Discussion of W.R. Bell's paper

Partha Lahiri

JPSM University of Maryland, College Park

Partha Lahiri (JPSM, University of Maryland,

The Fay-Herriot Model: An Area Level Normal Model

For $i = 1, \dots, m$, assume Level 1: (Sampling Model) $Y_i = \theta_i + e_i$; Level 2: (Linking Model) $\theta_i = x'_i \beta + v_i$. Equivalently, $Y_i = x'_i \beta + v_i + e_i$, $i = 1, \dots, m$.

- *Y_i* : direct estimate for area *i*;
- *D_i* : *known* sampling variance of *y_i*.
- x_i : a $p \times 1$ column vector of known auxiliary variables;
- $X' = (x_1, \dots, x_m)$, and $\Sigma(A) = diag\{A + D_j; j = 1, ..., m\}$.
- $\{e_i\}$ and $\{v_i\}$ are *independent* with $e_i \sim N[0, D_i]$ and $v_i \sim N[0, A]$,
- Lower dimensional (p + 1) or Hyperparameters: β and A
- Higher dimensional (*m*) or small area means: θ_i
- Main Objective: Estimation of small area means

The BP, BLUP and EBLUP

The BP (Bayes estimator) of θ_i

$$\hat{ heta}_i(Y_i; A) = B_i Y_i + (1 - B_i) x_i' eta,$$

where
$$B_i = \frac{A}{D_i + A}, i = 1, ..., m$$
.

The BLUP of θ_i

$$\hat{\theta}_i(\boldsymbol{Y}_i; \boldsymbol{A}) = \boldsymbol{B}_i \boldsymbol{Y}_i + (1 - \boldsymbol{B}_i) \boldsymbol{x}_i' \hat{\beta}(\boldsymbol{A}),$$

where
$$\hat{\beta}(A) = [X'\Sigma^{-1}(A)X]^{-1}X'\Sigma^{-1}(A)Y$$
 and $B_i = \frac{A}{D_i+A}, i = 1, \dots, m$.

An EBLUP of θ_i

$$\hat{\theta}_i(Y_i; \hat{A}) = \hat{B}_i Y_i + (1 - \hat{B}_i) x'_i \hat{\beta}(\hat{A}) =: \hat{\theta}_i,$$

where $\hat{B}_i = \frac{\hat{A}}{D_i + \hat{A}}$, i = 1, ..., m, and \hat{A} is a consistent estimator of A.

Partha Lahiri (JPSM, University of Maryland,

- Level 1 Components
 - 1. Normality
 - 2. y_i are unbiased
 - 3. D_i are known
 - 4. Independence
- Level 2 Components
 - 1. Normality
 - 2. Linear mean function
 - 3. Homoscedasticity
 - 4. Independence

- Bell's paper considered impact of Level 1 misspecification of D_i
- Impact is more on MSE estimation than point estimation
- Underestimation for *D_i*'s are more severe than underestimation

Impact of Non-normality in Both Levels: A Non-Normal Area Level Model

- {*e*_{*i*}} and {*v*_{*i*}} are uncorrelated with *e*_{*i*}~[0, *D*_{*i*}, κ_{ei}] and *v*_{*i*}~[0, *A*, κ_{v}], [μ, σ^{2}, κ] representing a probability distribution with mean μ , variance σ^{2} and kurtosis κ . Let $\Phi = Diag\{\kappa_{ej}; j = 1, \dots, m\}$.
- *κ* = μ₄/σ⁴ − 3, where μ₄ is the the fourth central moment of the distribution respectively.
- We assume that $[\beta, A, \kappa_v]$ is unknown, but $[D_i, \kappa_{ei}]$ is known.

 $MSPE(\hat{\theta}_i) = E(\hat{\theta}_i - \theta_i)^2$, where the expectation is taken over the joint distribution of *Y* and θ under the non-normal Fay-Herriot model.

We decompose the MSPE of EBLUP $\hat{\theta}_i$ as

$$MSPE[\hat{\theta}_i(Y_i, \hat{A})] = MSPE[\hat{\theta}_i(Y_i, A)] + E[\hat{\theta}_i(Y_i, \hat{A}) - \hat{\theta}_i(Y_i, A)]^2 \\ + 2E[\hat{\theta}_i(Y_i, \hat{A}) - \hat{\theta}_i(Y_i, A)][\hat{\theta}_i(Y_i, A) - \theta_i].$$

where $\hat{\theta}_i(Y_i, A)$ is the BLUP of θ_i .

Approximation to MSPE

A second-order expansion to MSPE of EBLUP $\hat{\theta}_i$ is given by

$$\begin{aligned} &AMSPE_{i} \\ &= g_{1i}(A) + g_{2i}(A) + g_{3i}(A, \kappa_{v}) + 2g_{4i}(A, \kappa_{v}) \\ &= \frac{AD_{i}}{A + D_{i}} + \frac{D_{i}^{2}}{(A + D_{i})^{2}} var[\hat{\beta}(A)] \\ &+ \frac{D_{i}^{2}}{(A + D_{i})^{3}} var(\hat{A}) + \frac{2AD_{i}^{2}}{m(A + D_{i})^{3}} \left[D_{i}\kappa_{ei} - A\kappa_{v}\right] c(\hat{A}; A) \\ &= AMSPE_{i,N} + \frac{D_{i}^{2}}{(A + D_{i})^{3}} \eta(\hat{A}; A, \kappa_{v}) + 2g_{4i}(A, \kappa_{v}), . \end{aligned}$$

where $AMSPE_{i,N}$ is the normality-based MSPE approximation as given in Prasad and Rao (1990) and Datta, Rao and Smith (2005).

Partha Lahiri (JPSM, University of Maryland,

Comments

- The term g_{3i}(A, κ_ν) is the additional uncertainty due to the estimation of the variance component A and the term 2g_{4i}(A, κ_ν) is needed to adjust for the non-normality.
- Under the regularity conditions, g_{1i}(A) is the leading term [of order O(1)] and the remaining terms are all of order O(m⁻¹).
- Note that non-normality affects both var(Â) and the cross-product term 2E[θ̂_i(Â, Y) − θ̂_i(A, Y)][θ̂_i(A, Y) − θ_i].
- When both $\{e_i\}$ and $\{v_i\}$ are normal, the above approximation reduces to the Prasad-Rao (1990) approximation when $\hat{A} = \hat{A}_{PR}$ and the Datta-Rao-Smith (2005) approximation when $\hat{A} = \hat{A}_{FH}$.
- When the $\{e_i\}$ are normal and $\hat{A} = \hat{A}_{PR}$, the MSPE approximation reduces to the Lahiri-Rao (1995) approximation.

Estimation of small area proportion

For $i = 1, \dots, m$, assume Level 1: (Sampling Model) $Y_i | \theta_i \stackrel{ind}{\sim} Bin(n_i, \theta_i)$: Level 2: (Linking Model) $\theta_i \stackrel{iid}{\sim} Beta(\alpha, \beta)$.

$$\mu = rac{lpha}{lpha + eta}, \ m{A} = \gamma \mu (1 - \mu),$$
 with $gamma = rac{1}{lpha + eta + 1}$

- Y_i is the number of units favoring an event out of a sample size of n_i.
- Beta[μ , A] denotes a Beta distribution with mean μ and variance A
- Let us assume μ and A are known. So we drop the small area index i in the subsequent discussion.
- Under complex sampling, a more reasonable Level 1 might be Bin(ñ, θ), where ñ = n/δ and δ is the design effect.

Estimation of small area proportion

- The posterior distribution of θ, under misspecified model, is given by Beta[θ^B = (1 − B)p + Bµ, v^B = γθ^B(1 − θ^B)], where B = α+β/α+β+β
- Under the complex sampling model, the posterior distribution of θ is given by Beta $[\tilde{\theta}^B = (1 \tilde{B})\tilde{\rho} + \tilde{B}\mu, \ v^B = \gamma \tilde{\theta}^B(1 \tilde{\theta}^B)]$, where $\tilde{B} = \frac{\alpha + \beta}{\alpha + \beta + \tilde{n}}$
- ARB = $\frac{E(\theta^B \tilde{\theta}^B)}{\theta} = -(1 B)(1 \frac{1}{\delta})$
- $\frac{1}{\alpha + \beta + 1}(1 \frac{1}{\delta}) < |ARB| < 1 \frac{1}{\delta}$

Plot of ARB vs. deff

Plot of ARB vs. deff (B=.25)

Ref: Liu, Lahiri, Kalton (2007)

Model 1

For $i = 1, \dots, m$, assume Level 1: (Sampling Model) $p_i \mid \theta_i \stackrel{ind}{\sim} N[\theta_i, \theta_i(1 - \theta_i)\delta_i];$ Level 2: (Linking Model) $h(\theta_i) \stackrel{ind}{\sim} N[x'_i\beta, A].$

Model 2

For $i = 1, \cdots, m$, assume

Level 1: (Sampling Model) $p_i | \theta_i \stackrel{ind}{\sim} Beta[\theta_i, \theta_i(1 - \theta_i)\delta_i];$ *Level 2:* (Linking Model) $h(\theta_i) \stackrel{ind}{\sim} N[x'_i\beta, A].$

- Level 1 modeling could be problematic in the presence of sizable number of zeroes for small area.
- $\delta_i = \frac{\text{Deff}_i}{n_i} = \frac{\sum_h W_{ih}^2 \theta_{ih} (1 \theta_{ih}) / n_{ih}}{\theta_i (1 \theta_i)},$ where $W_{ih} = N_{ih} / N_i, \ N_i = \sum_h N_{ih}, \ n_i = \sum_h n_{ih}.$
- θ_{ih} is the population proportion for stratum h in area i.
- The design effect $Deff_i$ is a function of θ_{ih} , which are unknown.
- If $\theta_{ih} \approx \theta_i$, then $\delta_i \approx \sum_h W_{ih}^2 / n_{ih}$.
- For complex designs, certain approximations of design effects are given in Kish (1987), Gabler, Häder and Lahiri (1999), Gabler, Ganninger, Lahiri (2011), Hawala and Lahiri (2010).