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MASTER THESIS: Sebastian Lamprecht 2 INTRODUCTION

Preface

This masters thesis is designed in the form of a scientific article. Additional informa-
tion is added in blue highlighted frames in the running text. The aTrunk implemen-
tation and the complete article in the submit version of the Remote Sensing journal
[20] can be found in the digital appendix. It should be noted that the section and
figure numbering of the article differs form this extended version.

1 Abstract

This paper presents a novel tree trunk detection approach for high resolution multi pulse
airborne LiDAR (Light Detection And Ranging). The multi-core Divide & Conquer algo-
rithm uses a 3D-clustering approach to isolate points associated with single trunks directly
out of the raw point cloud. For each trunk, a principal-component-based linear model is
fitted, while a modification of LO-RANSAC is used to identify an optimal model. The
algorithm returns a vector-based model for each identified trunk while parameters like
the ground position, zenith orientation, azimuth orientation and length of the trunk are
additionally provided. The algorithm performed well for a study area of 109 trees (about
2/3 spruce and 1/3 beech), with a point density of around 7.6 points per m2, while a
detection rate of about 70 % with an average difference in positioning of 0.32 m and an
RMSE of 0.42 m is reached.

2 Introduction

2.1 Relevance and Objective

A sustainable multifunctional use of forest area—for forestry, timber production, energetic
uses, carbon dioxide sequestration—needs an exact knowledge of the available number,
distribution and species of trees, as well as the wood volume or the leaf area index (LAI).
Not only is this knowledge necessary for forest management, but also for the quantifica-
tion of forest ecosystem functions and services. Seen from a large-scale perspective—like
for forestry offices—these desired parameters are currently often estimated by simple ter-
restrial estimation procedures, like angle-count sampling approaches. These approaches
are also used for nationwide data ascertainment, like the Bundeswaldinventur in Ger-
many, where samples on a 2 km grid are taken to asses nationwide forest conditions (cf.
[3, 4]).

These random sample approaches are supported by statistical procedures to estimate
the desired parameters. The interpolation of the derived information on a local scale
represents a major task, which could be solved by small area estimation approaches
of e.g. Schmid and Münnich [30].

Nevertheless, a higher spatial density of information could increase the accuracy of the
estimated parameters. Especially automated procedures are needed, which derive some
of these parameters using airborne LiDAR. In addition, there is a lack of knowledge
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MASTER THESIS: Sebastian Lamprecht 2 INTRODUCTION

concerning the competition between different tree species and its effect on the spatial
distribution of the trees.

The aim of the ATrunk approach is to identify single trunks based on data gained from
high resolution multi-pulse airborne LiDAR. The novel point-based detection algorithm
promises a reduction of information loss compared to raster-based approaches due to a
direct usage of the raw point cloud.

Focusing on the trunks should ensure an accurate positioning, which can easily be used
for validation because of a good comparability to ground-measured positions. In addition
to these standard parameters, information like the zenith and azimuth orientation of each
trunk shall be generated, which can again be used for further analysis. Especially the
identification of trunks promises more information about the usable wood volume and the
competitive behaviour of different tree species.

2.2 Current Approaches

In the past, many different approaches have been developed aiming at the detection of
single trees using airborne LiDAR by analysing crown shapes. Nearly all approaches are
using raster-based digital terrain models (DTM) or canopy models (DCM) to identify
single trees. Often rudimentary detection approaches like local maximum identification
(as described by Persson et al. [24]) are used, because it is assumed that the tops of the tree
crowns are clearly separable from each other. After this first identification, the tree crowns
are separated using different segmentation approaches, for instance algorithms inspired
by watersheds (e.g. developed by Chen et al. [5]) or a segmentation of “[...] single trees in
LIDAR raw data using cluster analysis, choosing local maxima as starting positions [...]”
Morsdorf et al. [21]. Some fully GIS-based (Geographic Information System) approaches
(e.g. Tiede et al. [31]) are also popular. The tree position and crown radii are rarely
estimated simultaneously, except for Zhou et al. [35] who use a marked point process
model to identify single trees. More up-to-date approaches, which generally use the same
ideas, are discussed in Kaartinen et al. [17].

The results of this first crown identification are quite similar, while some of the desired
parameters—like the crown positions, tree height, trunk volume, crown areas or crown
radii—are estimated. Nearly all approaches use the raw LiDAR point cloud or voxel
models and additional multi-spectral images as basic data for an additional more complex
crown analysis. A focus is set on species identification (cf. Holmgren et al. [13], Ørka
et al. [36] or Yu et al. [34]), a general analysis of the tree crowns (cf. Duncanson et al.
[7]) or even on an identification of the trunks (cf. Reitberger et al. [29]).

It should be mentioned that the accuracy in positioning of pure raster-based tree
detection approaches depends on the cell size. There is an obvious loss of information when
rastering a point cloud. Even a higher grid resolution does not guarantee an increased
accuracy because of a necessary interpolation of missing values. This effect is intensified
by the often used smoothing of the DTM or DCM (done e.g. by Chen et al. [5] or
Reitberger et al. [29]). In particular, the trunk positions cannot be derived accurately,
because the presumption that the centre of the crown is directly located above the trunk
root is not tenable.

The Study of Kaartinen et al. [17] has shown an average positional difference of differ-
ent raster-based detection approaches of about 0.5 m up to above 1.5 m or RMSE values
of 0.7 m up to 2 m. In comparison, Edson and Wing [9] notice average positional differ-
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MASTER THESIS: Sebastian Lamprecht 3 MATERIALS AND METHODS

ences of about 2 m for the software programs FUSION, TreeVaW and a watershed based
approach.

Nevertheless, most of these papers deal with an additional point-based analysis of the
trees because of the mentioned lower information content of rasters. In preparation for
this paper, no approach aiming at the direct detection of trees using the raw LiDAR
point cloud which renders a raster-based pre-treatment of the DTM or DCM unnecessary
could be found. One argument for using raster-based procedures is probably the smaller
amount of data connected with an assumed reduced analysis effort. However, for a detailed
analysis of the crowns, using the point cloud is mandatory. In addition, approaches for a
direct detection of trunks can rarely be found in literature, although Reitberger et al. [29]
used a RANSAC-based trunk modelling approach to detect trunks after the raster-based
crown detection. Thus they reached an accuracy in positioning increased by up to 25 %.

By aiming at the detection of the trunks, previously performed crown detections seem
to be unnecessary. In particular, a direct trunk detection using the raw point cloud could
increase the detection rate and the accuracy in positioning while minimizing the analysis
overhead.

3 Materials and Methods

3.1 Study Area

The study area—illustrated in figure 1—is located near the city Hermeskeil in Rhineland-
Palatinate, Germany, at the lat-lon-coordinates 7.1676, 49.8136 with an expanse of about
100 m × 80 m and an area of about 5100 m2. The examined open forest compartment
with tree heights of up to 35 m was dominated by spruces (59 trees recorded), but edged
by beeches (16 trees) at the western part of the study area. A measurement campaign
on Tuesday, 19th August 2014 derived different types of validation data. This study site
was selected, because the forest compartment was to be cleared by a harvester. With this
information an analysis of the wood volume can be performed in a further study.

3.2 Data

High resolution multi-pulse airborne laser scanner (ALS) data served as base data for
modelling while terrestrial data of a forest compartment was used for validation.

3.2.1 ALS Data

The ALS data used in this study was collected by the Landesamt für Vermessung und
Geobasisinformation of Rhineland-Palatinate for the whole federal state with a generally
high quality. The data was available in form of csv-files with a spatial expanse of 1 km ×
1 km for each dataset.

For the evaluation of the aTrunk approach, a subset of about 130 m × 90 m with a
Gauss-Krüger system extent of [368101, 5519482, 368232, 5519574] containing the study
area was chosen. The data quality of this subset was excellent because of a high point
density of about 7.6 points per m2 and a spare forest structure, which guarantees a good
recording of the trunks. Figure 1(b) illustrates the three-dimensional structure of the

3
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(a) Study area near Hermeskeil with trunk posi-
tions predicted by a TLS-based (Terrestrial Laser
Scan) trunk detection approach, with background
WMS-Service [18].

(b) 3D ALS view of the study area. Yellow-
coloured pixels correspond to ground pixels and
green pixels are associated with vegetation. The
brightness of the pixels corresponds to their ele-
vation value.

Figure 1: Study area.

study area. In addition, a full 1 km2 dataset with an extend of [368000, 5519000, 369000,
5520000] and a point density of 7.7 points per m2 was analysed.

3.2.2 Validation Data

The collection of validation data aimed especially at the position of the trunks because
this information can be easily used to estimate the detection rate of the algorithm and
the accuracy in modelling the trunk positions. Therefore differential GNSS (Global Nav-
igation Satellite System) measurements of the trunk positions were taken. In addition,
terrestrial laser scans (TLS) were taken, because it is possible to get more accurate infor-
mation about the topology of the trunks, trunk diameter and trunk orientation by using
a tree modelling approach (e.g. Bienert et al. [2]). Moreover, ground measurements of
the diameter at breast height were taken for each trunk.

3.2.2.1 Diameter at Brest Height To get an idea about the wood volume of
each trunk and to get information about the error margin of the modelled trunks, the
diameter at breast height (DBH) was measured at a level of about 130 m above ground.
In addition, this information can be used to compare this ‘ground truth’ to the TLS
measurements. The DBH was determined by measuring the trunk circumference with
a measuring tape.

3.2.2.2 GNSS Measurements For a measurement of the trunk positions, a differen-
tial GNSS of the type Topcon HiPer V (cf. Topcon Corporation [32]) was used. Because
of a poor signal, the total accuracies of the measurements were quite low, with location
differences clearly above 0.5 m.

To determine the ground positions, the rover element of the differential GNSS was
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held directly next to the trunk, while it was attempted to take advantage of inclined
trunks by placing the antenna directly above the trunk root. As it is obvious that the
accuracy of these measurements is not ideal, these problems are dealt with in section
3.6.

However, the focus was set on trunk topology while neglecting the absolute posi-
tion, because this information is needed to evaluate the detection rate and the relative
accuracy.

3.2.2.3 Terrestrial LiDAR Eight terrestrial laser scans were taken with a Laser
Scanner Photon 120 of the manufacturer FARO®, which measures at a wavelength of
758 nm and reaches a ranging accuracy of ±2 mm at a distance of 25 m (cf. FARO Europe
GmbH [11]). Each of the all-around scans had a scan size of 8044 × 3446 pixels with the
scanner-specific parameters: 1/5 resolution and 3× quality. The positions of the scans
were chosen in such a manner that the study area was mapped completely. The alignment
of the single scans to each other was prepared by placing reference spheres which can be
identified in the post-processing software.

These TLS datasets were used to estimate the trunk position and diameter by applying
a slicing approach (like Bienert et al. [2]). The slices were 5 cm thick, beginning at a level
of 1.3 m up to the crowning height with a vertical distance of 1 m. To compare these
models to the aTrunk positions, the positions at ground level were estimated by fitting a
linear model to the slice centres of each trunk.

Because of some rain showers during the measurement campaign, the strived for num-
ber of scans could not be reached. In addition, the distances between the reference
spheres were chosen too large, which led to problems in the alignment of the datasets.
Therefore the slicing approach was applied to each scan. The estimated trunk posi-
tions were used to assign the datasets to the central scan (see section 3.6). Therefore
an affine point set registration approach was used.

3.3 Methods

The ideas and concept of the aTrunk approach are clarified in this section, while
the equations and parameters of the implemented algorithm are presented step by
step in section 3.4. In addition, the validation of the estimated trunk positions is
described in section 3.6. In section 4 the modelling results of the study area are
presented and discussed. Finally an overall discussion is given and an outlook of
possible improvements given by this approach is proposed in section 5.

3.3.1 Assumptions on Trunk Representation

Firstly, different multi-pulse ALS point clouds of forested areas were visually inspected.
The one of many pulses primarily display the vegetation layer. Therefore the first and
only and last of many pulses can be neglected. Hence the vegetation layer of the study
area (green highlighted dots in figure 1(b)) was analysed. The 3D view of the vegetation
layer shows the complicated crown structure, which allows for a visual distinguishing
between different species. It is possible to identify single trunks because of the linear
structure of the corresponding points.

5
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This visual inspection suggests the following characteristics of a trunk mapped by
ALS, which forms the basis of the trunk model concept outlined in sections 3.4.4 and
3.4.5.

The LiDAR points associated with a trunk are ...

• spatially separable from the crown portion and the ground covering vegetation.

• moderately surrounded by points associated with branches, foliage or other
objects.

• arranged in a straight line, which is oriented along the growth direction of the
trunk. The maximum deviation from this line depends on the length of the
trunk, e.g. caused by irregular growth or branching.

• largely uniformly distributed in growth direction of the trunk, which is sub-
stantiated in the spatial resolution of the scanner.

3.4 Trunk Detection Algorithm

Figure 2 illustrates the major steps of the presented aTrunk approach, which are described
in detail below. The actual implementation was done in python [26].

(a) Organisation of the point
clouds vef (vegetation, green)
and grd (ground, brown) as an
object called sample S.

(b) Divide & Conquer of the
samples to get multiple subsam-
ples.

(c) Separation of the trunk sec-
tion for each sample, by using
two hyperplanes.

(d) Trunk identification using a
pairwise-distance-based cluster-
ing approach.

(e) Fitting of a 3D principal-
component-based linear model
to each cluster.

(f) Merging of the samples,
elimination of duplicated trunk
models (red lines) and data stor-
age.

Figure 2: Sketches of the major steps of the aTrunk approach.

For the implementation, a focus was set on the universality, correctness and usability
of the program. Attention was payed on a clear file structure, class structure and
readability of the code. In addition, all parameters are summarised in a configuration
file.

The Divide & Conquer approach (see figure 2(b)) enabled a multi core imple-
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mentation, which reduces the computation time significantly. After each split of a
sample, a new job is created, which can either generate a result or new (easier to
handle) jobs. The list of jobs is handled by the CPU cores, while each cores takes one
job and executes it. When new jobs are generated, they are appended to the list of
jobs, otherwise the results are collected.

To enable an optimal up-to-dateness and to ensure the availability of the modelling
results for remote clients a database is proposed as storage. Therefore a PostgreSQL
database [25] with the PostGIS [22] extension was used. So, next to the pure data
storage and data retrieval, a spatial analysis and 2D visualisation using QGIS [23] or
3D visualisation using R [27], is enabled.

The flowchart in figure 3 illustrates the logical steps of the implemented algorithm
in detail. Here all necessary parameters and decisions are linked.

3.4.1 Basic Data and Data Structure

The algorithm uses the first and only and last of many product (hereafter referred to
as grd) and the one of many product (hereafter referred to as vef) of the ALS basic
data, which were available as csv files. The grd data corresponds to the terrain or the
ground, while the vef represents the surface or vegetation cover. Both datasets have to be
represented in the same coordinate system and extent. It is necessary that the grd point
density is significantly higher than the stocking density of the forest. This is justified by
the usage of the grd dataset as basic data for fitting terrain models.

The grd and vef datasets are brought together in one object—hereafter referred to as
sample S. Such a sample uses its ground points Sgrd ⊆ R3 to derive a DTM which can be
used to estimate the point heights of its vegetation points Svef ⊆ R3 above ground. For
the purpose of this paper a linear plane is fitted to these points.

The three-dimensional extent of the sample is mainly defined by the Svef points, in
which the minimum z-value is taken from the Sgrd point cloud because it can be assumed
that the Sgrd points define the lower limit. So the extent is given by equation 1.

extent(S) := [ min(Svefx),min(Svefy),min(Sgrdz), (1)

max(Svefx),max(Svefy),max(Svefz) ]

The vef and grd datasets are sketched in figure 2(a) as green or brown areas or dots,
while the extent is sketched as a box.

A special property of a sample is that it can be separated into two different subsets
of the same class (see section 3.4.2). In this case the point clouds Sgrd and Svef are
split simultaneously in some xy-direction. For this reason it has to be mentioned that
the DTM is not calculated for each sample because the heights of the points above
ground are not needed until the trunk models are fitted (see section 3.4.5).

3.4.1.1 Digital Terrain Model To receive a DTM some kind of a function fSgrd :
R2 → R3 : (x, y) 7→ (x, y, z) has to be derived. This function returns an estimated
height z ∈ R above ground for any point with the coordinates x and y. There is a
great number of possibilities to find such a function, while attention should be paid
to the accuracy of this terrain model.

7
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Figure 3: Flowchart of the aTrunk algorithm.

The surface plane is derived by a linear regression model of degree one (illustrated
by equation 3). The scalars c0, c1, c2 ∈ R correspond to the regression coefficients of
the solved regression equation 2.

8
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Sgrdz = c0 + c1 · Sgrdx + c2 · Sgrdy (2)

fSgrd(x, y) := c0 + c1 · x+ c2 · y (3)

This plane DTM is modelled in the close region of single trunks. The accuracy of
the terrain model varies with the extent of the sample, the variability of the surface
and the number of available ground points. Therefore more advanced terrain models
are imaginable, like polynomials of a higher degree or splines. Due to the complexity
of the modelling function, the minimum number of points to derive a DTM varies, so
this number is ensured by the parameter minGrdPoints.

3.4.2 Divide & Conquer

The large amount of points makes a direct analysis of the point cloud almost unman-
ageable. For this reason the idea of introducing a splitting step is to divide the point
cloud into subsets that are easier to handle, which is sketched in figure 2(b). In addition,
this procedure facilitates the fitting of local DTMs, which allows a separation of points
associated with trunks from other points (done in section 3.4.3).

Towards this, a sample S is split into multiple smaller samples, while a split is always
done in a xy-direction. The size of a sample needs to be selected in such a way that it
is small enough to model the ground accurately by the simple (e.g. linear) DTM, but
large enough to include at least one complete tree. The splitting of the sample S can
be done gradually. Each sample is separated into two new samples until the extent of
the sample falls below a predefined threshold maxSampleSize. This successive splitting
allows a multi-core implementation of the algorithm in which it is possible to add a new
CPU core to the program after each split.

Nevertheless, the splitting of a sample results in some disadvantages, which have to
be dealt with. It is possible that points associated with a single trunk are separated from
each other at random. This would result in an under-detection of trees. Therefore an
overlapping area along the cutting edge of width overlap is suggested. The implementation
of an overlap inevitably results in an additional analysis effort and the possibility of a
multiple detection of a single trunk. These multiple detected trunks are merged, as
described in section 3.4.6.

3.4.2.1 Splitting Implementation A splitting of a sample S can be done in
different ways. For example a grid-based or principal-component-based splitting of the
sample is imaginable. In this paper, a grid-based splitting of the samples is proposed
in which each sample is split either in x-direction or y-direction. The selection of the
splitting direction is based on comparing the Svef x-range to the Svef y-range, while
the split is performed in the direction of the minimum range. The centre of the
dividing line is set to half of the corresponding range. To ensure the above mentioned
overlapping of the subsamples, the overlap parameter is considered by shifting the
dividing line by half of this parameter for each subsample.

9
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3.4.3 Separation of the Trunk Section

The separation of the trunk section is based on the assumption that the points associated
with trunks lie between points which are associated with ground-covering vegetation and
those associated with tree crowns. A simple approach to distinguish these point layers is
to use two threshold planes parallel to the DTM.

The first lower plane at a height of ZGCV ∈ R+ shall detach the ground-covering
vegetation. The parameter ZGCV corresponds to the expected height of the low-growing
vegetation. It has to be mentioned that a value selected too high reduces the number
of available points for the trunk model fitting. The height ZCH ∈ R+ of the second
plane should comply with the expected crowning height. Therefore this threshold is
selected dynamically by estimating the crowning height ZCH by equation 4 while ρCH ∈
]0, 1] conforms to some proportion of the tree height. It should be noted that ZCH is
strongly affected by outliers in z-direction—e.g. by noise, flying birds or power supply
lines. Therefore a pre-cleaning of the data is performed by removing all those points
whose z-value is above the quantile 1− outlierlimit.

ZCH = ρCH ·max(Svef z) (4)

The parameter ρCH is set regardless of the tree species. This is justified by the as-
sumption that especially the points below the crowning height are arranged in a line,
so the trunk models should be stable even if the models reach to the lower parts of the
crowns. The result of this separation step is a set of points associated with the trunk
section PTS ⊆ Svef . Figure 2(c) illustrates the separation of the points associated with
trunks by the two threshold planes.

(a) Sketch of a raw point cloud (black dots) of
some trees.

(b) Separation of the trunk section PTS (green
dots) with the threshold levels ZGCV and ZCH .

Figure 4: Sketch of an ALS forest cross section.
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Figure 4 gives a more detailed illustration of the separation of these points.

3.4.4 Clustering

The clustering step is used to identify points potentially associated with trunks by using
the PTS point set of section 3.4.3. It is assumed that several points which are spatially
close together will form a trunk. Thus, isolated points without spatial neighbours are
assumed to be noise or spare vegetation. Therefore the major problem is to identify
clusters of points, without knowing the number of clusters a priori (in contrast to e.g. a
k-Means-based clustering approach).

In addition, it is not primarily desired to minimize the inter-group variance and max-
imise the intra-group variance (e.g. done by decision tree approaches like Random
Forest), but to identify close points which form continuous objects.

The following cluster definition is used to isolate points associated with a single trunk
because of the mentioned reasons.

3.4.4.1 Cluster Definition The cluster definition is inspired by the clustering ap-
proach used by Reitberger et al. [29] who take advantage of the pair-wise spatial neigh-
bourhood of points to identify clusters. To omit the additional estimation of the number
of clusters, the clusters are identified by the spatial proximity of their points only. The
universal definition of this clustering can be performed independently from the dimension
N ∈ N+ of a point cloud or vector space P ⊆ RN . Therefore a cluster Cp0,δ ⊆ P , as it is
defined by equation 5, can be developed around a point p0 ∈ P using a threshold distance
δ ∈ R+.

Cp0,δ := { p ∈ P : ||p− p0||N < δ ∨ ∃ pc ∈ Cp0,δ : ||p− pc||N < δ } (5)

For the purpose of this paper this cluster definition allows for a separation of spatially
close points without knowing the number of clusters respectively trunks a priori. Addi-
tionally, the clustering can be done for a three-dimensional point cloud with N = 3 just

Figure 5: Two-dimensional clustering approach using distance parameter δ and a ran-
domly chosen initial point pi. Grey dots stand for the original points, while identified
cluster regions are highlighted in different colours.
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as well as for a two-dimensional point cloud with N = 2. So this type of clustering is
used to identify points associated with a single trunk PCt out of PTS (illustrated in figure
2(d)).

Figure 5 illustrates the two-dimensional version of the clustering approach in detail.
The resulting clusters are used to model the trunks (see section 3.4.5).

3.4.4.2 Clustering Implementation The given cluster definition points out that
the implementation can be done by defining one (randomly chosen) point of a point
cloud P as the development point p0 of the cluster Cp0,δ.

Cluster development using a distance threshold δ ∈ R+ and a point cloud P ⊆ RN :

while |P | > 0 do
pi ← random point ∈ P
Cpi,δ ← {pi}
for all pc ∈ Cpi,δ do

for all pj ∈ P do
if ‖pc − pj‖2 ≤ δ then

Cpi,δ ← Cpi,δ ∪ {pj}
P ← P \ {pj}

end if
end for

end for
end while

This clustering implementation implies a computation time complexity of order O(n2)
with n := |P |, caused by pair-wise distance comparisons between all points of P .
Therefore remarkable run times are generated when the number of points of P is
high. In a two-dimensional space the DBSCAN -approach (cf. Ester et al. [10]) allows
for an average run time complexity of O(n · log(n)), in which the Eps-parameter
corresponds to δ and the MinPts-parameter is set to zero.

The mentioned parameters ZGCV (see section 3.4.3) and maxSampleSize (see
section 3.4.2) help to reduce the number of points to be considered. The identification
of clusters associated with trunks uses a three-dimensional clustering (N = 3), while
the modelling parameter zBufferScale ∈ R+

0 provides the opportunity to scale the
z-coordinates by multiplying them with this parameter. An optional 2D-clustering is
possible by setting zBufferScale to zero.

3.4.5 Trunk Model

To get the desired information about the trunks, a linear model is fitted to the points
associated with the trunk PCt because the points are assumed to be arranged in a line.
To receive the three-dimensional vector-based regression model, a principal component
analysis (PCA) is used.

12
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3.4.5.1 Basic PCA-Model A PCA of a point cloud P ⊆ RN with N ∈ N dimensions

provides N pair-wise orthogonal vectors
−−→
PCi (with i ∈ 1 . . . N) which are called principal

component (PC) vectors. The PCs define a projected coordinate system, in which the
PC scores (scores(P ) ⊆ RN) of the points P correspond to the projected coordinates of
these points in the new coordinate system (cf. Wold et al. [33]).

The PCA model can be seen as a vector-based linear regression model, because “[...]
the fitting of a principal component line to a number of data points is a least squares
process” (Wold et al. [33], p.41). The principal component “[...] vectors are usually
written in order of descending eigenvalues” (Wold et al. [33], p.42). So, the first
principal should be oriented in the growing direction of the corresponding trunk, while
the second and third PC are perpendicular to the first component and characterise
the residuals.

The first principal component t−−→
PC1

of the point cloud PCt is oriented in the direction of
the highest variance. For a nearly perfect linear alignment of the points associated with
the trunk, the t−−→

PC1
vector should be oriented in the direction of the trunk. As a data pre-

treatment, a mean centring of the PCt points is applied. So the trunk model corresponds
to the t−−→

PC1
vector which is translated to the original centre point of the defining PCt

points.
The model residuals correspond to the PC scores of the second and third principal

component, so these are calculated by equation 6 on page 17. Figure 6 illustrates both,
the basic straight line principal component model and the corresponding PC-based trunk
model.

Figure 6: Three-dimensional one component PC trunk modelling concept with PCt points
(black dots) and centre point (red dot).

Unfortunately, the assumption of perfectly linearly arranged points with no kind of
outliers cannot be maintained. Therefore an attempt was made to find one PC model
which fits most of the points by excluding outliers.
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3.4.5.2 Idea of Best Model Selection One way to solve the problem of fitting a
regression model to highly outlier-affected data is the RANSAC approach by Fischler
and Bolles [12], which was also used by Reitberger et al. [29]. The RANSAC approach is
based on the assumption that outlying points can be identified by fitting multiple models
which each rely on the minimum number of necessary points.

A basic assumption is that the points are randomly chosen and all models are indepen-
dent from each other. In the case of a PC model, exactly two points are needed for each
RANSAC sample. After this initialisation, all those points which have a residuum to the
model below a specific threshold are assumed to support the model, while the others are
assumed to be outliers. The model with the smallest proportion of outliers is accepted as
the best model.

In this study the idea of the LO-RANSAC approach [6] was used, which optimizes the
outlier identification by running an additional model fitting for each RANSAC sample,
using the model-supporting points. This technique relies on k ≈ log(η)

log(1−εm)
(cf. Chum

et al. [6], p. 2 & 3) random samples to find—with a probability of P (O) % a maximum
proportion of O % outliers, with ε := P (O) ÷ 100 + 1 and η := O ÷ 100 + 1—a set
of at least m inliers. This equation clarifies that the number of points associated with
a trunk is insufficient in order to find enough independent points for the common LO-
RANSAC approach. This is caused by the low number of points associated with a trunk
(usually clearly below twenty) and an extremely high proportion of outliers (often caused
by ramifications in the upper trunk section or by low-growing vegetation). To derive
a deterministic model, every point pair permutation of PTS is defined as a RANSAC -
sample, whether or not the models are independent. The selection of the best model is
done according to the next paragraph.

3.4.5.3 Model Quality The quality analysis of a trunk model is divided into two
steps. In a first step, the validity of the model is tested, where already one fail results in
rejecting the model. In a second step, the best valid model is selected by comparing the
mean squared error (MSE) of each model, where an MSE close to zero can be assumed to
be optimal. For the validity check, some properties of each model are evaluated according
to the corresponding modelling parameters which are summarised in table 2 on page 19.

A model is assumed to be valid if ...

• the model contains enough points to ensure an accurate adaptation and unlikely
false detections.
⇒ |tP | ≥ nmin ∈ N>1

• the model contains only some points, because it is assumed that a high number
of neighboured points is probably caused by leaves or branches.
⇒ |tP | ≤ nmax ∈ N≥nmin

• the range of z is large enough to contain a trunk.
⇒ range(tP z) ≥ minZRange ∈ R+

0

• the ratio between the z-range (height) and xy-range (width) is comprehensible.

⇒ range(tP z)
max(range(tP x),range(tP y))

≥ hwRel ∈ R+

• the zenith angle of the trunk is imaginable.
⇒ tζ ≤ maxZenith ∈ [0, 90[
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• the model has a favourable ratio between model-supporting points and outliers.
⇒ |tP |+|tO|

|tO|
≤ relOutliers ∈ [0, 1[

• the points associated with the trunk are largely uniformly distributed in t−−→
PC1

direction.
⇒ tχ2 < uniformProb ∈ [0, 1]

Due to the assumption of increasing residuals with the length of the trunk, an adapt-
able threshold is needed to identify outliers. Therefore a length-dependent quality criterion—
called MEPL (Maximum Error Per Length)—is proposed, which shall privilege large
trunks in residual weighting. Equation 14 (page 18) illustrates the calculation of this
criterion, while the still unknown length of the trunk is approximated by the z-values of
the points.

Some of the validity tests can already be evaluated before PCA modelling or only
using the two initial points to avoid unnecessary evaluations. For example, some
samples which contain too few points or have a zenith angle tζ larger than expected
can be excluded.

(a) Low quality sample in
terms of RANSAC.

(b) High quality sample in
terms of RANSAC.

(c) Final trunk model.

Figure 7: RANSAC-based model fitting approach. Two possible raw trunk models (figures
7(a) and 7(b)) using two randomly chosen points (blue dots), inlier threshold (red dashed
lines), identified inliers (green dots) and outliers (red dots). Grey dots correspond to not
considered points. Final model (figure 7(c)) using inlier points tP (black dots), centre
point tc (red dot) and trunk position tp (green dot).

Figure 7 illustrates the modified LO-RANSAC concept for the PC-based trunk mod-
elling approach, while figure 2(e) sketches the modelling results in a sample.
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3.4.6 Merge Duplicated Trunks

The split of the samples—done in step 3.4.2—with an intended overlap area can result in a
multiple detection of single trunks in the overlapping separation section. This undesired
effect is compensated for by an identification and merging of duplicated trunks whose
centres are close together. Because it cannot be ruled out that the models differ from
each other (caused by a different point basis), all raw points are joined, while duplicates
are eliminated. After the merging, a new trunk model can be fitted just as explained
in section 3.4.5. All the derived trunk models are combined again in a result dataset as
sketched in figure 2(f).

To analyse the spatial proximity of the trunk centre points, the clustering approach
as presented in section 3.4.4 with N = 2 is used. The parameter mergeBuffer ∈ R+

0

corresponds to the distance threshold (see table 2 on page 19). The value of this
parameter should be less than the minimum expected distance between two trunks
but large enough to identify slightly different trunk models. In some cases, the new
model is not valid, so it is proposed to keep the model with the best quality value
(presented in section 3.5.5) while discarding the others.

3.5 Trunk Model Properties

The fitted PC model provides multiple variables whose calculation is explained after-
wards. Table 1 summarizes the properties of a trunk model.

Table 1: Trunk Model Properties

Property Values Unit Description Reference

Range Section

tc R3 m Spatial centre of the points used to fit the model 3.5.3

tp R3 m Estimated position of the trunk at ground level 3.5.3

ttop R3 m Estimated position of the trunk at crowning level 3.5.3

t−−→
PC1

R3 m First principal component—models the growth direction 3.5.1

t−−→
PC2

R3 m Second principal component—associated with residuals 3.5.1

t−−→
PC3

R3 m Third principal component—associated with residuals 3.5.1

tP R3 m Points associated with the trunk—used to fit the model 3.5.1

tO R3 m Points which are assumed to be outliers 3.5.1

th R+ m Total height of the trunk 3.5.4

tl R+ m Total length of the trunk 3.5.4

tζ [0,90] ◦ Zenith angle of the trunk 3.5.2

tα [0,360[ ◦ Azimuth angle of the trunk 3.5.2

tsMEPL R+ m2 Squared Maximum Error Per Length of the trunk—a quality criterion 3.5.5

tMSE R+ m2 Mean Squared Error—a quality criterion 3.5.5

tχ2 [0,1] – Quality criterion—ensures a uniform distribution of the points tP 3.5.5

3.5.1 Principal Component Model

The PC model is based on the points associated with the trunk tP ⊆ R3, whose selection
was explained in 3.4.5.2. In addition, the points assumed to be outliers tO ⊆ R3, which
surround the trunk, are provided by the model.
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The three principal components t−−→
PC1

, t−−→
PC2

and t−−→
PC3
∈ R3 depend on the inliers tP only.

The characteristics of the PCA led to a orientation of the first principal component t−−→
PC1

in the direction of the largest proportion of variance. The t−−→
PC1

corresponds to a linear
regression model of the trunk, while the residuals of this regression vector are defined
by the PC scores of the second and third component. So the residuals ε(tP ) ∈ R|tP | are
calculated by equation 6:

ε(tP ) =

√
scores(tP )2

2 + scores(tP )3
2 (6)

In the case of a negative orientation of the first PC in z-direction the vector is inverted
by multiplying it with −1 to allow a simplified interpretation.

3.5.2 Trunk Orientation

The zenith angle tζ ∈ [0, 90] describes the angle deviation of t−−→
PC1

(the trunk) to a vertical
line and is calculated by equation 7:

tζ =
acos(t−−→

PC13
)√

t−−→
PC11

2 + t−−→
PC12

2 + t−−→
PC13

2
(7)

The azimuth angle tα ∈ [0, 360[ describes the deviation of t−−→
PC1

from the northern
direction which indicates the leaning direction of the trunk. So the azimuth angle tα is
calculated by equation 8:

tα = atan(
t−−→
PC11

t−−→
PC12

) (8)

For the implementation, the python function atan2 was used, because it gives infor-
mation about the sign of tα. So the azimuth angle is calculated by equation 9, where
the azimuth angle reaches clockwise from north (tα = 0) over east (tα = 90) and south
(tα = 180) to west (α = 270).

tα = 180− atan2(t−−→
PC11

,−t−−→
PC12

) (9)

3.5.3 Position

The centre point tc ∈ R3 of the model corresponds to the spatial centre of the points tP
associated with the trunk which were used to fit the model. So it is calculated by equation
10:

tc = (tP x, tP y, tP z) (10)

A special advantage of the principal component line fitting approach is that the co-
ordinates of every point of the trunk can be calculated as a linear combination of the
first principal component t−−→

PC1
and the centre point tc. Therefore a point pk ∈ R3 on this

regression line can be calculated by equation 11, in which the scalar k ∈ R corresponds

17



MASTER THESIS: Sebastian Lamprecht 3 MATERIALS AND METHODS

to the desired height along the growth direction of the trunk relative to the centre point
ct:

pk = k · t−−→
PC1

+ tc (11)

This feature is used to estimate the position of the trunk tp ∈ R3, while the z-
component of the tp coordinate should be zero. Therefore the parameter k is estimated
by equation 12, in which tζ corresponds to the zenith angle of the trunk and h ∈ R+ to
the height of the centre point tc above ground level (see section 3.4.1). It should be noted
that this equation relies on the assumption of a flat ground. This approximation suffices
for the goal of this application.

k =
h

cos(tζ)
(12)

The trunk top position ttop ∈ R3 corresponds to the modelled centre of the trunk at
the assumed crowning height. It can be calculated corresponding to the ground position
by using equation 11, while the parameter k is replaced by the assumed height of the
trunk (see section 3.5.4).

3.5.4 Trunk Height

The height of a trunk th ∈ R+ is implicitly given by the expected crowning height ZCH (see
section 3.4.3). The corresponding length of a trunk tl ∈ R+ is estimated with equation
12, in which the parameter h is replaced by the assumed tree height th.

3.5.5 Quality Criteria

The quality of a trunk model can be evaluated by different criteria. Apart from the
classical MSE, the (squared) MEPL (mentioned in 3.4.5.3) or the uniform distribution
criterion (tχ2) of the points associated with the trunk can be used. The tMSE is based
on the residuals ε(tP ) of the regression line, defined by t−−→

PC1
(equation 13). The tMEPL

is defined by equation 14, while the corresponding squared version tsMEPL is defined by
equation 15. The uniform distribution criterion of the inliers is calculated by applying a
Chi-Square Test on the pair-wise distance according to their sorted t−−→

PC1
scores.

tMSE = ε(tP )2 (13)

tMEPL :=
max(ε(tP ))

max(tP z)−min(tP z)
(14)

tsMEPL = (tMEPL)2 (15)

3.6 Methods of Evaluation

To carry out an evaluation of the aTrunk approach, it was applied to the ALS point
cloud of the study area. Table 2 contains the selected parametrisation optimized by a
sensitivity analysis. A local maxima-based watershed segmentation approach served as a
benchmark for the aTrunk approach. Hence, the watershed approach was applied to a
0.5 m grid derived from the ALS point cloud.
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Parameter Name Values’ Unit Description Value in Reference

Range this study Section

minPoints (nmin) N>1 – Minimum number of points assumed to form a trunk 4 3.4.5.3

minGrdPoints N>2 – Minimum number of points needed to build a DTM 3 3.4.1.1

maxPoints (nmax) N≥nmin
– Maximum number of points assumed to form a trunk 40 3.4.5.3

overlap R+
0 m Width of the overlapping area 5 3.4.2

maxSampleSize R+ m Maximum xy-size of a sample before clustering 10 3.4.2

hwRel R+ – Minimum ratio between z- and xy-range of a trunk 5.0/1.0 3.4.5.3

minZRange R+
0 m Minimum range of a trunk in z direction (height) 3.5 3.4.5.3

groundCoverLevel (ZGCV ) R m Maximum height of ground-covering vegetation 1.0 3.4.3

relCrowningHeight (ρCH) ]0, 1] – Assumed relative crowning height of the trees 0.45 3.4.3

delta (δ) R+ m Buffer radius of clustering algorithm. 0.85 3.4.4

zBufferScale R+
0 – Scale factor of z-axis for 3D clustering 0.05 3.4.4

outlierlimit [0, 1[ – Z-values above this quartile are assumed to be outliers 0.005 3.4.3

MEPL R+
0 m Expected maximum error per length of trunk 0.065 3.4.5.3

maxZenith [0, 90[ ◦ Maximum assumed zenith angle of a trunk 8 3.4.5.3

relOutliers [0, 1[ – Expected maximum ratio of tP and tO vs. tO 0.75 3.4.5.3

uniformProb (χ2) [0, 1] – Assumed minimum unique distribution of the z-values 0.002 3.5.5

mergeBuffer R+
0 m Assumed minimum distance between two trunks 1.5 3.4.6

Table 2: Model Parameters

The measured GNSS positions and estimated TLS trunk positions were used as refer-
ence datasets. To minimize systematic errors both the GNSS and the TLS positions were
adjusted to the detected positions using an affine point set registration.

A data adjustment was necessary, because it had to be assumed that the GNSS
positions were inaccurate and shifted compared to the ALS data. In addition, the
terrestrial measurements had to be adjusted to the ALS coordinates because they
were not georeferenced.

To apply an affine point set registration of both reference datasets to the detected
positions, some trunk positions were assigned manually using the CloudCompare [8]
software. After this coarse registration a finer registration was done using a python
script which is based on the theory presented in section 3.6.1. The optimisation was
done iteratively by assigning each point to its pair-wise closest reference point and
applying an affine transformation minimizing the residuals of these point pairs. This
procedure was repeated until the RMSE changed only scarcely after one iteration.
After the referencing of the point sets, the accuracy in positioning and the detection
rate was evaluated.

A detected trunk position was assumed to correspond to its reference position when its
distance was below 2 m for the aTrunk approach and—justified by the different positioning
accuracies—4 m for the watershed approach. In addition, the selection was limited to the
extent of the reference datasets. It should be noted that both reference datasets did not
include all trunks because some trees were not measured or not detected by the slicing
approach. Due to the large location residuals the GNSS reference dataset was rejected
for further evaluation.

Figure 8 illustrates the position accuracy of the GNSS measurements compared to the
slicing-based TLS trunk positions. The adjustment was done as described above while
a maximum pair-wise distance of 4 m was assumed. An average positional difference
of 1.53 m and an RMSE of 1.71 m occurred.
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Figure 8: Comparison of the GNSS positions and the TLS reference positions. The left
image illustrates the assignment of the positions using absolute coordinates. Here the
notes about the detection rate should be neglected because the observation areas did
not match completely. The right image illustrates the relative positional differences
between the reference positions and the corresponding GNSS positions.

The aTrunk and watershed positions were combined to a merged dataset (called combined
approach) to get information about the potential accuracy improvement by the aTrunk
approach. In case of corresponding positions (distance below 4 m), the aTrunk positions
were preferred.

3.6.1 Affine Point Pair Registration

The affine point pair registration uses already known point pairs to minimise the
coordinate differences by applying an affine coordinate transformation. To transform
points ∈ R2 to these new coordinates, a translation of tx ∈ R in x-direction and ty ∈ R
in y-direction has to be performed. In addition, a rotation is applied using the angle
ϕ ∈ [0, π[. So this affine coordinate transformation is done by equation 16. Here the
matrix Pn×2 corresponds to the n ∈ N coordinates and the matrix An×2 corresponds
to the transformed coordinates. The matrices Rϕ

2×2 and Ttxty
n×2 apply the rotation

and translation. To derive the required parameters tx, ty and ϕ, the equation system
17 has to be solved. The variables εx and εy ∈ R correspond to the residuals. After
the derivation of the matrices, Rϕ and Ttxty can be used to apply this transformation
to several datasets using equation 16.

A =
(
Rϕ ·PT

)T
+ Ttxty (16)
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Ax1 Ay1
...

...

Axn Ayn

 =


[
cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)

]
·

Px1 Py1
...

...

Pxn Pyn


T

T

+

tx ty
...

...

tx ty


Ax1 . . . Axn
Ay1 . . . Ayn
1 . . . 1

 =

 cos(ϕ) sin(ϕ) εx
−sin(ϕ) cos(ϕ) εy

tx ty 1

 ·
Px1 . . . Pxn
Py1 . . . Pyn
1 . . . 1

 (17)

3.6.2 Rigid Point Set Registration

An automated Rigid Point Set Registration (cf. Jian and Vemuri [15] and Jian and
Vemuri [16]) was rejected as an alternative to the manual pre-adjustment and affine
point pair registration because this approach failed several times. This effect could
be explained by the unfavourable spatial distribution of the trunk positions, which
leads to a rare characteristic alignment of neighboured trunks. Nevertheless, figure 9
illustrates some results of the rigid point set registration approach.

Figure 9: Rigid point set registration between detected positions (yellow dots) and
reference positions (blue crosses) using the algorithm of Jian and Vemuri [16]. Before
registration (left image) and after registration (right image).

3.7 Sensitivity Analysis

A sensitivity analysis was performed to derive an optimal parametrisation of the
model. In doing so, a valid and conceivable parameter range was defined for each
parameter. The approach was applied a few hundred times to the reference dataset
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using a randomly selected parameter combination at each run. For that purpose
the optimisation software of Bergstra et al. [1] was used. The TLS dataset served
as reference for the evaluation of each modelling result. To reduce the number of
necessary model runs the parameter ranges should be as narrow as possible. The first
tests led to a conceptual categorisation of the parameters in three groups, which are
summarised in table 3.

Table 3: Parameter Groups

Group 1 Group 2 Group 3

minPoints maxPoints relCrowningHeight

minGrdPoints overlap delta

minZRange maxSampleSize MEPL

mergeBuffer zBufferScale uniformProb

maxZenith hwRel relOutliers

outlierlimit groundCoverLevel

The first group contains all parameters which are defined by the quality requirements
of the user. These values depend either on the point density of the input data or
on general assumptions on the characteristics of the study area. The second group is
mainly characterized by the effect on the overall validity of the model or by the effect of
the parameters on the computation time. The third group contains parameters which
are strongly affected by side effects between these parameters. These parameters are
very sensitive to changes compared to the others. So the values of the parameters of
Groups 1 and 2 were set to a constant value based on expert knowledge, while the
parameters of Group 3 were used for the sensitivity analysis.

Figures 10 and 11 illustrate the modelling results of selected parameters of Group 3
using the detection rate d, and OF (d, o, r) of equation 18 respectively as an objective
function. The model was applied a few hundred times to the study area to derive
these scatterplots. The rate of false detections o and the RMSE r were used.

OF (d, o, r) :=

√
(1− d)2 + (1− o)2 + r2 (18)

The point distribution of the scatterplots was used to identify optimal parameter
ranges. A well-defined local maximum respectively minimum implies an optimal value
for the corresponding parameter. To derive an optimal value semi-automatically the
best 5 % of the objective values were selected (green dots). The median value was
assumed the optimal value. A parameter range was defined in a close range around
the median (black dots), while red dots signify those points which are located in the
optimal ranges for all parameters.

Such figures were used to limit the parameter ranges and to remove those param-
eters from the consideration which have a minor influence on the results. The final
parametrisation was selected manually while whole-numbered values were preferred.
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Figure 10: Visualisation of the sensitivity analysis using the detection rate as the
objective function. A global maximum is considered the optimal value of the corre-
sponding parameter.

Figure 11: Visualisation of the sensitivity analysis using equation 18 as the objective
function. A global minimum is considered the optimal value of the corresponding
parameter.
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4 Results

4.1 Evaluation

The comparison between the detected aTrunk models with the TLS positions resulted in
an average positional difference of 0.32 m and an RMSE of 0.42 m (see figure 12). In total,
a detection rate of about 69.7 % was achieved, while about 8.4 % of the detections were
assumed to be false detections. In contrast, the local maxima-based watershed segmenta-
tion approach reached a detection rate of about 92.7 %, while 12.4 % of the detections were
assumed to be incorrect. Since a clearly higher average positional difference of 1.09 m and
an RMSE of 1.30 m occurred with the watershed approach, the aTrunk approach reached
a remarkably high accuracy in positioning.

Figure 12: Evaluation of the detected aTrunk positions using the TLS positions as refer-
ence. The left image illustrates the assignment of the positions using absolute coordinates.
The right image illustrates the relative positional differences between the reference posi-
tions and the corresponding detected positions.

Figures 13 and 14 illustrate the corresponding evaluation results of the watershed
approach respectively the combined approach compared to the TLS positions.

The combined approach reached a significantly increased detection rate of about
97.2 %, while about 15.9 % of the positions were assumed to be false detections. An
average positioning accuracy of 0.60 m and an RMSE of 0.83 m were reached.
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Figure 13: Evaluation of the detected watershed positions using the TLS positions as
reference. The left image illustrates the assignment of the positions using absolute
coordinates. The right image illustrates the relative positional differences between
the reference positions and the corresponding detected positions.

Figure 14: Evaluation of the detected combined approach positions using the TLS
positions as reference. The left image illustrates the assignment of the positions using
absolute coordinates. The right image illustrates the relative positional differences
between the reference positions and the corresponding detected positions.
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The boxplots of figure 15 illustrate the residual distribution of the aTrunk, watershed
and combined approach. Clearly visible is the optimized positioning accuracy using
both approaches. A Mann-Whitney U-test was applied to compare accuracies, because
of the right-skewed distribution of the data. The p-values clearly close to zero imply
that the positioning accuracies of both the aTrunk and the combined approach are
significantly superior to the watershed approach.

Figure 15: Boxplots of the positioning residuals of the aTrunk, watershed and com-
bined approach.

For both reference datasets the relatively high overdetection rate is caused by the
fragmented measurements across the study area. Moreover, many of the trunks at the
edge of the study area were not recorded caused by missing TLS trunk detections (e.g.
because of shade effects). By neglecting the false detections near the edges of the study
area, a negligible proportion of over-detections remains.

It should be noted that the total accuracy in positioning can be overestimated, caused
by the referencing step explained in section 3.6. Due to this strategy, the effect
of a potential systematic shift in trunk positions, e.g. caused by uniform oblique
trunks, is removed. Nevertheless the desired evaluation of the topology between the
trunk positions remains. The relatively high detection rate of the aTrunk approach
is favoured by the open forest structure of the study area.

4.2 Modelling Results

On a Lenovo U310 with an Intel Core i7-3517U processor and 4 GB RAM, the algorithm
required a computation time of about 12 seconds (0.4 seconds data loading and 11.1
seconds analysis) using the subset of the study area presented in section 3.2.1. For the
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larger 1 km2 sample the approach detected 4604 trunks in below 9 minutes (20 seconds
data loading and 8 minutes analysis) with the same parametrisation. Figures 16 and 17
illustrate the modelling results of the study area and the larger 1 km2 sample.

Figure 16: Modelling results of the study area.

Figure 17: Modelling results of the 1 km2 sample.

The study area is characterised by trees of a homogeneous great high, which results
in long detected trunks, with an mean value of 16 m and a low standard deviation (SD)
of 0.6 m. In comparison, the 1 km2 sample consists of different areas with inhomogeneous
tree heights. This results in a high standard deviation of about 2 m. The MSE distribution
of the points associated with the trunk is right-skewed for both datasets. A median of
below 7 cm is reached for the study area and of about 3 cm for the 1 km2 sample.

The distribution of the trunk zenith implies that themaxZenith-parameter was chosen
too small. Nevertheless, a right-skewed distribution is recognisable. In addition, a median
of about 3° occurs, while most of the trunks clearly differ from a vertical orientation.
The circular histogram of the trunk azimuth implies a preferred east-west or west-east
orientation of the trunks. This effect could be caused by an actual process or by systematic
measurement errors (e.g. caused by the flight direction). Under the assumption of an
actually preferred orientation, this effect could be explained by a preferred growth in the
dominant wind direction with a noticeable deviation from a vertical orientation.
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Figures 18 and 19 illustrate the aTrunk detection results of the 1 km2 sample.

Figure 18: 3D-view of the 1 km2 sample with detected trunks. Blue dots stand for
trunk model supporting points, red dots for outliers.

Figure 19: 3D-view of the 1 km2 sample with detected trunks and vegetation cover

5 Discussion

The high positional accuracy of the aTrunk approach (with an average positional differ-
ence of 0.32 m and a RMSE of 0.42 m) reaches almost the magnitude of the ALS horizon-
tal accuracy of about 5 to 15 cm (assumed by May and Toth [19]). The trunk detection
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approach has shown clearly increased positioning results compared to the local-maxima-
based watershed approach with a grid size of 0.5 m. The combination of the aTrunk and
the watershed approach has shown an improvement of the average positional difference
of 44.7 % and an improvement of the RMSE of 36.5 %. These observations support the
results of Reitberger et al. [29], in which an improvement of up to 25 % was mentioned.
The inaccurate GNSS measurements imply that the trunk detection approach can be su-
perior to ground-based GNSS positioning. Other raster-based approaches usually reach
positioning accuracies above 0.5 m (cf. Kaartinen et al. [17]).

With a detection rate of about 70 % the results of the aTrunk approach are out-
numbered by the watershed approach with about 93 %. Nevertheless, especially high
reliability of the aTrunk ’s detected trunks, can be seen as a benefit towards raster based
approaches.

The derived detection rates of the atrunk approach seem to be comparable to other
raster-based studies. Reitberger et al. [29], for instance mention a detection rate of
about 60 %, Chen et al. [5] 64 %, Duncanson et al. [7] up to 70 % and Hyyppä et al.
[14] up to 83 %. Depending on the tree neighbourhood, Kaartinen et al. [17] notice
detection rates up to nearly 100 % for isolated trees, while overlapping trees often
cannot be identified.

It should be noted that the atrunk approach depends on a high point density in the trunk
section. For dense vegetation, leafy trees or a lower point density, a decreased detection
rate has to be expected, caused by the need of a registration of the trunk section and
the assumption of a linear arrangement of points associated with the trunks. Therefore,
it can be assumed that the detection rate also decreases for branched trees (like beech
compared to spruce).

However, as mentioned above, the high reliability of trunks detected with a very
high accuracy in positioning is an advantage over raster-based approaches. Especially
the additional orientation information of the trunks increases the accuracy of detected
trunk locations. The computation time of below 9 minutes for a 100 ha dataset on a
commercial computer seems to be acceptable taking the additional benefit of the high
quality information into consideration.

The computation time of the aTrunk seems to be clearly better than the computation
time of the raster-based algorithm of Duncanson et al. [7], requiring a runtime of 1.5
h for a dataset of only 16.0 ha, with 32 CPUs and 2GB RAM per CPU. So, despite
the higher amount of data of this point-based approach, the analysis can be very
fast compared to raster-based approaches. This could be caused by the suitable data
structure for mathematical analysis, compared to raster-based approaches which often
rely on laborious window-moving techniques.

5.1 Potential Technical Improvements

The accurate prediction of the trunk position and orientation could be used to im-
prove existing crown detection approaches, like Chen et al. [5] or Reitberger et al.
[29]. Especially the approach of Zhou et al. [35] could be improved by choosing the
trunk positions detected by this approach as initialization points. This strategy could
optimise the detection rate and accuracy of tree crowns with a negligible additional
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effort. In addition, it might be possible to achieve a better separability of overlapping
trees in further studies.

The analysis effort of the aTrunk approach could be reduced by optimizing the
clustering algorithm (see section 3.4.4.2) using a sweep-based approach, for instance,
which could reduce the computation effort to O(n · log2(n)). In addition, the plane
terrain model of section 3.4.1.1 could be superseded by a polynomial of higher order
to increase the accuracy. In section 3.5.3, it was mentioned that the estimated trunk
position at ground level relies on the assumption of a flat ground. To optimize the
trunk positioning accuracy, the intersection point between the trunk vector and the
terrain model should be calculated rather than assuming a flat ground.

A first coarse sensitivity analysis was performed, which should be extended in fur-
ther studies. To anticipate some results, the parameters maxPoints, uniformProb,
relCrowningHeight, delta and MEPL seem to have the largest impact on the de-
tection rate and positioning accuracy, as expected. In addition, the dependency of
the point density on the modelling results should be analysed, because the ability to
detect the trunks depends strongly on the number of recorded points associated with
the trunks.

An additional validation of the derived trunk vectors will be performed in a further
study, which will combine a larger number of terrestrial scans and tree models (for
example using the approach of Raumonen et al. [28]) with ALS trunk detections.

5.2 Outlook

The derived information about the trunk orientation or distribution could be used for a
large scale geostatistic analysis of forest characteristics. Here the underlying processes
should be examined. Because of the high reliably of the aTrunk approach, the derived
trunk positions can be used to optimize the tree identification of raster based approaches.
In addition, the trunk lengths for example, could be used for an estimation of the available
wood volume or as additional information for a species identification.

Kaartinen et al. [17] notice an overall dependency of the tree size on the accuracy of
detected tree locations for different approaches, while “the taller a tree is, the better is
the accuracy of location”. Under the assumption of a high point density in the trunk
section, the point-based atrunk approach could reduce this effect.
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