Fourth KEI Workshop Leuven, September 5-6, 2006

"Social Multi-Criteria Evaluation and Composite Indicators"

Giuseppe Munda DG JRC, G09 and Universitat Autonoma de Barcelona

Structure of the presentation

- The need of a multidimensional framework
- A methodological proposal: Social Multi-Criteria Evaluation
- Numerical examples
- Conclusions

addressed

gnored

Complexity is an inherent property of natural and social systems

COMPLEX SYSTEMS CANNOT BE CAPTURED BY A SINGLE DIMENTION/PERSPECTIVE

Complexity: the ontological dimension

the existence of *different levels and scales* at which a hierarchical system can be analyzed implies the unavoidable existence of non-equivalent descriptions of it

Orientation of the coastal line of Maine

Complexity: the epistemological dimension

What is a city?

A co-evolutionary interpretation of a city

Ecosystems can be divided into three categories (Odum, 1989):

- 1) *natural environments* or natural solar-powered ecosystems
- 2) domesticated environments or man-subsided solar-powered ecosystems
 3) fabricated environments or fuel-powered urban-industrial systems

•TECHNICAL INCOMMENSURABILITY •SOCIAL INCOMMENSURABILITY

K. Arrow, H. Raynaud (1986): "Social choice and multicriterion decision making"

THE AXIOMATIZATION ISSUE

A typical composite indicator, I, is built as follows (OECD, 2003, p. 5):

 $I = \sum_{i=1}^{N} w_i X_i$, where X_i is a normalised variable and w_i a weight attached to X_i ,

$$\sum_{i=1}^{N} w_i = 1 \text{ and } 0 \le w_i \le 1, \ i = 1, 2, ..., N.$$

It is clear that from a mathematical point of view a composite indicator entails a weighted *linear aggregation rule* applied to a set of variables.

- Weights in linear aggregation rules have always the meaning of trade-off ratio. In all constructions of a composite indicator, weights are used as importance coefficients, as a consequence, <u>a theoretical inconsistency exists</u>.
- The assumption of *preference independence* is essential for the existence of a linear aggregation rule. Unfortunately, this assumption has very strong consequences which often *are not desirable* in a composite indicator.
- In standard composite indicators, <u>compensability</u> among the different individual indicators is always assumed; this implies complete substitutability among the various components considered. For example, in a sustainability index, economic growth can always substitute any environmental destruction or inside e.g., the environmental dimension, clean air can compensate for a loss of potable water. <u>From a descriptive point of view, such a complete</u> <u>compensability is often not desirable</u>.

• Both social choice literature and multi-criteria decision theory agree that whenever the majority rule can be operationalized, it should be applied. However, the majority rule often produces undesirable intransitivities, thus "more limited ambitions are compulsory. The next highest ambition for an aggregation algorithm is to be Condorcet" (Arrow and Raynaud, 1986, p. 77).

Sustainability Indicator

	Indic. GDP Unem Rate		Unemp. Rate	Solid wastes	Inc. disp.	Crime rate
Country	770				77	N
Α		25,000	0.15	0.4	9.2	40
B		45,000	0.10	0.7	13.2	52
С	5.5 7	20,000	0.08	0.35	5.3	80
weights		0.165	0.165	0.333	0.165	0.165

ABC = 0.666 + 0.333 + 0.333 = 1.333

BCA = 0.333 + 0.666 + 0.333 = 1.333

CAB = 0.666 + 0.666 + 0.666 = 2

ACB = 0.333 + 0.666 + 0.666 = 1.666

BAC = 0.333 + 0.333 + 0.333 = 1

CBA = 0.666 + 0.333 + 0.666 = 1.666

	Α	В	С
Α	0	0.666	0.333
В	0.333	0	0.333
С	0.666	0.666	0

The Computational problem

Moulin (1988, p. 312) clearly states that the Kemeny method is *"the correct method"* for ranking alternatives, and that the *"only drawback of this aggregation method is the difficulty in computing it when the number of candidates grows"*.

One should note that the number of permutations can easily become unmanageable; for example when 10 alternatives are present, it is 10!=3,628,800.

$$\begin{cases} a_{j}Pa_{k} \iff g_{m}(a_{j}) > g_{m}(a_{k}) + p \\ a_{j}Qa_{k} \iff g_{m}(a_{k}) + p \ge g_{m}(a_{j}) > g_{m}(a_{k}) + q \\ a_{j}Ia_{k} \iff \begin{cases} g_{m}(a_{k}) + q \ge g_{m}(a_{j}) \\ g_{m}(a_{j}) + q \ge g_{m}(a_{k}) \end{cases}$$

Taking into account *intensity of preference*

Matrix type Impact Case Study				
Alternatives Criteria	Budapest	Moscow	Amsterdam	New York
Houses owned (%)	50.5	40.2	2.2	10.3
Residential density (pers. /hectare)	123.3	225.2	152.1	72
Use of private car (%)	31.1	10	60	32.5
Mean travel time to work (minutes)	40	62	22	36.5
Solid waste generated per capita (t./year)	0.2	0.29	0.4	0.61
City product per person (US\$/year)	4750	5100	28251	30952
Income disparity (Q5/Q!)	9.19	7.61	5.25	14.81
Households below poverty line (%)	36.6	15	20.5	16.3
Crime rate per 1000 (theft)	39.4	4.3	144.05	56.7

Normalisation technique used for the different measurement units dealt with.

Scale adjustment used, for example population or GDP of each country considered.

Common measurement unit used (money, energy, space and so on).

100	78.674	0	16.770
33.485	100	52.28	0
42.2	0	100	45
45	100	0	36.25
0	21.95	48.78	100
0	1.335	89.691	100
41.213	24.686	0	100
100	0	25.462	6.018
25.116	0	100	37.495

Normalized Impact Matrix

100	78.674	0	16.770
66.515	0	47.72	100
57.8	100	0	55
55	0	100	63.75
100	78.05	51.22	0
0	1.335	89.691	100
58.787	75.314	100	0
0	100	74.538	93.982
74.884	100	0	62.505

Normalised Impact Matrix Accounting for Minimisation Objectives

Budapest = 512.986 Moscow = 533.373 Amsterdam = 463.169 New York = 492.052

From where are these results coming from?

Information available

Indicators chosen

Direction of each indicator

Relative importance

Aggregation Procedure

	Budapest	Moscow	Amsterdam	New York
	12.5	117		202
Budapest	0	4	4	5
Moscow	5	0	5	6
Amsterdam	5	4	0	3
New York	4	3	6	0

Outranking Matrix of the 4 Cities According to the 9 Indicators

В	A	D	С	31	С	В	D	А	27
B	D	С	А	31	D	В	А	С	27
A	в	D	С	30	D	С	в	A	27
В	D	А	С	30	A	С	в	D	26
В	С	A	D	29	A	D	С	В	26
В	A	С	D	28	D	A	В	С	26
В	С	D	А	28	D	С	A	В	26
С	В	A	D	28	D	A	С	В	25
D	В	С	A	28	С	A	D	В	24
A	В	С	D	27	С	D	в	A	24
A	D	В	С	27	A	С	D	В	23
C	А	В	D	27	C	D	А	В	23

В	Α	D	С	31
В	D	С	A	31

Where A is Budapest, B is Moscow, C is Amsterdam and D is New York.

Economic dimension City product per person Environmental dimension Use of private car Solid waste generated per capita Social dimension Houses owned **Residential density** Mean travel time to work Income disparity Households below poverty line Crime rate

A reasonable decision might be to consider the three dimensions equally important. This would imply to give the same weight to each dimension considered and finally to split this weight among the indicators. That is, each dimension has a weight of 0.333; then the economic indicator has a weight of 0.333, the 2 environmental indicators have a weight of 0.1666 each, and each one of the 6 social indicators receives a weight equal to 0.0555. As one can see, if dimensions are considered, weighting indicators by means of importance coefficients is crucial.

	Budapest	Moscow	Amsterdam	New York
Budapest	0	0.3	0.4	0.4
Moscow	0.7	0	0.5	0.6
Amsterdam	0.6	0.5	0	0.3
New York	0.6	0.4	0.7	0
and the street		Service -	a sur the state	and the same

Weighted Outranking Matrix

BDCA

Where A is Budapest, B is Moscow, C is Amsterdam and D is New York.

CONCLUSION:

Results are heavily dependent on the **problem structuring step!!**

CONSISTENCY

REFERENCES

- Munda G. Social multi-criteria evaluation: methodological foundations and operational consequences, European Journal of Operational Research, vol. 158/3, pp. 662-677, 2004.
- Munda G. "Measuring sustainability": a multi-criterion framework, Environment, Development and Sustainability, Vol 7, No. 1, pp. 117-134, 2005.
- Munda G., Nardo M. (2005) Non-compensatory composite indicators for ranking countries: a defensible setting, EUR 21833 EN, Joint Research Centre, Ispra.
- Munda G., Nardo M. (2005) Constructing consistent composite indicators: the issue of weights, EUR 21834 EN, Joint Research Centre, Ispra.
- Munda G. Social multi-criteria evaluation for urban sustainability policies, Land Use Policy Volume 23, Issue 1, January 2006, Pages 86-94.