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The Fay-Herriot Model: An Area Level Normal Model

For i = 1, · · · ,m, assume
Level 1: (Sampling Model) Yi = θi + ei ;
Level 2: (Linking Model) θi = x ′i β + vi .
Equivalently, Yi = x ′i β + vi + ei , i = 1, · · · ,m .

Yi : direct estimate for area i ;
Di : known sampling variance of yi .
xi : a p × 1 column vector of known auxiliary variables;
X ′ = (x1, · · · , xm), and Σ(A) = diag{A + Dj ; j = 1, ...,m}.
{ei} and {vi} are independent with ei∼N[0,Di ] and vi∼N[0,A],

Lower dimensional (p + 1) or Hyperparameters: β and A
Higher dimensional (m) or small area means: θi

Main Objective: Estimation of small area means
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The BP, BLUP and EBLUP
The BP (Bayes estimator) of θi

θ̂i(Yi ; A) = BiYi + (1− Bi)x ′i β,

where Bi = A
Di+A , i = 1, . . . ,m.

The BLUP of θi

θ̂i(Yi ; A) = BiYi + (1− Bi)x ′i β̂(A),

where β̂(A) = [X ′Σ−1(A)X ]−1X ′Σ−1(A)Y and Bi = A
Di+A , i = 1, . . . ,m.

An EBLUP of θi

θ̂i(Yi ; Â) = B̂iYi + (1− B̂i)x ′i β̂(Â) =: θ̂i ,

where B̂i = Â
Di+Â

, i = 1, . . . ,m, and Â is a consistent estimator of A.
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Components of the FH Model

Level 1 Components
1. Normality
2. yi are unbiased
3. Di are known
4. Independence

Level 2 Components
1. Normality
2. Linear mean function
3. Homoscedasticity
4. Independence
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Bell’s paper: Impact of Level 1 Misspecification of Di

Bell’s paper considered impact of Level 1 misspecification of Di

Impact is more on MSE estimation than point estimation

Underestimation for Di ’s are more severe than underestimation
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Impact of Non-normality in Both Levels: A Non-Normal Area Level
Model

{ei} and {vi} are uncorrelated with ei∼[0,Di , κei ] and vi∼[0,A, κv ],
[µ, σ2, κ] representing a probability distribution with mean µ,
variance σ2 and kurtosis κ. Let Φ = Diag{κej ; j = 1, · · · ,m}.

κ = µ4/σ
4 − 3, where µ4 is the the fourth central moment of the

distribution respectively.

We assume that [β,A, κv ] is unknown, but [Di , κei ] is known.
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Approximation to MSPE

MSPE(θ̂i) = E(θ̂i − θi)
2, where the expectation is taken over the joint

distribution of Y and θ under the non-normal Fay-Herriot model.

We decompose the MSPE of EBLUP θ̂i as

MSPE [θ̂i(Yi , Â)] = MSPE [θ̂i(Yi ,A)] + E [θ̂i(Yi , Â)− θ̂i(Yi ,A)]2

+2E [θ̂i(Yi , Â)− θ̂i(Yi ,A)][θ̂i(Yi ,A)− θi ].

where θ̂i(Yi ,A) is the BLUP of θi .
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Approximation to MSPE

A second-order expansion to MSPE of EBLUP θ̂i is given by

AMSPEi

= g1i(A) + g2i(A) + g3i(A, κv ) + 2g4i(A, κv )

=
ADi

A + Di
+

D2
i

(A + Di)2 var [β̂(A)]

+
D2

i
(A + Di)3 var(Â) +

2AD2
i

m(A + Di)3 [Diκei − Aκv ] c(Â; A)

= AMSPEi,N +
D2

i
(A + Di)3 η(Â; A, κv ) + 2g4i(A, κv ), .

where AMSPEi,N is the normality-based MSPE approximation as given
in Prasad and Rao (1990) and Datta, Rao and Smith (2005).
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Comments

The term g3i(A, κv ) is the additional uncertainty due to the
estimation of the variance component A and the term 2g4i(A, κv )
is needed to adjust for the non-normality.
Under the regularity conditions, g1i(A) is the leading term [of order
O(1)] and the remaining terms are all of order O(m−1).

Note that non-normality affects both var(Â) and the cross-product
term 2E [θ̂i(Â,Y )− θ̂i(A,Y )][θ̂i(A,Y )− θi ].
When both {ei} and {vi} are normal, the above approximation
reduces to the Prasad-Rao (1990) approximation when Â = ÂPR
and the Datta-Rao-Smith (2005) approximation when Â = ÂFH .
When the {ei} are normal and Â = ÂPR, the MSPE approximation
reduces to the Lahiri-Rao (1995) approximation.
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Estimation of small area proportion

For i = 1, · · · ,m, assume
Level 1: (Sampling Model) Yi |θi

ind∼ Bin(ni , θi) :

Level 2: (Linking Model) θi
iid∼ Beta(α, β).

µ = α
α+β , A = γµ(1− µ), with gamma = 1

α+β+1

Yi is the number of units favoring an event out of a sample size of
ni .
Beta[µ,A] denotes a Beta distribution with mean µ and variance A
Let us assume µ and A are known. So we drop the small area
index i in the subsequent discussion.
Under complex sampling, a more reasonable Level 1 might be
Bin(ñ, θ), where ñ = n/δ and δ is the design effect.
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Estimation of small area proportion

The posterior distribution of θ, under misspecified model, is given
by Beta[θB = (1−B)p + Bµ, vB = γθB(1− θB)], where B = α+β

α+β+n

Under the complex sampling model, the posterior distribution of θ
is given by Beta[θ̃B = (1− B̃)p̃ + B̃µ, vB = γθ̃B(1− θ̃B)], where
B̃ = α+β

α+β+ñ

ARB = E(θB−θ̃B)
θ = −(1− B)(1− 1

δ )
1

α+β+1(1− 1
δ ) < |ARB| < 1− 1

δ

Partha Lahiri (JPSM, University of Maryland, College Park) SAE 2011, August 12, 2011 11 / 15



2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

deff

A
R

B

Plot of ARB vs. deff

Partha Lahiri (JPSM, University of Maryland, College Park) SAE 2011, August 12, 2011 12 / 15



2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

deff

A
R

B

Plot of ARB vs. deff (B=.25)

Partha Lahiri (JPSM, University of Maryland, College Park) SAE 2011, August 12, 2011 13 / 15



Estimation of Small Area Proportions

Ref: Liu, Lahiri, Kalton (2007)

Model 1
For i = 1, · · · ,m, assume
Level 1: (Sampling Model) pi | θi

ind∼ N[θi , θi(1− θi)δi ];

Level 2: (Linking Model) h(θi)
ind∼ N[x ′i β,A].

Model 2
For i = 1, · · · ,m, assume
Level 1: (Sampling Model) pi | θi

ind∼ Beta[θi , θi(1− θi)δi ];

Level 2: (Linking Model) h(θi)
ind∼ N[x ′i β,A].
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Some Comments

Level 1 modeling could be problematic in the presence of sizable
number of zeroes for small area.
δi = Deff i

ni
=

∑
h W 2

ihθih(1−θih)/nih
θi (1−θi )

,

where Wih = Nih/Ni , Ni =
∑

h Nih, ni =
∑

h nih.

θih is the population proportion for stratum h in area i .
The design effect Deffi is a function of θih, which are unknown.
If θih ≈ θi , then δi ≈

∑
h W 2

ih/nih.
For complex designs, certain approximations of design effects are
given in Kish (1987), Gabler, H~̈ader and Lahiri (1999), Gabler,
Ganninger, Lahiri (2011), Hawala and Lahiri (2010).
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