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BUSINESS SURVEYS 
 

• Statistical units are organisational entities in a country 
 

• Interested in small area/domain estimates 
 

• Business registers allow for unit level covariates 
 

• Distributions are typically skewed with outliers 
 

• Transformations, such as the log, to ensure normality 
assumptions 
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SMALL AREA ESTIMATION 
 

• Central problem in many areas of social statistics. Recently 
used in business statistics. 

 

• Estimation of the mean in diverse domains 
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• True population mean ���  and design-based estimate ����;� 

• Estimated small area mean (EBLUP) ���;�	 because of small 
� 

area i 

  …           …             



Trier- August 2011 Page 4 

SMALL AREA ESTIMATION AND BENCHMARKING 
 

• Small area estimation of the total in  the different domains 
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Problem: The total estimated by the model ∑=
i yiiy wT ;

ˆ~
θ   should 

match the design based estimate of the population total ∑=
i wiiy YwT ;

ˆˆ . 

• Solution by benchmarking the estimates by appropriate method 

• Consequence of more robust estimation to misspecifications of 
the model. 

    …           …             
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NESTED ERROR UNIT LEVEL MODEL 
 

• The Battese, Harter and Fuller (1988) (BHF) model  
for small areas i=1, …, M: 
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i
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• The target parameter of interest is the area mean:    
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• The EBLUP for non-negligible sampling fractions: 
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BENCHMARKING AT THE LINEAR SCALE (1/2) 
 
• Existing methods considered (see for instance Wang & al. (2008)) 

 

� The ratio method by multiplicative term:     
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� An  additive term with variance weighting: 
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� Pfeffermann and Barnard (1991):         ( )[ ] ˆˆ1ˆ
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Ugarte & al. (2009) applied this constrained model for a business survey for several 
regions with variance calculations  
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BENCHMARKING AT THE LINEAR SCALE (2/2) 
 
• We propose the method 

 
Augmentation of the unconstrained least-squares system by 
adding to the original GLS system one row and one column: 
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• The benchmarking equation is obtained by orthogonality of the 
residual to the new added column  
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SIMULATION FOR LINEAR CASE   
  
• Nested error unit level regression model  

• B=1000 populations generated 

• M = 30 areas (no empty areas) 

• 4% fi ≈  

• 0.1=uσ , 0.3=eσ , and 
T)25.0,2(=β  

•  )s,(mN ~x iiij ; N(10,3)~mi ; 2=si  

 
 

  
ONE POPULATION GENERATED TWO AREAS IN THE POPULATION 
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SIMULATION RESULT FOR LINEAR CASE (1/2) 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 

 1 2 3 4 5 

 f

yi;θ̂  
RT

yi;θ̂  
VAR

yi;θ̂  PB

yi;θ̂  PSW

yi;θ̂  

BIASREL 0.06% 0.58% 0.60% 0.60% 0.60% 

AARB 0.04% 0.60% 0.62% 0.62% 0.62% 

ARMSE 1.31% 1.45% 1.46% 1.46% 1.47% 

DIFFTOT 4.0x102 0.000 0.000 0.000 0.000 

1  EBLUP 

2  Ratio Benchmark 

3  
Variance Weighted 

Benchmark 

4  
Pfeffermann  and Barnard 

Benchmark 

5  
Proposed Method 

Benchmark 
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SIMULATION RESULT FOR LINEAR CASE (2/2) 
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LOG TRANSFORMATION FOR SKEWED VARIABLE 
 

• In BHF model, 
 

iiijij u exy ++= β    

 

• In business surveys, distributions are skewed 
 
o Log normal transformation 

 

( )iiijij u exexpz ++= β  

 

o New formulation of the predictors   
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BACK-TRANSFORMATION WITH BIAS CORRECTION 
 

• Formulation of a nearly unbiased estimator is: 
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                                             (1) 

 

The bias correction is iα̂  and can be defined at the unit level or area level (see 

Chambers, Dorfman (2003) and Molina (2009)) 
 

• Other formulation from Kurnia, Notodiputro, Chambers (2009): 
 

)~ˆexp(ˆ *

;
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; iyizi αθθ +=                 (2) 
 

o The bias correction is the modified term at the area level iα~  

o We propose the corrective term 2
~

iα  and compare to 1
~

iα  

      

         where iΣ̂ is the covariance matrix of the covariates.  
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BACK-TRANSFORMATION WITH BIAS CORRECTION   
 

 

• Approaches under model (1)  
 

� Chambers, Dorfman (2003) introduce several estimators: the rast 
predictor and  smearing predictor  
 

� Fabrizi, Ferrante, Pacei (2007) compare  estimators to a naïve 
predictor without a bias correction. The twiced smeared estimator 
performed best in simulation  
 

� Chandra, Chambers (2011) discuss calibration after a log-
transformation  
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BENCHMARKING AFTER BACK-TRANSFORMATION 
 

Compare benchmarking at different stages with back transformation 

and bias correction by:  (a) ( ) 2/ˆˆˆ 22

eui σσα +=
 
or (b)  2/ˆˆˆˆ~

2 ββαα iii Σ′+=
 

 

• Ratio method under different scenarios 
 

� No benchmark at log scale, back-transformed method (2),  bias correction (a)   
RTf
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� Benchmark at log scale, back-transformed method (2), bias correction (a)  
RTVAR
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� No benchmark at  log scale, back-transformed method (1), bias correction (a) 
RTsumf

zi

,,
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� No  benchmark  at log scale, back- transformed method (2), bias  correction (b)  
RTf

zi

,2

;θ̂  

• A maximization of the log-likelihood of the BHF model under 
constraints, back transformed method (2) and bias correction (b) 

MLC

zi;θ̂  

 



Trier- August 2011 Page 15

SIMULATION RESULT FOR NON-LINEAR CASE (1/2) 
 
 
 
 

 
 
 
 

 NOT BENCHMARKED BENCHMARKED 

 1a 2a 3a 4a 5a 6a 1b 2b 3b 4b 5b 6b 7b 
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MLC

zi;θ̂  

BIASREL 0.39% 11.16% 0.47% 8.77% 8.77% 8.75% 2.99% 2.84% 3.03% 2.83% 2.87% 2.90% 2.58% 

AARB 0.66% 10.89% 0.28% 8.50% 8.49% 8.49% 3.30% 3.15% 3.34% 3.15% 3.18% 3.20% 2.89% 

ARMSE 5.81% 12.05% 5.75% 10.01% 10.01% 10.02% 6.87% 6.84% 6.90% 6.84% 6.86% 6.90% 6.69% 

DIFFTOT
 

5.6x10
4
 3.0x10

5
 7.1x10

4
 2.5x10

5
 2.5x10

5
 2.5x10

5
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

� No benchmark  at log scale, back-transformed method (2) , ,bias correction (a) ,  ratio adjusted   

� Benchmark  at log scale, back- transformed method (2) , bias correction (a), ratio adjusted   

� No benchmark at  log scale,  back- transformed method  (1) , bias correction (a) , ratio adjusted  

� No  benchmark  at log scale, back- transformed method (2) , bias  correction (b), ratio adjusted   

� MLC adjustment,   back- transformed method (2) ,  bias  correction (b)  
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SIMULATION RESULT FOR NON-LINEAR CASE (2/2) 
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Group A: All benchmark estimates to original scale using the Ratio Method or the MLC method (‘1b’ – ‘7b’)   
Group B: No benchmark, back- transformed method (1) and bias correction (a) (‘1a’) and back- transformed 
method (2) and bias correction (b) (‘3a’)        
Group C: Benchmark at log-scale and no  benchmark  to original scale, back- transformed method (2) and bias 
correction (a)  (‘4a’, ‘5a’, ‘6a’) 
Group D: No benchmark, back-transformed method (2) and bias correction (a)  (‘2a’) 



Trier- August 2011 Page 17

CONCLUSION 
 

• We have used the nested error unit level regression model  

• Benchmarking methods for the linear case perform similarly 

• Benchmarking methods for non-linear case differ depending on 
back-transformation and stage of  benchmarking 

• Ratio adjustment to benchmarked log-scale and back 
transformation provide comparable results to the case when log-
scale is not   benchmarked 

• Future research: 
 

�    Performance under more realistic populations, empty areas 
�    Comparison with alternative methods, for example robust methods  

   of small area models 
� Inclusion of survey weights, variance estimates 

 
Thanks for your attention 
 


