CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS

Rodolphe Priam, Natalie Shlomo

Southampton Statistical Sciences Research Institute
University of Southampton
United Kingdom

SAE, August 2011

The BLUE-ETS Project is financed by the grant agreement no: 244767 under Theme 8 of the 7th Framework Programme (FP7) of the European Union, Socio-economic Sciences and Humanities.

BUSINESS SURVEYS

- Statistical units are organisational entities in a country
- Interested in small area/domain estimates
- Business registers allow for unit level covariates
- Distributions are typically skewed with outliers
- Transformations, such as the log, to ensure normality assumptions

SMALL AREA ESTIMATION

- **Central problem** in many areas of social statistics. Recently used in business statistics.
- Estimation of the mean in diverse domains

- ullet True population mean $ar{Y}_i$ and design-based estimate $\widehat{Y}_{i;w}$
- ullet Estimated small area mean (EBLUP) $\widehat{ heta}_{i;y}$ because of small n_i

SMALL AREA ESTIMATION AND BENCHMARKING

Small area estimation of the total in the different domains

<u>Problem</u>: The total estimated by the model $\tilde{T}_y = \sum_i w_i \hat{\theta}_{i;y}$ should match the design based estimate of the population total $\hat{T}_y = \sum_i w_i \hat{Y}_{i;w}$.

- Solution by benchmarking the estimates by appropriate method
- Consequence of more robust estimation to misspecifications of the model.

NESTED ERROR UNIT LEVEL MODEL

 The Battese, Harter and Fuller (1988) (BHF) model for small areas i=1, ..., M:

$$Y_i = X_i \beta + 1_{N_i} u_i + e_i$$

The target parameter of interest is the area mean:

$$\overline{Y}_i = \mathbf{1}'_{N_i} Y_i / N_i$$

• The EBLUP for non-negligible sampling fractions:

$$\hat{\theta}_{i;y}^{f} = f_{i} \overline{y}_{i} + (1 - f_{i}) \left[\overline{X}_{ic}' \hat{\beta}_{GLS} + \hat{u}_{i} \right]$$

BENCHMARKING AT THE LINEAR SCALE (1/2)

- Existing methods considered (see for instance Wang & al. (2008))
 - > The ratio method by multiplicative term: $\hat{\theta}_{i,y}^{RT} = \hat{T}_y \tilde{T}_y^{f^{-1}} \hat{\theta}_{i,y}^f$
 - > An additive term with variance weighting: $\hat{\theta}_{i;y}^{VAR} = \hat{\theta}_{i;y}^{f} + \frac{N_i \left(\hat{\sigma}_u^2 + \hat{\sigma}_e^2 / n_i\right)}{\sum_{i=1}^m N_i^2 \left(\hat{\sigma}_u^2 + \hat{\sigma}_e^2 / n_i\right)} \left(\hat{T}_y \tilde{T}_y^f\right)$
 - > Pfeffermann and Barnard (1991): $\hat{\theta}_{i,y}^{PB} = f_i \overline{y}_i + (1 f_i) \left[\overline{X}_{ic}' \hat{\beta}_{PB} + \hat{u}_i^{PB} \right]$

where
$$\hat{\eta}^{PB} = \hat{\eta} - CR'(r - R\hat{\eta})/RCR'$$
, $\hat{\eta} = (\hat{\beta}'_{GLS}, \hat{u}_1, ..., \hat{u}_M)'$, $r = \hat{T}_y - n\overline{y}$, $R\hat{\eta}^{PB} = r$, $R = \left(\sum_{i=1}^{M} N_i \overline{X}_i, N_1 - n_1, N_2 - n_2, \cdots, N_m - n_m, N_{m+1}, \cdots, N_M\right)$

Ugarte & al. (2009) applied this constrained model for a business survey for several regions with variance calculations

BENCHMARKING AT THE LINEAR SCALE (2/2)

We propose the method

Augmentation of the unconstrained least-squares system by adding to the original GLS system one row and one column:

$$\begin{pmatrix} y_s \\ y_{+;a} \end{pmatrix} = \begin{pmatrix} X_s & w_a \\ X'_{+;a} & w_{+;a} \end{pmatrix} \beta_{PSW} + e_a = \begin{pmatrix} X_{s;a} \\ X'_{+;a} \end{pmatrix} \beta_{PSW} + e_a$$

where,

$$\begin{split} w_{a} &= \left(w_{1;a}', w_{2;a}', \cdots, w_{m;a}'\right)'; w_{i;a} = \left(N_{i} / n_{i} - 1\right) \times 1_{Ni}; X_{+;a}' = \sum_{i=1}^{m} \left(N_{i} - n_{i}\right) \left\{-\overline{X}_{ic;a}' + (2\hat{\gamma}_{i} - 1)\overline{x}_{i;a}'\right\}; \\ y_{+;a} &= \sum_{i=1}^{m} \left(\left(2\hat{\gamma}_{i} - 1\right)\left(N_{i} - n_{i}\right) + n_{i}\left(1 - N / n\right)\right)\overline{y}_{i}; w_{+;a} = 2\sum_{i=1}^{m} \left(\hat{\gamma}_{i} - 1\right)\left(N_{i} - n_{i}\right)^{2} / n_{i}. \end{split}$$

 The benchmarking equation is obtained by orthogonality of the residual to the new added column

SIMULATION FOR LINEAR CASE

- Nested error unit level regression model
- B=1000 populations generated
- M = 30 areas (no empty areas)
- $f_i \approx 4\%$
- $\sigma_u = 0.1$, $\sigma_e = 0.3$, and $\beta = (2,0.25)^T$
- $X_{ij} \sim N(m_i, s_i)$; $m_i \sim N(10,3)$; $s_i = 2$

SIMULATION RESULT FOR LINEAR CASE (1/2)

1	$\hat{\theta}_{i;y}^f$	EBLUP
2	$\hat{ heta}^{\scriptscriptstyle RT}_{\scriptscriptstyle i;y}$	Ratio Benchmark
3	$\hat{ heta}^{\mathit{VAR}}_{i;y}$	Variance Weighted Benchmark
4	$\hat{ heta}^{\scriptscriptstyle PB}_{\scriptscriptstyle i;y}$	Pfeffermann and Barnard Benchmark
5	$\hat{ heta}^{PSW}_{i;y}$	Proposed Method Benchmark

	1	2	3	4	5	
	$\hat{oldsymbol{ heta}}_{i; ext{y}}^f$	$\hat{m{ heta}}^{ extit{RT}}_{i; extit{y}}$	$\hat{m{ heta}}_{i;y}^{V\!AR}$	$\hat{m{ heta}}_{i;y}^{PB}$	$\hat{m{ heta}}_{i;y}^{PSW}$	
BIASREL	0.06%	0.58%	0.60%	0.60%	0.60%	
AARB	0.04%	0.60%	0.62%	0.62%	0.62%	
ARMSE	1.31%	1.45%	1.46%	1.46%	1.47%	
DIFFTOT	$4.0x10^{2}$	0.000	0.000	0.000	0.000	

SIMULATION RESULT FOR LINEAR CASE (2/2)

1	$\hat{ heta}_{i;y}^f$	EBLUP
2	$\hat{ heta}^{ extit{RT}}_{i;y}$	Ratio Benchmark
3	$\hat{ heta}^{\mathit{VAR}}_{i;y}$	Variance Weighted Benchmark
4	$\hat{ heta}^{PB}_{i;y}$	Pfeffermann and Barnard Benchmark
5	$\hat{ heta}_{i;y}^{PSW}$	Proposed Method Benchmark

LOG TRANSFORMATION FOR SKEWED VARIABLE

• In BHF model,

$$y_{ij} = x_{ij}\beta + u_i + e_i$$

- In business surveys, distributions are skewed
 - Log normal transformation

$$z_{ij} = \exp(x_{ij}\beta + u_i + e_i)$$

New formulation of the predictors

BACK-TRANSFORMATION WITH BIAS CORRECTION

Formulation of a nearly unbiased estimator is:

$$\hat{\theta}_{i;z}^{f,sum} = f_i \bar{z}_i + (1 - f_i) \sum_{j \in U_i \setminus s_i} \exp(\hat{y}_{ij} + \hat{\alpha}_i)$$
(1)

The bias correction is $\hat{\alpha}_i$ and can be defined at the unit level or area level (see Chambers, Dorfman (2003) and Molina (2009))

Other formulation from Kurnia, Notodiputro, Chambers (2009):

$$\hat{\theta}_{i;z}^{*,\exp} = \exp(\hat{\theta}_{i;y}^* + \tilde{\alpha}_i)$$
 (2)

- \circ The bias correction is the modified term at the area level $\tilde{\alpha}_i$
- \circ We propose the corrective term $\widetilde{\alpha}_{i2}$ and compare to $\widetilde{\alpha}_{i1}$

$$(a) \alpha_{i1} = \alpha_{i}$$

$$(b) \widetilde{\alpha}_{i2} = \hat{\alpha}_{i} + \frac{1}{2} \hat{\beta}^{T} \hat{\Sigma}_{i} \hat{\beta}$$

(a) $\widetilde{\alpha}_{i1} = \hat{\alpha}_i$ (b) $\widetilde{\alpha}_{i2} = \hat{\alpha}_i + \frac{1}{2}\hat{\beta}^T\hat{\Sigma}_i\hat{\beta}$ where $\hat{\Sigma}_i$ is the covariance matrix of the covariates.

Page 12 **Trier- August 2011**

BACK-TRANSFORMATION WITH BIAS CORRECTION

- Approaches under model (1)
 - ➤ Chambers, Dorfman (2003) introduce several estimators: the rast predictor and smearing predictor
 - Fabrizi, Ferrante, Pacei (2007) compare estimators to a naïve predictor without a bias correction. The twiced smeared estimator performed best in simulation
 - Chandra, Chambers (2011) discuss calibration after a log-transformation

BENCHMARKING AFTER BACK-TRANSFORMATION

Compare benchmarking at different stages with back transformation and bias correction by: (a) $\hat{\alpha}_i = (\hat{\sigma}_u^2 + \hat{\sigma}_e^2)/2$ or (b) $\tilde{\alpha}_{i2} = \hat{\alpha}_i + \hat{\beta} \hat{\Sigma}_i \hat{\beta} / 2$

- Ratio method under different scenarios
- \succ No benchmark at log scale, back-transformed method (2), bias correction (a) $\hat{\theta}_{i;z}^{f,RT}$
- ightharpoonup Benchmark at log scale, back-transformed method (2), bias correction (a) $\hat{\theta}_{i;z}^{VAR,RT}$ $\hat{\theta}_{i\cdot\tau}^{PB,RT}$ $\hat{\theta}_{i\cdot\tau}^{PSW,RT}$
- \succ No benchmark at log scale, back-transformed method (1), bias correction (a) $\hat{\theta}_{i;z}^{f,sum,RT}$
- > No benchmark at log scale, back- transformed method (2), bias correction (b) $\hat{\theta}_{i:z}^{f^{2,RT}}$
- A maximization of the log-likelihood of the BHF model under constraints, back transformed method (2) and bias correction (b) $\hat{\theta}_{i;z}^{MLC}$

SIMULATION RESULT FOR NON-LINEAR CASE (1/2)

- No benchmark at log scale, back-transformed method (2) , ,bias correction (a) , ratio adjusted $\hat{ heta}_{i;z}^{f,R}$
- ightharpoonup Benchmark at log scale, back- transformed method (2) , bias correction (a), ratio adjusted $\hat{\theta}_{i;z}^{VAR,RT}$ $\hat{\theta}_{i;z}^{PB,RT}$ $\hat{\theta}_{i;z}^{PSW,RT}$
- ightharpoonup No benchmark at log scale, back- transformed method (1) , bias correction (a) , ratio adjusted $\hat{ heta}_{i;z}^{f,sum,RT}$
- ightharpoonup No benchmark at log scale, back- transformed method (2) , bias correction (b), ratio adjusted $\hat{ heta}_{i;z}^{f\,2,RT}$
- ightharpoonup MLC adjustment, back- transformed method (2) , bias correction (b) $\hat{ heta}_{i;z}^{MLC}$

	NOT BENCHMARKED				BENCHMARKED								
	1a	2 a	3 a	4 a	5a	6a	1b	2b	3b	4b	5 b	6b	7 b
	$\hat{ heta}_{i;z}^{f,sum}$	$\hat{m{ heta}}_{i;z}^f$	$\hat{m{ heta}}_{i;z}^{f2}$	$\hat{m{ heta}}^{ extit{VAR}}_{i;z}$	$\hat{m{ heta}}_{i;z}^{PB}$	$\hat{ heta}^{PSW}_{i;z}$	$\hat{ heta}_{i;z}^{f,sum,RT}$	$\hat{m{ heta}}_{i;z}^{f,RT}$	$\hat{ heta}_{i;z}^{f2,RT}$	$\hat{ heta}_{i;z}^{VAR,RT}$	$\hat{ heta}_{i;z}^{PB,RT}$	$\hat{ heta}_{i;z}^{PSW,RT}$	$\hat{ heta}^{ extit{ iny MLC}}_{i;z}$
BIASREL	0.39%	11.16%	0.47%	8.77%	8.77%	8.75%	2.99%	2.84%	3.03%	2.83%	2.87%	2.90%	2.58%
AARB	0.66%	10.89%	0.28%	8.50%	8.49%	8.49%	3.30%	3.15%	3.34%	3.15%	3.18%	3.20%	2.89%
ARMSE	5.81%	12.05%	5.75%	10.01%	10.01%	10.02%	6.87%	6.84%	6.90%	6.84%	6.86%	6.90%	6.69%
DIFFTOT	5.6x10 ⁴	3.0x10 ⁵	7.1x10 ⁴	2.5x10 ⁵	2.5x10 ⁵	2.5x10 ⁵	0.00	0.00	0.00	0.00	0.00	0.00	0.00

SIMULATION RESULT FOR NON-LINEAR CASE (2/2)

Group A: All benchmark estimates to original scale using the Ratio Method or the MLC method ('1b' – '7b')

Group B: No benchmark, back- transformed method (1) and bias correction (a) ('1a') and back- transformed method (2) and bias correction (b) ('3a')

Group C: Benchmark at log-scale and no benchmark to original scale, back- transformed method (2) and bias correction (a) ('4a', '5a', '6a')

Group D: No benchmark, back-transformed method (2) and bias correction (a) ('2a')

CONCLUSION

- We have used the nested error unit level regression model
- Benchmarking methods for the linear case perform similarly
- Benchmarking methods for non-linear case differ depending on back-transformation and stage of benchmarking
- Ratio adjustment to benchmarked log-scale and back transformation provide comparable results to the case when logscale is not benchmarked
- Future research:
 - Performance under more realistic populations, empty areas
 - Comparison with alternative methods, for example robust methods of small area models
 - Inclusion of survey weights, variance estimates

Thanks for your attention