψ are distinct, in the sense that the
joint parameter space of (θ, ψ) is the product of the parameter space of θ
and the parameter space of ψ.

Little and Rubin, 2002; p. 120.
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Ignorability

The missing data mechanism is ignorable for bayesian inference if:

MAR: the missing data are missing at random.
The parameters θ and ψ are a priori indepedent, that is, the prior
distribution has the form

p(θ, ψ) = p(θ) · p(ψ)

Little and Rubin, 2002; p. 120.
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Ignorability

Filling in missing values in the E-step does not work because the
loglikelihood l(θ|y) is not linear in the data, but rather is linear in the
following sufficient statistics (bivariate case)

T1 =
n∑

i=1

yi1, T2 =
n∑

i=1

yi2, T11 =
n∑

i=1

y2
i1, T22 =

n∑
i=1

y2
i2, T12 =

n∑
i=1

yi1yi2

Little and Rubin, 2002; p. 171.
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General Ignorable Procedures

We shall call a missing-data procedure a general ignorable procedure if it is
based upon either an observed-data likelihood or an observed-data
posterior. The EM algorithm, for example, will be seen to be a general
ignorable procedure because it maximizes the observed-data likelihood.

Schafer, 1997; p. 23
Limited practical experience with real data also suggests that general
ignorable procedures may tend to perform well even when the ignorability
assumption is suspect, especially in multivariate settings.

Schafer, 1997; p. 27.
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General Ignorable Procedures

David et al.(1986) found little evidence of bias in ignorable procedures
that imputed missing values of income on the basis of other demographic
and questionnaire items that were observed.

This evidence came from knowledge of the missing values obtained from
an external source, the actual wages and salary reported to the Internal
Revenue Service on the individuals’ tax returns.

David et al.(1986) also concluded that further improvements in the
missing-data procedures would probably come from better modeling of the
multivariate structure of the data, not from nonignorable modeling.

Schafer, 1997; p. 27.
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About proper imputation models

From a practical standpoint, knowing whether an imputation method is
technically proper for a particular analysis is less important than knowing
whether it actually behaves well or poorly over repeated samples. The
latter question can be addressed through simulation studies with realistic
complete-data populations and realistic response mechanisms.

Schafer, 1997; p. 145.
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