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Disclaimer

This report is released to inform interested parties of ongoing research

and to encourage discussion of work in progress. The views expressed on

statistical, methodological, technical, or operational issues are those of the

authors and not necessarily those of the U.S. Census Bureau.
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1. Introduction

Area level model (Fay and Herriot 1979):

 =  + 
= (x0 + ) + 

•  = direct survey estimate of population quantity  for area 

•  = sampling error in  as an estimate of 

• x = vector of regression variables for area 

• β = vector of regression parameters

•  = area  random effect (model error).
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Model:

 =  + 

= (x0β + ) + 

Standard Model Assumptions:

•  ∼  (0 2) (and independent of )

•  ∼ ind. (0 )

•  are known.

Note: We really only have estimates ̂ of .
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What happens when ̂ 6= ?

• How much does [( − ̂)
2] increase?

• How much do we misstate [( − ̂)
2]?

• Can we (partly) address these issues by modeling ̂?
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Outline of Talk

1. Introduction X

2. Rough calculations (for large ) of consequences of ̂ 6= :

• percent increase in MSE

• percent misstatement of MSE.

3. Literature review on dealing with ̂ 6= .

4. Empirical example — SAIPE model for age 5-17 state poverty rates

and their variances
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2. Rough calculations of consequences of ̂ 6= 

Consider simple case where  and 2 are known ( very large), but 
are unknown, estimated by ̂. Let

̃ =  + (1− )x
0


̂ = ̂ + (1− ̂)x
0


where

 =
2

2 + 
=

Ã
1 +


2

!−1
̂ =

2
2 + ̂

=

Ã
1 +

̂
2

!−1


Then the MSE of ̂ conditional on ̂ is

[( − ̂)
2|̂] = [( − ̃)

2] +[(̃ − ̂)
2|̂]

The MSE of ̃ is 
2
(1− ). The reported MSE of ̂ is 

2
(1− ̂).
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After a little algebra, we have that

MSE pct diff ≡ 100× MSE( − ̂)− MSE( − ̃)

MSE( − ̃)

= 100× ( − ̂)
2

(1− )


MSE relbias = 100× reported MSE( − ̂)− actual MSE( − ̂)

actual MSE( − ̂)

= 100×
(

2(1− ̂)

2(1− ) + ( − ̂)2(2 + )
− 1

)

= 100×
(

(1− ̂)

(1− ) + ( − ̂)2
− 1

)
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We examine MSE pct diff and MSE relbias for multiplicative errors in ̂
as an estimate of :

underestimation factors: ̂ =
3
4
1
2
1
4

overestimation factors: ̂ =
4
3 2 4

For each of the above values of ̂, plot MSE pct diff and MSE relbias

for values of 
2
 from 02     1     50 (on log scale).
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Fig. 1. Percent difference in MSE and percent bias in reported MSE
from using estimated versus true sampling variance
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Fig. 1. Percent difference in MSE and percent bias in reported MSE
from using estimated versus true sampling variance



Conclusions for large 
2
:

• Underestimation of  is the more severe problem for both MSE pct

diff and MSE relbias.

MSE increase is due to ̂  , so too much weight given to .

Conclusions for small 
2
:

• Overestimation of  is the more severe problem for MSE pct diff.

• MSE relbias is very severe from either severe under- or overestimation

of .
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Since large errors in ̂ seem more likely when 
2
 is large, our general

conclusion is:

The largest potential problem comes from

severe underestimation of  when 
2
 is large.
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Given an assumed distribution of ̂, unconditional versions of MSE pct

diff and MSE relbias can be computed as

MSE pct diff = 100× [( − ̂)
2]

(1− )


MSE relbias = 100×
(

(1− ̂)

(1− ) +[( − ̂)2]
− 1

)


We do this (by numerical integration) assuming ̂ ∼ 
2
 for three

values of  (6, 16, 80):

Table 1. 5% and 95% points for the 2 distribution

 5% point 95% point
6 27 210
16 50 164
80 75 127
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3. Literature Review — Dealing with ̂ 6= 

• Approximate MSE results when  are estimated

• Modeling the ̂ to improve them (“small area variance modeling”)

Philosophy: If the direct survey point estimates need to be improved

by small area modeling, so do the direct survey variance estimates.
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Approximate MSE results when  are estimated

Assume (̂) =  with ̂ ⊥  and ̂ ⊥ . Wang and Fuller (2003,

Theorem 1) show that

MSE( − ̂) ≈ 2(1− ) + (1− )
2x0

³
̂
´
x

+(2 + )
−3{4 (̂) + 2 (̂

2
))

They develop two estimators of the MSE.

Rivest and Vandal (2003) provide an essentially similar MSE estimator.

Note: The assumptions ̂ ⊥  and ̂ ⊥  may not be satisfied in

practice.
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Interesting features of these results:

• Wang and Fuller’s result is asymptotic in both

 = # of small areas, and

 = degrees of freedom of ̂

• Rivest and Vandal’s result assumes ̂ are approximately normal.

Simulation results by Wang and Fuller and by Rivest and Vandal suggest

MSE estimators work pretty well in many of the cases considered (including

 and  not so large).

• Exception: Wang and Fuller find results are poor when 2 is very
large.
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Small area variance modeling

Start with a generalized variance function (GVF) — some examples:

normal:  = 

lognormal:  =  2  relvariance ≈ Var(log())
is constant over areas 

binomial:  = (1− ) ( = population proportion
for area ;  = design effect)

Here  = some measure of sample size, and  = GVF parameter to be

estimated.

Note: GVF could depend on other covariates related to the sample design.
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Small area variance modeling

Note different perspectives on use of GVF:

• classical survey sampling — fit GVF as an approximation to direct
variance estimates when providing the latter is difficult (e.g., for a

large number of estimates)

• small area variance modeling — fit GVF as a model to improve on
imprecise direct variance estimates.

Some references to GVF fitting/modeling: Wolter (1985); Valliant (1987);

recent JSM proceedings papers by staff of U.S. Bureau of Labor Statistics;

talk this afternoon by Sam Hawala.
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Two issues with GVF modeling

Issue 1:  may depend on the unknown true value 

Frequentist solution: Substitute something (what?) for unknown 

0̂ or EB estimate of 

What not to substitute for unknown ?

 (direct survey estimates)

Bayesian solution: Let  depend on  via MCMC

Liu, Lahiri, and Kalton (2007); You (2008)

GVF:  =
(1−)


×deff 
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Two issues with GVF modeling

Issue 2: What if  is large and  ≈ ̂ (and so both are small)
for some ?

Solution: Include random area effects in the variance model.

Otto and Bell (1995); Arora and Lahiri (1997);

Gershunskaya and Lahiri (2005); You and Chapman (2006);

Talk this afternoon by Jerry Maples.

Note: This issue does not arise if all area sample sizes are small, which

can occur (e.g., in time series modeling of repeated survey estimates).
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Small area variance modeling with random effects

Working model:

̂| ∼  ̃
2


−1 ∼  Gamma( + 1 −1)

where ̃ ≡ ̃(   ) is a GVF, and  = ̃ is the true sampling

variance. Otto and Bell (1995) developed a multivariate (Wishart) version.

We fit this model to the estimated sampling variances ̂.

Question: What is ?
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Small area variance modeling with random effects

Implications of the working model:

1. () = 1

2. As  →∞, → 1 (no area random effects)

As  → 0,  become fixed, unrelated area effects.

3. ̂ ∼ 
+1 ( 2( + 1))

4. −1 |̂ ∼ Gamma
³
 + 1 + 

2  ( +
̂
2̃
)−1

´

5. (|̂) =
³
 + 

2

´−1 ³
̃ +


2 ̂

´
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4. Empirical example

SAIPE model for state 5-17 poverty rates (CPS data)

 =  + 

= (x0 + ) + 

•  = CPS direct survey estimate of population 5-17 poverty rate ()

for state  = 1     51 in year  = 1995     1998

•  = state , year  random effect ∼ ind. (0 2), and independent
of 

•  = survey errors ∼ ind. (0 )
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• x = vector of regression variables for state , year :

— pseudo state poverty rate from tax return information and also tax

“nonfiler rate”

— food stamp participation rate

— “census residuals” (from regressing previous census estimate on

other elements of x for the census year)

•  = vector of regression parameters for year .
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SAIPE state sampling error model

Data: C = 4× 4 direct estimated sampling covariance matrix for state 
for 1995     1998

Model: Assumes (C) = V (true sampling covariance matrix) with

C| {} ∼ W

W ∼ Wishart(fV()) independent over 

−1 ∼  Gamma( + 1 −1)

where the true sampling error covariance matrix for state  is

V = 
fV() = D()R()D()

24



D() = 4× 4 diagonal matrix with entries given by square roots of

̃ = GVF ≡ (1− )

R() = 4× 4 correlation matrix depending on parameters  = (1 2)
(AR(2) model)

 = state  random effects on sampling variances

() = 1 for all values of 

 →∞⇒  = 1 for all 

 → 0⇒  = fixed state effects
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Sampling error model parameter MLEs

parameter   1 2 

MLE 16.7 5.9 .32 −02 40

std. error .98 .20 .02 .02 —
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We shall examine results using four alternative estimates of the estimated

sampling error variances ̂:

1. ̂ = direct survey variance estimates,

2. ̂ = GVF(̂), i.e., the fitted GVF with no state effects ( = 1),

which results as  →∞.

3. ̂ = ̂GVF(̂) where ̂ = (|C ̂) are the predictions of 
from the sampling error model at its MLEs (including ̂ = 40)

4. ̂ = ̃GVF(̂) where the ̃ are fixed state effects obtained as

 → 0
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Fig. 2. Sampling error variances of age 5−17 state poverty ratios, 1995−1998
Direct estimates (points) and fitted GVFs with and without state effects

(state effects: green = fixed, red = random, blue = none)
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Fig. 3. Alternative predictions of age 5−17 state poverty ratios, 1995−1998
Direct estimates (points) and Bayesian predictions using alternative sampling variances

(dotted ~ use of direct variances, solid ~ use of GVFs with state effects: green = fixed, red = random , blue = none)
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Fig. 4. Alternative posterior variances of age 5−17 state poverty ratios, 1995−1998
Posterior variances using alternative sampling variances

(dotted ~ use of direct variances, solid ~ use of GVFs with state effects: green = fixed, red = random , blue = none)
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General conclusions:

1. Most serious potential problems from use of direct sampling variance

estimates in small area models comes from severe underestimation of

the sampling variance when it is large.

2. The worst problems with use of direct sampling variances can possibly

be addressed by modeling the variances.

3. More research on this topic is needed.
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