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Abstract: Airborne LiDAR-derived digital terrain models can be used to detect skid trails
overgrown by dense forest vegetation. This study proposes a model approach for an
automatic detection and vectorization of skid trails using a 0.5 meter digital terrain model
(DTM) of Rhineland-Palatinate, Germany. Due to the steep terrain and the resulting terrain
height differences, a moving window filter method, using the height differences along a
defined distance to extract skid trails from the DTM, is created. For the vectorization of the
resulting binary image, digitized start lines are used for an automatic connection of related
nodes, with a given search angle and a maximum distance. Appropriate results are obtained
and evaluated by features derived from hillshades of the test area. In comparison to an active
contour model, the derived feature had a length of 2,193 meters, with a completeness value
of 67 percent, a correctness value of 68 percent and a root mean squared error value of 2.7
meters.

Keywords: airborne LiDAR; digital terrain model (DTM); feature detection; line structure
detection; moving window filter; skid trail detection

1. Introduction

Forest roads are one of the most important parts of forestry and forest management. They are not only
used for traveling in the forest, but for much more purposes and depending on the task of the roads,
their size and structure differ. The smallest kind of roads in the forest, the skid trails, which are mainly
created for logging, are the center of this study.
Skid trails are used by heavy machinery, ranging between 10 to 25 tonnes [1,2], and therefore,
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different aspects, concerning geomorphic and hydrologic effects occur in direct proximity or on a larger
scale. These concerns are soil disturbance and compaction, reduction of species richness and plant
recovery [3]. Furthermore, they can be the cause of sedimentation and erosion in catchment areas by
redirecting surface flows [4,5].
The knowledge about the location of skid trails plays an important role in Germany, which is covered
by 32 percent of forest [6]. In order to minimize the described problems concerning skid trails, and
to comply with PEFC or FSC standards [7,8], it is necessary to detect, localize and reuse those trails.
Especially in the test area, which is located in the national park Hunsrück-Hochwald, sustainable
forestry techniques need to be developed and utilized. The large forested areas in Germany, and in the
the federal state Rhineland-Palatinate with more than 839,000 hectares, causing massive problems for
foresters to catalogue existing trails. The sheer size of the area and the missing of expert knowledge
are the main reasons for an automatic and fast detection method of skid trails. Furthermore, a lot of the
desired structures are not visible in the terrain, because they have already been overgrown by plants and
trees. The terrain and tall trees also complicate the use of GPS to manually track skid trails on-site [9].
Therefore, the used data must be available on a large scale, must have a high spatial resolution and has
to be able to detect the forest soil. Airborne derived Light Detection and Ranging (LiDAR) data is used
in remote sensing to acquire topographic data on a large scale with a high accuracy. LiDAR is highly
valuable for forested areas by providing the ground surface elevation [10]. Airborne LiDAR data has
been the topic for many different research topics like harvesting and road design [11], archaeology [12]
or for resource managers [13].
A lot of research and projects have been carried out with the general topic of feature detection utilizing
different techniques and data. White, et al. applied LiDAR derived digital elevation models and
their products to manually digitize forest roads in steep terrain by visually interpreting the contrast
differences [14]. Hierarchical classification techniques are commonly used to extract roads from
LiDAR point clouds. Clode, et al. used this technique to classify lidar points into non-road and
desired road points. A combined method employing the height and intensity value of the LiDAR
input data was presented. Furthermore, the consistency and homogeneity was made use of to finalize
the method [15,16]. Computer vision and computer graphics methods were used by Rieger, et al.
to differentiate between roads and non-roads in digital elevation model derived slope models. Edge
extraction filters were applied to detect break lines. Due to the noisy nature of the slope model,
pre-processing of the input like edge-enhancing filters were applied [17].
Not only LiDAR derived data is used for feature detection, but also high resolution multispectral
imagery. Gradient operations and the skeletal ray formation is adopted by Mangala and Bhirud for an
automatic road extraction. Furthermore, thresholding and filtering is carried out. The final roads are
extracted by morphological operations of the colored result [18]. Doucette, et al. also applied gradient
operations for an automated road extraction algorithm [19]. The main centerline of road features in
high resolution satellite imagery is extracted by Hu and Tao applying a hierarchical grouping strategy
technique, which does not group all parts at once, but they are grouped incrementally [20]. Road seeds
and vectorial information are also utilized for road detection [21,22].
More complex techniques for feature detection are Active Contour Models. Introduced by Cohen [23],
active contour models are used in wide range of different fields. Several variations have been
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developed [24–27] for different tasks like tracking of moving objects [28], feature detection [29]
and medical informatics [30–35]. Active contour models are also used in remote sensing for feature
extraction. Seppke, et al. applied active contours to extract coastlines in Synthetic Aperture Radar, SAR
images [36]. The segmentation of roads was the purpose of several papers [37–40].

2. Material and Methods

2.1. Coordinate System

This study uses the the following coordinate system and therefore, all maps have the following coordinate
system and projection.

Table 1. Coordinate system and projection of the case study

Variable Value
Coordinatesystem WGS 84 / UTM zone 32N
Projection Transverse Mercator
Date WGS 1984
Unit Meter
EPSG 32632

2.2. Study Area

The study site is located in the western part of Rhineland-Palatinate, Germany and about 30 kilometers
east of the state’s capital Trier. It is in the center of the triangular arrangement of the three villages
Deuselbach (northwest), Allenbach (northeast) and Tranenweiher (south). With a border length of 290.8
meters and a width of 211.7 meters, the place includes an area of 61,559.2 square meters. It is part of
the recently created national park Hunsrück, with a size of roughly 10,000 hectares [41]. Parts of the
national park Hunsrück consist out of bogs. The chosen test area is wet as well. Figure 1 shows the
location of the test site and the national park on an European and on a regional scale. Ranging from
656 to 684 meters above sea level, the elevation depends on the direction. Comparing the four chosen
directions (center north to south, northwest to southeast, northeast to southwest and center west to the
east of the test site), which are displayed in figure 2, it can be said that, the north to south and northwest
to southeast extents are more steep than the other two, which are directly compared, more flat. The test
area is densely vegetated (see figure 1). In Germany, 32 percent of the state (11.4 Mio. hectares), are
forest areas. Rhineland-Palatinate, in which the test area is located, is covered by 42 percent (839,796
hectares) of forest [6]. Typical of the greater region, the Hoch- and Iderwald, are woodrush-beech forests
(Luzulo-Fagetum) with atlantic birch mires. Today’s forest is defined by a large amount of coniferous
trees, mainly Picea abies, which extends from southwest to northeast. Spruce form the predominant tree
species in those forests. Last amounts of beeches, which define the natural vegetation, are still existing
near the former forestry departments Hermeskeil and Kempfeld [42]. The maximum tree heights are
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Figure 1. Test area (white) and national park boundaries (black) shown within the context
of Germany and Europe

Figure 2. Terrain height of the study site in meter above sea level for four directions
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about 35 meters with a mean of 16.7 meters and a standard deviation of 9.8 meters.
This particular test area was chosen due to the skid trail courses, parallel, and on a first glance arbitrary
(see figure 5), and the quality of the data. No visual errors were recognized in this test site. The size of
the area was a trade-off between running time of the algorithm and the existing amount of skid trails.

2.3. Skid Trails

Skid trails are unpaved and open roads in the forest, which are used by heavy machinery e.g. harvesters
and forwarders. Normally, these roads are created without any structural measures in a distance between
20 to 60 meters, and are used every three to ten years. In order to reach selected trees to cut down and
harvest, these roads are needed and grant a regulated removal of the logs to the next forest road [43].
Figure 4a shows the target road feature of this study. Due to the dense vegetation of the test area, these
roads are not visible on aerial or satellite imagery. Field measurements revealed a basic width of up
to 4 meters, and a maximum depth of 30 to 45 centimeters. Perpendicular height profiles of skid trails
can confirm these measurements (see figure 3). Skid trails are deeper than the surrounding forest floor,

(a) First skid trail example (b) Second skid trail example

Figure 3. Height profile for two selected skid trails of the test area. Gray hatched area above
and under the actual height line shows one standard deviation more and less of the height

because they are used by heavy machinery, e.g. 17.5 t [1] - 22.8 t [2] for logging. The height profile
can be seen in high resolution digital terrain models. Skid trails consist of three parts. The first part, the
middle of the trail, called center strip, has the same height as the surrounding forest soil and is not visible
in digital terrain models. The second part, the driving lanes, is defined by a lower height profile. On this
part of the soil, the wheels touch the ground and compress the soil. The last part, the hard shoulders of
the track, cannot always be well identified. It is defined as the part of the forest soil from the driving
lanes to the adjacent forest stands. Figure 4b illustrates these three parts. The technique of using heavy
machinery causes problems for the soil and adjacent forest. Several studies addressed this topic and deal
with the occurring issues. These problems include soil compaction and disturbance, plant recovery, stem
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densities and species richness, to name a few [3]. Furthermore, they are the cause of sedimentation and
erosion in catchment areas. Regarding the missing drainage, skid trails increase the risk of redirecting
surface flows or washing out of loose sediment [4].

(a) Target road feature: skid trail (b) Schematic representation of a skid trail

Figure 4. Skid trail in the test area and the schematic representation (based on [43])

Terrain profiles of skid trails play an important role in the design of the developed algorithm.
Figures 3a-3b show the height above sea level at a 90 degree angle from the center of the skid trail to
3.5 meters to each side of if. The gray hatched area above and under the actual height line shows one
standard deviation more and less of the height. The creation of these graphics included two basic
steps. First, the construction of the perpendicular lines and second, a point sampling along these
lines with a certain distance between. Both required steps are described below.
For each line feature, three perpendicular lines are created (start point, middle point and end point).
The perpendicular lines for these three points were calculated by two different methods. Both
algorithms include the use of intersections of lines and circles.
To construct a perpendicular at the end of line AB (line equation: y = m · x + b) (point A), a point
above (or under) the line is created in a first step. The exact location of this point is not important.
It is only needed as an auxiliary point D. Afterwards, the distance d between the auxiliary point D
and A is computed and used for the creation of circle C (circle equation: r2 = (x− h)2 + (y − k)2
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). C is defined by its radius d and the center point A. In a next step, the intersection point I of circle
C and line AB is calculated using equation 1.

x = (x− h)2 + ((m · x+ b)− k)2 − r2 (1)

This point is, like point D, used as an auxiliary point and is only needed to calculate the intersection
K between line ID and circle C. Two points are needed to determine a line. In order to find the
linear equation (y = m · x + b), which is defined by the two points of line AB, two variables, the
slope m, and the y-intercept b, have to be calculated. The slope m of the line can be computed by
applying the following equation:

m =
y2 − y1
x2 − x1

(2)

Afterwards the calculated slope m is used to determine the y-intercept b. One point of line AB and
slope m is employed to solve the ensuing equation:

b = y −m · x (3)

This equation is used in the following step to calculate the interception point K by applying
formula 1. In a last step, the linear equation for line KA is computed, and used in equation 8 to
determine the demanded length of the perpendicular length.
The other perpendicular line, which is based on the center of the line, can be computed by the
following steps. First, the center of the line point K is used to create a circle C with a radius, which
is smaller than half the length of the lineAB. Circle C is used to compute the two intersection points
P and Q with line AB. P and Q are afterwards used as the origin for two new circles, C1 and C2

with a radius larger than the length of KP or KQ, but less than PQ. With the use of equation 4,
the intersection point R of both circles, C1 and C2, are calculated. R is part of the requested
perpendicular line. The final length of the perpendicular can be determined by using equation 8.

x1 = a+
e · k
p

+
f

p
·
√

(r2 − k2) y1 = b+
f · k
p
− e

p
·
√

(r2 − k2) (4)

x2 = a+
e · k
p
− f

p
·
√

(r2 − k2) y2 = b+
f · k
p

+
e

p
·
√

(r2 − k2)

A point along a line, with a certain distance d, from a point (x0, y0) of the line, can be computed by
the use of vectors. The basic equation is defined as:

P = (x0, y0) + d · u (5)

In order solve to equation 5, two variables have to be calculated in a previous step. Let

v = (x1, y1)− (x0, y0) and u =
v

‖v‖
(6)

with the length of the vector v

‖v‖ =
√
v21 + v22 (7)
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After that, the equation for calculating a point along a line, with a certain distance, can be written as

(x0, y0) + d · ( v1√
v21 + v22

,
v2√
v21 + v22

) (8)

The use of vectors for the calculation has the advantage of not including a subtraction of values. If,
for example x0 equals x1, no problem occurs by dividing by zero.

2.4. Raw Data

This paper is using an airborne LiDAR derived digital terrain model, DTM, from the Landesamt für
Vermessung und Geobasisinformation Rheinland Pfalz [44]. For the whole federal state, the data was
acquired between the years 2002 and 2013. The area, in which the test site is located, was part of the
data acquisition project in the year 2008. The resulting digital terrain model has a spatial resolution with
a pixel resolution of 0.5 meter.
Table 2 lists the main properties of the used DTM of the test site. The height is ranging from 683.8 to
655.8 meters with a mean height value of 670.3 meters and a standard deviation of 4.9 meters.

Table 2. Basic information about the digital terrain model of the test site

Height Value [m]
Maximum 683.8
Minimum 655.8
Mean 670.3
Standard deviation 4.9

2.5. Reference Data for Accuracy Assessment

To evaluate the results of the developed algorithm, validation data is needed. For this task, all skid trails
were manually digitized using hillshades of the test area. Hillshades allow the operator to recognize the
trails in the area, thus, it is possible to use them for validation.The differentiation between skid trails and
natural rifts were not made during this process.
2,193.7 meters of line features were visually classified and digitized. Assuming that the width of a skid
trails is in between four to six meters, a buffer of three meters to each side of the line feature was created
and the resulting was area compared to the entire size of the test area. 20.86 percent of the test area
consists of skid trails (including natural rifts and valleys). Figure 5 shows the digitized line features on
the hillshade of this area.
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(a) Aerial image and the digitized line features (b) Hillshade and the digitized line features

Figure 5. Digitized line features in the test area for validation

Edge detection is an important topic in computer vision. It is defined as the acquisition of edges
in an image, not generated by noise, but by scene elements itself. Edge points, often abbreviated
as edges, are pixels at which the values are characterized by a sharp variation. The higher the
local intensity change at a certain position in the image, the higher are the chances, that an edge is
located at this position [45]. Often the term edge is used to relate to chains of edge points which are
connected to each other. These chains are called contour fragments. In literature, edge points are
also described as edgels, which is a short form for edge elements.
A lot of different reasons exist for detecting edges in images. All elements from an image, like
shadows, solid objects, or other marks on surfaces generate edges and thus, contours. Furthermore,
these edges are used for object recognition and detection, motion analysis and other scientific topics.
The process of edge detection includes three steps. Noise smoothing, edge enhancement and edge
localization.
The first step, noise smoothing, aims at suppressing as much noise of the image as possible and not
destroying features of the image and thus, edges. If there is no further information about the quality
of noise available, it is considered Gaussian. Secondly, a filter is needed that detects edges. It has to
detect homogeneous regions’ boundaries, which are based on texture and intensity [46]. The pixel
values of the output have to be low where no edges occur and high, for actual edges. This ensures
the location of the edges (local maximum) in the filter’s result. Finally, the edge localization has to
determine, whether the chosen local maximum is a result caused by noise or are edges. This step
involves a nonmaximum suppression, which thins wider contours to a one pixel width and afterwards
performs a thresholding [47].
Three edge detection filters will be explained in the following chapter. These are, in appearing order,
Prewitt and Sobel edge filters, Canny edge filter and finally, the Laplacian of Gaussian (log) filter.
To understand these filters, some basics have to be explained. It is necessary to have a certain
knowledge about partial derivatives, the gradient of an image and derivative filters. A partial
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derivative is the derivative of a multidimensional function. It can be taken along both of the image’s
coordinate axes u an v (equation 9).

∂I

∂u
(u, v) and

∂I

∂v
(u, v) (9)

The gradient vector at the position (u, v) of function I can be computed with equation 10.

∇I(u, v) =

∂I∂u(u, v)

∂I

∂v
(u, v)

 (10)

The magnitude |∇I| (equation 11) of the image gradient (equation 10) is not effected by any rotation
of the test image and therefore, it is not dependent on the direction of image structures. This is the
main reason for being the underlaying basis of many different edge detection functions.

|∇I|(u, v) =

√
(
∂I

∂u
(u, v))2 + (

∂I

∂v
(u, v))2. (11)

The components of equation 10 are colums along the vertical and horizontal axes and the first

derivative, f ′(x) =
df

dx
(x), of the image. The coefficient matrix

HD
x = [−0.5 0 0.5] = 0.5 · [−1 0 1] (12)

can be used to approximate the first horizontal derivative (equation 13)

df

du
(u) ≈ f(u+ 1)− f(u− 1)

(u+ 1)− (u− 1)
=
f(u+ 1)− f(u− 1)

2
(13)

and to create a linear filter. The coefficients of equation 12 −0.5 and +0.5 are valid to I(u − 1, v)

and I(u + 1, v). The center pixel I(u, v) of image I is ignored due to its weighting with zero. The
second, the vertical component can be calculated by the linear filter (equation 14) as well [45].

HD
y =

−0.5

0
0.5

 = 0.5 ·

−1

0
1

 (14)

Prewitt and Sobel edge filters are one of the most commonly used filters for contour detection and
only slightly differ. Therefore, both filters are described in one chapter. Several different variations
of the Sobel filter are available (see [48] or [49]), which decrease the sensitivity to noise or increase
the overall quality. This chapter will explain the basic variant of the filter. Both of them use linear
filters as described above. These filters sprawl over three contiguous columns and lines to intercept
errors due to noise, which would result out of "simple" gradient operators (equation 13 and 14). The
Prewitt method applies the filters,

HP
x =

−1 0 1

−1 0 1

−1 0 1

 and HP
y =

−1 −1 −1

0 0 0

1 1 1

 (15)
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which computes an average gradient of three adjacent columns or lines. When the filters are broken
down into its components,

HP
x =

1

1
1

 ∗ [−1 0 1
]

and HP
y =

[
1 1 1

]
∗

−1

0
1

 , (16)

HP
x is performing a box smoothing before the computation of the gradient x. HP

y is as well
smoothing before computing the y gradient. The smoothing could be applied after the computation
of the gradients as well due to the commutativity of linear convolution.
The Sobel method uses nearly the same filters. Only the smoothing values are higher.

HS
x =

−1 0 1

−2 0 2

−1 0 1

 and HS
y =

−1 −2 −1

0 0 0

1 2 1

 (17)

An appropriate scaling is afterwards used to estimate local gradient components

∇I(u, v) ≈ 1

6
·

(I ∗HP
x (u, v))

(I ∗HP
y (u, v))

 (18)

for the Prewitt method and

∇I(u, v) ≈ 1

8
·

(I ∗HS
x (u, v))

(I ∗HS
y (u, v))

 (19)

for the Sobel edge detection.
In a next step, the strength and orientation of the filter results have to be computed. Let

Dx = Hx ∗ I and Dy = Hy ∗ I

be the scaled filter results. For both, Dx and Dy, the local edge strength E(u, v) can be described as
the gradient magnitude

E(u, v) =
√

(Dx(u, v))2 + (Dy(u, v))2. (20)

The orientation of the resulting edge is defined as the angle Φ(u, v) and can be calculated with

Φ(u, v) = tan−1(
Dy(u, v)

Dy(u, v)
) = arctan

(
Dy(u, v), Dx(u, v)

)
. (21)

Often these two values are used to visualize the edges by coding the orientation angles as color hues
and the color saturation is controlled by the edge strength. Due to the simple implementation and
good results, these two filters are used commonly and are available in many software packages and
image processing tools [45].
The results from edge detection filters and the edges, which humans identify, often differ. Two main
reasons cause this problem. First, only local intensity differences are gathered by filters, while the
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human visual system is capable of extending edges with vanishing contrast or with minimal contrast.
Secondly, edges are defined over different scales and, are not fixed at a certain resolution or scale.
Edge filters, like the Sobel filter, only respond to differences in the image intensity, which occur
in their 3x3 pixel filter region. In order to detect contours on a larger scale, either the image has
to be scaled and the small filters are used, or larger edge detection methods are needed. If both of
these techniques are combined, then they are called multiresolution filters. Various scales are used
to detect edges and afterwards the dominant contours at each scale are selected [45].
Filters, which are based on the first derivative of an image I , most of the time produce edges which
have the same width as the intensity transition of the underlaying feature. The second example for
edge filters, which is based on the second derivative of the function, is called Canny edge [50] filter.
A trade-off between edge localization and noise reduction is addressed by the filter. A reduction of
noise entails an increasing error in the localization of edges, and vice versa [51].
The curvature of a function is described by its second derivative. The basic idea is that edges are
located at zero positions, or in a perfect manner at the zero crossings of the image function’s second
derivative. The top part of figure 6 shows the function f(x) of the image I . Subsequently, the first
and second derivative f ′(x) and f ′′(x) are outlined. The zero crossings of the second derivative can
be seen as well in figure 6.

Figure 6. Function (a) and its first (b) and second derivative (c)

Due to the fact, that second derivatives have a tendency to amplify noise, it is necessary to apply
a suitable low-pass filter to remove noise in a previous step. A Gaussian low pass filter, with the
smoothing parameter sigma, which defines the filter width and the amount of smoothing [51], is
used by the Canny filter. An example for such a technique is the Laplacian-of-Gaussian (LoG) [52].
This edge filter applies the combination of a Gaussian filter and the second derivative. The following
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chapter will explain the LoG edge filter in more detail.
The Canny edge filter is an example for multiresolution filters. It does not only use one scale of
the image for the detection of edges, but several image resolutions are used, and the result of each
individual filter run is afterwards merged to a global edge map. Three main goals are attempted to
achieve by the filter. First, the number of false edge points are tried to be minimized. Second, a good
edge localization is aimed at and third, only one mark on each edge is delivered. The basic principle
of the filter is a gradient method, which is based on the first derivative. For a precise location of
edges, the second derivative of the image function is utilized. Nevertheless, the algorithm is often
used as a single-scale implementation with the smoothing parameter σ. Even the single-scale version
of the filter is superior to most edge detection filters [45].
An image can be envisioned as a surface with the height defined by the corresponding pixel gray
levels. The first order derivative of this surface, calculated for example by the Sobel operator,
measures the slope of the surface on both, x and y directions. But the second-order derivative an
be computed as well. This can be used to localize edges, because the rate of the slope of the gray
level surface change is the subject of the second derivative. Figure 6 shows such a visualization of
the gray level as a surface and the first and second order derivative. Because the gray level change is
not abrupt, a broad peak can be seen in the first derivative. The signs of the second order derivative
provide information about the location of the edge, whether it is the dark or bright side of the edge.
This feature can be used to sharpen the image as well by adding some percentage back to it, and
is called unsharp masking. It increases the detail visibility by applying a blurred positive of the
image to subtracting the local brightness average in a specific area [53]. Negative values occur on
the bright side, whereas the dark side of the edge is defined by positive values. At the center of the
edge, the sign changes. This position is called zero crossing and is used for edge detection. Most of
the time, exact zero pixel values are not available, but two neighboring pixels with opposite signs.
The pixel with the smaller, absolute pixel value, then is defined as the zero crossing [51]. The second
order derivative of an image function f is combined in the Laplacian, and is shown in the following
equation [54].

∇2f =
∂2f

∂x2
+
∂2f

∂y2
. (22)

The kernel of an approximated 3x3 neighborhood Laplacian can be written as 0 −1 0

−1 4 −1

0 −1 0

 (23)

and is very similar to a high pass filter. Due to the fact, that the Laplacian is very sensitive to
noise, most of the time it is not used for edge detection on its own. Therefore, the combination
with a Gaussian filter is chosen. In a first step, the gray level surface is blurred by a Gaussian filter.
Afterwards, the Laplacian enhances the edges, which are localized in a last step by the zero crossings
of the second order derivative. A two dimensional radially symmetric Gaussian [51] is defined as

h(r) = exp(
r2

2σ2
) (24)
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with the variable r2 = x2 + y2. The Laplacian of Gaussian can be written as [46,51,52]

∇2h = (
r2 − σ2

σ4
) · exp(

−r2

2σ2
). (25)

It is very common to invert the the Laplacian of Gaussian function (equation 25) and replace the
minimum in the center by a maximum. The resulting shape of the function is called mexican hat and
can be seen in figure 7.

(a) Mexican hat: two dimensional visualization (b) Mexican hat: three dimensional visualization

Figure 7. Two and three dimensional representation of the Mexican hat

The variable σ defines the width of the Gaussian filter and therefore, specifies the amount of
smoothing. σ also enables a detection of edges at different scales. Even with a small amount of
smoothing chosen, the filter is very computationally expensive. An approximation is the subtraction
of two Gaussians with different widths, and is called difference of Gaussians (DoG).
Most of the edge detection filters, which have been described above, return the angle of the edge and
an edge strength value. Two methods are going to be described briefly, which allow an identification
of contours and larger image objects. The first method is the contour following. In principle, it
is quite a simple idea to follow contours along the detected edge points. A pixel with a high edge
strength is chosen and the edge is followed in both directions until the two directions meet each other
and thus, a closed structure is created. For all practical purposes its a very difficult task with three
major problems. Edges are not perfectly featured and perhaps end in a vanishing manner. Secondly,
several edges can intersect each other and therefore, they can be ambiguous for the algorithm. Lastly,
edges can split up into several branches, which are leading into several directions. Due to these
setbacks, this technique is only applied to very simple circumstances, like binary images with a
clearly defined background, but not to continuously valued edge or original images [45].
Edge maps are carried out to select points, whether they are edge points or normal image pixels. The
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easiest technique, a binary method, is using a threshold procedure. By applying an adaptive or even
a fixed threshold value to the edge strength values (returned by the filter), edge maps or binary edge
images, are obtained. Perfect contours are hardly ever received, but interrupted or unconnected edge
fragments are the reality due to not enough edge strength. Empty positions in the edges do not contain
any edge information anymore after thresholding and can therefore not be used in a further step,
such as linking matching edges. Because of its simplicity, thresholding is often employed despite
the occuring problems. Some of the missing links can be closed by postprocessing techniques, like
a Hough transformation [45].
After the explanation of the four different edge detection methods, the results will be shown. Figure 8
shows the test image. It was chosen due to the complexity of the edges on different levels and the
contrast variation. Lastly it does not only contain the desired feature, the boat, but also contains
noise, like the foreground or the clouds in the background. The described methods were applied to
the hillshade of the test area, but did not lead to any results.

Figure 8. Chosen test image for the different edge detection methods

Figure 9 shows the four results of the edge detection methods. All four techniques recognized the
majority of the boat. As mentioned above, the test image 8 did not only contain the feature, but noise
in the background and foreground as well. The background, which contains the sky with clouds did
not effect the results of either one of the edge filters. All four of them did not detect edges of the
clouds. The noise in the foreground, the sea floor, created various problems for three of the them.
Only the first one, the Prewitt method, see figure 9a, did not register any structures of it. The other
three, Sobel, Canny and Laplacian of Gaussian, had problems with the noisy part of the test image.
Figure 9c handled it the best in comparison to the other two. The noise is only partially existing
in the lower right side of the image. Laplacian of Gaussian, which used the kernel size of 2.5 and
σ = 1.5, not only detected most parts of the ship, but a lot of the noisy sea floor. Lastly, the Sobel
edge detection, figure 9b, detected more of the thinner edges, for example at the top right part and the
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discerned boat contains more details. This method had the same problems with the noisy foreground
as the other two edge filters.

(a) Result of the Prewitt method (b) Result of the Sobel method

(c) Result of the Canny method (d) Result of the Laplacian of Gaussian method

Figure 9. Results of the four different edge detection methods of the chosen test image 8

2.6. Distance Regularized Level Set Evolution, DRLSE

This work uses the framework of active contour models as introduced and described in [55].



ISPRS Int. J. Geo-Inf. 2015, xx 17

A program was developed, which uses the underlaying code from [56]. It is available at
github.com/sTAKKLE5/masterthesis.
Further information about the basics of level sets, level set evolutions, geodesic active contours and the
DRLSE method is provided by [23,24,26,28–30,32,55].

Active contour models are not only used in computer vision and computer graphics, in but
the fields of medical informatics and bioinformatics as well [31,33–35]. Anatomical structures,
appearing in computed tomography (CT) or magnetic resolution (MR) scans, are most of the
time segmented or extracted and used for simulations, therapy evaluation, diagnosis and even for
the surgical planning [34]. Furthermore, images derived by x-ray, ultrasound and angiography
techniques are widely utilized. These techniques are not only applied for segmentation, but for
tracking objects, like growing of neurites or even the motion of the heart [35]. Figure 10 shows the
detected contour of an magnetic resolution image by the DRLSE method.

Figure 10. Extraction of the contours using DRLSE

The first level set method for shape detection was published by Osher and Sethian [32] in 1987.
The general idea of level sets is to depict the contour of a desired feature as the zero level set of
a function with a high dimension, which is called a level set function (LSF). The evolution of this
level set function represents the motion of the contour. Caselles, et al. [57] introduced the first level

https://github.com/sTAKKLE5/masterthesis
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set method, active contour or snake models, in computer vision and image processing. These early
models, curve evolutions, can be be described as

∂C(s, t)

∂t
= FN (26)

with C(s, t) : [0, 1]× [0,∞]→ R2, where s ranges from zero to one and is called spatial parameter.
The spatial parameter is used for parameterization of the points laying on the contour. The temporal
parameter t is defined as t ∈ [o,∞]. One of the most important parts of the equation, its motion,
which is controlled by the speed function F . Furthermore, the inward normal vector N of the curve
C has to be calculated. The curve evolution, equation 26 is converted into a a level set function by
integrating a LSF φ(x, y, t), is dependent on the time t. The inward normal vector N , for positive
values inside the zero level contour, and negative for the outside of the embedding LSF φ, can be
written as N = −∇φ/|∇φ|, with the gradient operator defined as ∇. Equation 26 can then be
reformulated as

∂φ

∂t
= F |∇φ| (27)

It is called a partial differential equation (PDE) and is defined as a level set evolution equation.
An advantage to parametric active contour models is the ability to cope with merging and splitting,
or any other topological change of the contour. Furthermore, the points on the contour do not have
to be parameterized due to the computation on a predefined cartesian grid. During the evolution
of the level set function, often a lot of irregularities occur. These irregularities are created during
the evolution and can lead to numerical errors and thus, even can destruct the stability of the level
set evolution. In order to prevent these numerical issues, reinitialization is used to re-establish the
stability of the LSF and to obtain a constant level set evolution, too. The reinitialization method
is computed by pausing the evolution and the demoted level set function is reshaped by a signed
distance function. The following equation shows this reinitialization process.

∂ψ

∂t
= sign(φ)(1− |∇ψ|) (28)

ψ is the level set function, which has to be reinitialized and the sign function is represented by
sign(·). The perfect solution for equation 28 is a steady state. A problem, which concerns the
reinitialization method, is that the zero level set could lead to an incorrect position of the final result
and thus, this method should carefully be used. Reinitialization causes some practical, and also even
theoretical problems during the application. Due to these issues, see [58–60], level set methods are
used, which do not rely on reinitialization.
One method, which does not rely on reinitialization are geodesic active contour, GAC models.
Further information about these models are provided by [29]. This technique is not using iterations
and an evolution of the underlaying equation, but the LSF is updated at each step by calculating an
optimization issue.
However, this paper applies a level set with a more general formulation with an external energy,
that moves the zero level contour towards the desired features and a distance regularization term. It
contains a potential function with the outcome, that the shape of the resulting level set function is
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obtained. A double well potential function is used for this part. The gradient flow with a minimizing
energy function is used to derive the level set evolution. Furthermore, the distance regularization
term sustains the level set function by forward-and-background diffusion. Therefore, reinitialization
is not needed and negative issues concerning it, do not occur. This distance regularization term is
eponymous for the method, which is called distance regularized level set evolution, DRLSE. This
technique can be applied in a more efficient way in image processing, due to the possibility to utilize
larger time steps, which reduces the absolute number of iterations and therefore, the computation
time of the method. Besides, the numerical accuracy is obtained as well [55]. Equation 29 shows the
DRLSE method.

∂φ

∂t
= µdiv(dp(|∇φ|)∇φ) + λδε(φ)div

(
g
∇φ
|∇φ|

)
+ αgλδε(φ) (29)

with g as the edge indicator function, see equation 30, λ > 0, α ∈ R, δ the Dirac delta function and
φ the level set function (φ : Ω→ R).

g ,
1

1 + |∇(Gσ ∗ I)|2
(30)

with the image I and Gσ as a Gaussian kernel and the standard deviation σ. The edge indicator
function g is used for smoothing the image and to reduce the noise. Usually it takes smaller values at
the boundaries of an object than at any other locations. Furthermore, it slows down the the expansion
or shrinking when the zero level contour reaches the smaller values at the desired boundary of the
feature. The variable α defines, whether the zero level contour expands, for negative values, or
shrinks, for positive values [55]. Figure 11b shows the edge indicator function of figure 11a.

(a) Test image (b) Edge indicator function using σ = 1.5

Figure 11. Test image and it’s edge indicator function

The last and final step is the skeletonization of the resulting feature shape. For this specific case,
the desired result is not the bounding box of the object, but the centerline. To achieve this task,
several methods of the skeletonization can be utilized. Many different algorithms, such as curve
evolution, morphological operators, curve evolution or thinning are utilized. This paper applies the
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thinning method to the obtained binary image.
The hit-or-miss transformation, equation 31, describes the thinning of a setA by a structural element
B, which can be formulated as A⊗B.

A⊗B = A− (A�B) = A ∩ (A�B)c (31)

Structuring elements can be defined as the specific details of the impact of an filter method on the
image. Sometimes it is also called kernel and consists out of a pattern, which is specified by the
coordinates of a number of discrete points relatively laying to an origin. This origin does not have to
be the center of the shape, but most of the time is.
As we are dealing with a binary image, only two values, one and zero occur, and therefore, no
further background operation is needed to perform the hit-or-miss transformation. The sequence of
structural elements can is applied as a more practical expression

{B} = {B1, B2, B3, ..., Bn} (32)

with Bi equals the rotated version of Bi−1. This concept is now used to determine thinning by
structural elements

A⊗B , ((...((A⊗B1)⊗B2)...)⊗Bn) (33)

The origin of the structural elements are translated to every possible pixel location in the image. At
each of those positions, it is compared to to the underlaying background image pixels. If they are
exactly the same (foreground and background pixels), then the pixel of the image laying under the
origin of a structuring element is defined as zero and determined as background. If both of them do
not perfectly patch, the pixel value is not changed. To have any effect, the structuring element has to
have a pixel value of either zero or one. These steps describe one step of the algorithm. In order to
skeletonize all of the image, this step is repeated until no further changes occur [54].
To test the DRLSE algorithm, underlaying code from [56], a user interface was created to simplify
the creation of the initial level set and the general parameters. The program is written in Matlab and
is available at github.com/sTAKKLE5/DRLSE.
Figure 12 and 10 show the graphical user interface of the program and the results. They explain the
features of the program.

https://github.com/sTAKKLE5/DRLSE
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Figure 12. Extraction of the contours of the great lakes in the United States using the
DRLSE method

The program is divided into four parts. The Plots, which constitutes the most part of the program,
the general settings in the top right corner, the Initial LSF section and the settings for the active
contour model called Snake settings. The major part is taken up by the four plots. On the top left
side, the chosen image is shown. It is used by the user to draw the initial level set on it. In this
specific case, seven level set functions were drawn in order to extract the contours. On the top right
side, the result of the edge indicator function, using equation 30, is shown. After the iterations, the
final level set function is displayed on the bottom left part of the Plots section. At last, the result of
the skeletonization method, using equation 31, is displayed in the bottom right figure.
Secondly, the General settings section is applied for the basic settings of the program like defining
the input and output image. Furthermore, the user can choose whether the results should be saved and
in a previous step simplified. The two other options are to show the three dimensional visualization
of the zero level contour during the calculation process, option Show LSF, and whether the user
wants to predifine the amount of iterations or if he wants to manually stop the process.
In the next step, the user has to define the initial level set function. For this task, he/she can choose
the number of corners for it whether to use the bounding box or not. Not only one function can be
created, but as many as necessary.
Fourth and lastly, the settings for the DRLSE method, have to be defined. In this case, due to the
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homogeneous texture inside the lakes, the expanding version has been chosen (negative alpha value).
The number of iterations are set to infinite and the user has to stop the process manually when the
final level set function matches the desired contours.

2.7. Development of the Moving Window Standard Deviation Maximum Distance (MWSD) Filter

Skid trails can be determined by using their most characteristic feature, which separates them from the
surrounding forest floor, the height difference. This height difference is used as the underlaying basic
information of the MWSD filter. In order to generally apply this technique, no absolute values, but the
standard deviation, is used. A certain range has to be specified, e.g. [1 ∗ standard deviation; 1.5 ∗
standard deviation], by the users. Not only the height difference range needs to be given, but a second
range, too, which is used in order to check if the distance of the currently evaluated pixel combination
lays in this certain range. It is defined as [distancemin; distancemax], the minimum and the maximum
distance.
The underlaying basic principle, for the detection is to check for significant, not natural height
differences, between the pixels PN and PN+1. It is aimed at a perpendicular intersection of the trails
by laying out artificial lines PNPN+1, which are described by all unique combinations of pixels.
In a first step, the input digital terrain model is split into smaller parts. The size of these parts is defined
by the user, and is dependent on the features to track. Afterwards, the standard deviation σ of the height
for each tile is calculated and stored. In a subsequent step, all unique combinations for each pair of
pixels in the tile is determined, and their coordinates are saved for later computations. Then, the absolute
height difference for each line combination PNPN+1 is calculated. If this difference is in the user defined
range, [standard deviationmin; standard deviationmax], the length of the combination is calculated as
well. In case, the length is in the given range, [distancemin; distancemax], the start and end point of this
particular combination is saved. There is a significant height difference between these two points and it
is assumed, that this specific line intersects a skid trail. In order to calculate the center point of the trail,
a point sampling along the line is carried out to get the point with the smallest height value. The point
sampling can be achieved in different ways. Either a fixed amount of points on the line, or points every
specific unit can be used. If the height difference is not laying in the given range, or the distance is either
too larger or too small, the next pixel combination of the window is analyzed. As a result of the MWSD
filter, a binary raster with the pixel value one for detected skid trails and zero values for not significant
pixels, is created.
This technique is applied on all points in the window and for all windows in the original raster. In a last
step, the coordinates of the calculated minimum on the line combinations are saved, and the result can
be used in further proceedings. Figure 13 shows the algorithm as a flowchart with the required inputs,
the procedure and the resulting outcomes of the MWSD filter. Figure 14 visualizes the different steps. It
shows a sample from a larger image and every pixel of it. A hypothetical skid trail, with lower height
values than the surrounding area, is displayed in the lower right part of the image in gray with black
borders. For the first step, figure 14a, only six combinations for two different pixels, N and O have
been chosen. For each of the two pixels, N and O, the lines NP1 to NP6 and OP1 to OP6 have been
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Figure 13. Flowchart of the MWSD algorithm

created. For the second step, it is assumed, that the height difference of the start and end points of NP1,
NP5, NP6, OP1, OP4, OP5 and OP6 are not significant higher and they are displayed as dotted lines
in figure 14b. Therefore, the algorithm does not consider these lines anymore, figure 14c, and continues
with the next step and the remaining lines NP2, NP3, NP4, OP2 and OP3. In this example, five points
on each line, displayed in figure 14d, have been chosen to sample the underlaying height information of
the terrain model. Lastly, the points with the lowest height value have been chosen and named as R1 to
R5, see figure 14e.
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(a) (b)

(c) (d)

(e)

Figure 14. Visualization of the MWSD filter for a sample of pixel combinations for two
pixels, N and O
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Several methods can be used in order to improve and speed up Python code. These methods are
necessary in order boost the running time of the moving window filter. The first, and most important
part of improving the source code, is the identification of the bottleneck of the code, which can be
described as the limiting factor of the program in terms of performance. The bottleneck of the filter
is the creation of the pixel combinations and the calculation of the distance and height differences.
Increasing the performance of a program by adding further lines codes, does not only speed it up,
but sometimes can decrease the readability of the structure of the code, as well.
The following methods will include some of the key features of a programing language, local and
external variables, loops and external modules.
Three types of variables are available in Python. Local namespaces, which are only available and
specified in a class method or a function, global namespaces, which are available in the current
module and built-in namespaces, which are globally defined in all modules. This is the order in
which Python will search for specific variables. If for example x is defined as a global variable,
Python will first verify whether x is local or not. As a result, Python will recognize, that the given
variable x is not local and continues with global namespaces and will hit the local property of the
variable. If the defined variable is classified as built-in, Python would continue to look it up. Because
Python starts with local namespaces, these types of variables are found first and therefore, decreases
the run time of an algorithm. External variables can be used to increase the efficiency, too, by
storing and precomputing computational expensive calculations. This technique includes saving the
results of computations locally into a file. In this specific case, the method was applied to save
the combination of pixels and the according height difference while changing the variables of the
algorithm e.g. standard deviation or maximum distance. Thus, the crucial parts of the algorithm
only had to be calculated once during the first run.
One of the most common functions in a programing language are loops. Python supports more than
one looping construction, but for statements are applied most frequently. This kind of loop can be
replaced by the built-in method map [61], which forwards the loop into C code.
Besides the mentioned methods, the used modules play an important role. A lot of modules provide
similar, or even the same methods and functions but differ in the speed. Some of them provide
their code in two different languages e.g. pickle [62] and cPickle [63]. Both are utilized to turn
Python objects into series of bytes, which can then be stored efficiently. The difference between the
two of them is the language of the implementation. pickle is written in Python, whereas cPickle
is implemented in the language C. Storing variables can benefit from this concept as well. As
an example therefore, lists as a data structure can be named. The run time of the algorithm can
be decreased by using array structures from the numpy module [64]. Numpy is using C in the
background and therefore it improves the speed of the code. This module can as well be used for
basic calculations like square roots [65].
Moving windows play an important role in data processing and data analysis. This technique does
not use the full extent of data, but a small part of it. It can be utilized for processing data, which is
too large to compute fully, or like in this specific case, to get statistics on a local scale.
In a first step, the user has to define the width and height of the moving window. Furthermore, the
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overlapping area A, see figure 15, needs to be classified. It is used to avoid possible false structures
at the edges of the window. The height and width do not have to be equal and can differ. Same
goes with the vertical and horizontal overlapping area A. The origin of the first window size is the
origin of the input image. After the calculation of the first window, it moves on line by line. The
origin of the second window can be calculated by the origin of the input image plus the width of the
window minus the offset A, for the x-coordinate. In the first row, the y-coordinate does not have to
be changed. If the moving window changes the row, the y-coordinate has to be changed, in regard
to the origin of the input image, the height of the window size and the size of the overlapping area
A. If the filter has reached the bottom right coordinate of the input image after N times, the filter
stops. Due to the chosen width, height and the size of A, the size of the moving window has to be
adjusted and recalculated at some specific positions. These are the right and the bottom boundary of
the image. Figure 15 shows the addressed moving window and its features.

Figure 15. Visual representation of a moving window

Modern computers are equipped with more than one processor. These multi-core processors are
capable of computing several tasks at once. This feature can be used to dramatically increase the
performance of an algorithm. The so called multithreading is the process of spawning multiple
threads, which exists in the context of one process. These threads are executing independently, but
share the same resources.
In order to use all available cores of the operating machine, the algorithm hast to be split in several
tasks. These threads have to be independent from each other. In this specific case, the input image
was split into four parts, considered unique and calculated seperately on different processor cores.
The most important reason for choosing multithreading is the amount of time, which can be saved.
If only one processor is used for the computation, all other available cores are idle. For example,
the computer should have four cores the computation time can be reduced by theoretically almost



ISPRS Int. J. Geo-Inf. 2015, xx 27

75 percent. This value will not be reached, one core is already loaded up by tasks of the operating
system and of other running programs [66].

2.8. Development of the Maximum Angle Maximum Distance Vectorization (MADV) Method

A method is needed, which transforms the detected single pixel values from the MWSD filter binary
into a usable result. Due to the missing of further information, a fully automatic technique seems to
be impossible. Therefore, a semiautomatic method has been developed, which is dependent on some
location specific input variables and predefined start lines of skid trails.
In order to receive suitable results, some information has to be given to the algorithm. These are the
maximum angle, in which the algorithm will search for new nodes of the line feature and the maximum
distance between two potential line segments. Furthermore, a road network of forest roads is utilized
to validate the resulting features. The most important input feature is the predefined segments of skid
trails. They are used as the starting point for the algorithm and have to be defined for every skid trail.
Lastly, the binary raster, which is the result from the MWSD filter and contains possible nodes, needs to
be passed to the algorithm.
In a first step the algorithm calculates the angle for each given segment of a skid trail. To calculate this
angle, a second line is needed. For this task, the upper boundary of the image is chosen with its upper
left and right coordinate. The given segments consist of two points, P1 and P2 the start and end point
of the line, thus the following method has to be applied to both sides of the given line. In a next step,
raster points are searched within a certain distance and a determined angle. To find these pixels, a circle
segment with the origin of either one of the two start points and the user defined maximum distance
as the radius of the segment, which has to be perpendicular to the line segment, is calculated. For this
task, the calculated angle of the line segment is used. It is needed to compute the angle of the circle
segment for each side of the given line. Afterwards, each pixel value with a value equal one is saved
for further calculation. The combination for each stored pixel value and the starting point is computed.
Subsequently, the length and their angle is calculated, and used to determine the combination with the
smallest difference regarding the angle of the given start line. This new skid trail segment, P1/2N1 is
saved and checked if it is intersecting the road network. If so, the intersection point will be stored and
the algorithm will stop. If not, the ending point of the calculated segment P1/2N1 will be utilized as the
new start point and the algorithm will start again. If all of the given start lines have been run through the
algorithm, the results are saved as a shapefile and it can be used for further purposes. Figure 16 shows
a graphical visualization of the described MADV algorithm. The flowchart of the MADV algorithm with
the required inputs and the resulting output is displayed in figure 17.



ISPRS Int. J. Geo-Inf. 2015, xx 28

Figure 16. Graphical visualization of the MADV method
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Figure 17. Flowchart of the MADV algorithm

Due to the fact, that the MADV algorithm uses high-intensity computing, like the calculation
of the angle of each possible line combination and the length of each line, the input binary raster
is split up into several smaller parts and analyzed separately. The size of the window plays an
important part in terms of processing speed. If it is chosen too large, the amount of unsuitable
line combinations, according to maximum distance and the angle difference, rises and therefore,
unnecessary computations are carried out.
In order to calculate the perfect window size, some information is needed. First, the angle α of
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the line P1P2, for which the window size should be computed, has to be calculated. As already
mentioned above, the orientation of the line is crucial for the angle. If line P1P2 has an angle
α = 40, the line P2P1, which is defined by the same points P1 and P2 as line P1P2 , does not have
the same angle α, but an angle of α = 180−α. In order not to get confused by the orientation of the
lines, a sorting algorithm is used in a first step to "normalize" the line direction. Finally, the angle of
the lines can be computed by equation 35. The second information, which is needed to compute the
window size, is the maximum distance d between two pixels. It has to be defined by the user and is
dependent on the results of the MWSD filter. If d is chosen too large, a misclassification can happen
by connecting pixels, which do not represent the same part of the skid trail, or even are classified as
noise and thus, define no skid trail at all. On the other hand, if the maximum distance is chosen too
small, adjacent pixels may not be connected due to a too large distance. The last needed information
is the search angle β. It defines the segment in which the algorithm is searching matching binary
raster pixels. Like the maximum distance d, angle β is given by the user and depends on the input
raster and therefore, on the spatial conditions of the underlaying test area. If the search angle is
chosen too narrow, curves of the skid trails stop the algorithm and therefore, only some parts of the
trails are vectorized. However, if it is chosen too broadly, then it is very likely that misclassification
will occur. In this case, more pixels are laying in the segment and wrong links could be chosen by
the algorithm. After the information is acquired, the basic workflow is:

1. Define a circle C with radius = d and origin = P1/P2.

2. Compute points I1 and I2 on circle c with the angle β1 and β2.

3. Calculate the minimum and maximum circle expansion in x and y direction; Xmax, Xmin and
Ymax, Ymin.

4. Define the bounding box B of P1/P2, C1 , C2, Xmax, Xmin, Ymin and Ymax.

5. Compute the length and height of the bounding box B.

In the first, step circle C is created by the equation of a circle r2 = (x− h)2 + (y− k)2 with h and k
equal the x and y coordinate of the center and the radius r. The equation with the actual values can
be formulated as d2 = (x − P1x)

2 + (y − P1y)
2. The next step is the computation of points I1 and

I2, which are laying in the circle. In order to compute these, it is important to understand the basic
angle distribution on a circle. Figure 18 shows this distribution.
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Figure 18. Visual representation of the angle distribution of a circle

As an example, a search angle β = 30◦ and the angle α = 45◦ of line P1P2 against a horizontal
line e.g. upper or lower boundary of the image, is given. In order to calculate the according angles
on the circle for the search radius, the angle α has to be converted into "circle angles", which is
in this case αcircle = 225◦ for point P1 and 315◦ for point P2 (see figure 19). This angle can now
be used to determine the angles β1circle and β2circle, which differ of the search angle β (in this case
β = 30◦). Thus, the angle to the right and left hand side has to be symmetrical, each angle β1circle
and β2circle has to be the half of the given search angle β and the sum of the angle αcircle. For this
example, the computed values for angle β1circle and β2circle, for P1 of line P1P2 is 135◦− 15◦ = 120◦

and 135◦+ 15◦ = 150◦ (45◦+ 15◦ = 60◦ and 45◦− 15◦ = 30◦ for P2). The coordinates of the points
I1 and I2 were calculated with the following equation:

x = xorigin + r · cos(β) y = yorigin + r · sin(β) (34)

with the angle β converted into radians.
In the next step, the minimum and maximum extension (in x and y direction) of the circle has to
be computed to define the bounding box of the circle. To achieve this task, each point on the line
segment for each angle was computed and the maximum (Xmax, Ymax) / minimum (Xmin, Ymin) was
chosen. Following this task, the bounding box B of the coordinates P1/P2, I1, I2 and the coordinates
of the circle extension was determined. Finally, the top left coordinate and the height and width of
the bounding box was identified.



ISPRS Int. J. Geo-Inf. 2015, xx 32

Figure 19. Visual representation of the calculation of the bounding box of a circle
segment

The definition of line features, with regard to the start and end point, is an essential part before
calculating the angle. If the x or y coordinate of both line points are the same, this step is redundant.
While using real world coordinate points, it is very unlikely to happen. If the line is not defined,
two different angles are calculated when changing the coordinates of the start with end point and
therefore, the lines cannot be compared accordingly to their angle. Therefore, the start point of the
line is defined as the point of the line with the smallest x and y coordinate. If the x coordinates of
the start and end point are identical, then the point with the highest y value is chosen as the start
point of the line. On the other side, if both y coordinates are the same, the point with the smallest x
coordinate is defined as the start point of the line.
The angle of the lines is the most important condition for the vetocization process. In order to
calculate the cut angle between two given lines, two steps are needed. First the angles for each line
P1P2 are created by using equation 35 which will return the angle in radians.

theta = arctan
(dy
dx

)
(35)

with
dy = P2y − P1y and dx = P2x− P1x

Afterwards, the difference of the two angles will be calculated and converted to degrees using the

conversion formula degrees = radians · 180

π
.
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Digital image processing can be used to increase the visual quality of images and therefore,
improve the results from techniques like edge detection or active contour models. Without changing
the local structure of the image, the size or the image’s structure, these methods are called point
operations. Therefore, every new pixel a′ = I ′(u, v) exclusively depends on its previous value
a = I(u, v). Pixel a′ is located at the same position as pixel a and is not dependent on any
surrounding pixel. In order to compute pixel a′, the function a′ ← f(a) or I ′(u, v) ← f(I(u, v))

is applied to map the original pixel value. This operation is called global or homogeneous, if
function f is not dependent on the coordinates of the image. Typical examples including contrast and
brightness modification, gamma correction, color transformations quantizing and applying intensity
transformations to the image [45]. After implementing some these techniques on pixels, the resulting
pixel values have to be checked afterwards. A 8-bit grayscale image lays in between the range
[0...255]. In order not to exceed this range, the result has to be clamped in some cases. Every values
larger than 255 will be set to 255 and vice versa to zero for values, which are smaller than zero.
Some of these techniques will be explained and applied, using the program Matlab R2014a student
version, to a test image in the following chapter.
One of the easiest examples for a point operation, is inverting images. By the multiplication of the
input image by−1, the ordering of the pixels is reversed, and a constant is added to map the resulting
pixel values to the required range again [45]. The equation for inverting a pixel value a = I(u, v)

within the range [0, amax], can be formulated as

finvert(a) = −a+ amax = amax − a (36)

Figure 20 shows the test image and the inverted version. It can be seen, that dark pixel values are
translated into bright values and vice versa. The runway on figure 20a, which appears in bright pixel
values is dark in figure 20b.

(a) Chosen test image (b) Inverted image

Figure 20. Test image and its inverted version
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Another relatively easy point operation, is thresholding, which can be described as a quantization
that classifies pixel values into a certain amount of different classes, depending on the given value
athreshold. The following threshold function fthreshold(a) in equation 37 maps the given input image
pixels to one of the two predefined values a0 or a1 (0 < athreshold ≤ amax).

fthreshold(a) =

a0, for a < athreshold

a1, for a ≥ athreshold
(37)

This technique is often used for binarization of an intensity image. Therefore, the values a0 = 0 and
a1 = 1 are chosen [45]. Figure 21 shows the result for the thresholding technique for a test image.
Values greater than 0.4 were classified as 1 and therefore, colored in white. All other values were set
to 0 and are displayed in black.

(a) Chosen test image (b) Thresholded image

Figure 21. Test image and its thresholded version

Gamma correction is a fast and easy way to improve the contrast in an image by modifying the
histogram of the input image. The technique is obtained by using different values of the parameter
γ [67]. The basic equation for such a power-law transformation is

s = c · rγ (38)

where the parameters γ and c (c = 1 in the following test image) as positive constants. Often
equation 38 is written as s = c · (r+ ε)γ to create a measurable result of the formula if the input gray
value is zero. Offsets are normally not used in digital image processing, but play an important role
of display calibration [54]. If the input gray value lays in between the range [0, 1], then the resulting
gray level stays in the same range. Furthermore, regardless of the chosen parameter γ, every function
runs through the points (0, 0) and (1, 1). Figure 22 shows some values of the constant γ. As a result
of the log transformation, fractional values of γ of power-law curves shift dark input values into a
broader range of output gray values. Same holds true for the opposite with higher input gray level
values [45].



ISPRS Int. J. Geo-Inf. 2015, xx 35

Figure 22. Visual representation of the γ values, from top to bottom,
0.04, 0.1, 0.2, 0.4, 0.67, 1, 1.5, 2.5, 5.0, 10.0 and 25.0

Figure 23 shows the test image and the resulting image after the gamma correction process. The
gamma correction was calculated with a γ value of 1.75. A γ value larger than 1 was chosen to
darken the relatively bright image.

(a) Chosen test image (b) Gamma corrected image

Figure 23. Test image and the gamma corrected version

In computer vision noise often refers to any part of an image, which is not the main part of
the computation and is therefore, of no interest. In this specific case, line or edge detection, all
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spurious signals of pixel values, which are caused by the the relief, the image acquisition system or
other disruptive factors [68]. This subsection will explain two filters, the Gauss filter and the more
complex Rudin-Osher-Fatemi (ROF) filter [69], which can be used to remove noise from an image.
The basic principles of them will be briefly explained and results for both filters will be shown.
The Gauss filter

Gσ(x, y) =
1

2πσ2
exp

(
−(x2 + y2)

2σ2

)
(39)

with σ as the standard deviation of the Gauss kernel, takes pixels at the center more into account than
at the boundaries. Qualitatively it can be said, that the noise is suppressed by enforcing the condition,
that pixels should look like surrounding ones. If γ, the standard deviation of the filter, is very small,
e.g. less than one pixel, the smoothing effect will be very little, because of the very small weights for
all pixels off the center. Secondly, if γ is chosen larger, the surrounding pixels will be weighted more
strongly and, at the expense of blurring, the noise of the image will extensively disappear. Finally, if
γ is very large, a lot of details in the image will vanish along side with its noise [53]. The result of
the smoothing with a Gaussian filter can be seen in figure 24. A 6x6 kernel and a σ value of 6 was
chosen for this example.

(a) Chosen test image (b) Gaussian filtered image

Figure 24. Test image and the Gaussian filtered version

The ROF model is used for this specific case due to its underlaying principle. While finding a
smoother version of the input image, the Rudin-Osher-Fatemi filter preserves structures and edges
in the image and therefore, can be utilized for noise removal in edge detection [70]. This paper is
applying the implementation of the ROF model based on the modifications by Chambolle [71].
The total variation (TV) of an image I is called sum of the gradient norm and can be written as

J(I) =

∫
|∇I|dx. (40)

The total variation can be expressed as

J(I) =
∑
x

|∇I| (41)
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in a discrete setting. The sum is taken from all coordinates x = [x, y] of image I.
The objective of the Chambolle version of the ROF is to find the denoised version U of image I that
minimizes

min
U
||I − U ||2 + 2λJ(U), (42)

The term ||I − U || is the norm and calculates the difference between the denoised image U and the
original image I. As a summary the model searches for image variations with jumps, which equals
edges, between areas [70].The result of the presented ROF method is shown in figure 25.

(a) Chosen test image (b) Rudin-Osher-Fatemi filtered image

Figure 25. Test image and the filtered version with the Rudin-Osher-Fatemi filter method

Another useful tool and example of a graylevel transformation is the so called histogram
equalization [70]. The major task of a histogram equalization is to find a point operation, which
modifies the histogram of the image and approximates an uniform distribution [45]. Due to the fact,
that homogeneous point operations cannot split but merge and shift histogram entries, and histograms
are discrete contributions, only an approximation of the solution can be obtained. Consequently
there are no possibilities to decrease or even remove individual peaks. Therefore, it is impossible to
reach a truly uniform histogram distribution. The image can only be modified by point operations
to an extent that the histogram is approximately uniform. The resulting question is how good the
approximation will be and which, based on image content, point operation has to be applied to the
image. In order to find such a point operation, a function is searched, which shifts the lines of the
histogram so that the result, a cumulative histogram, is approximately linear. Equation 43 shows the
point function.

feq(a) =
⌊
H(a) · K − 1

MN

⌋
(43)

with the size of the image M x N , pixel value a in the range [0, K − 1]. Function feq(a) is
monotonically increasing due to the positive constants M,N,K and the monotonic properties of
the histogram of the original image H(a) [45].
The histogram equalization technique can be classified and split up into two methods: local and
global histogram equalization.
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The global method uses the information of the histogram of the whole image as a transformation
function. It stretches the contrast of regions with high histogram values and vice versa for low
histogram regions. Important objects in the image have a wider and higher histogram region and their
contrast is stretched. Contrast in the background of the image, with narrower and lower histogram
regions is lost on the other hand. One downside of the global histogram equalization is the use
of the global histogram information. Small regions lose the contrast and the background as well.
Sometimes, these tradeoffs are desired but most of the time they are not.
The second method, the local histogram equalization or block-overlapped histogram equalization,
overcomes the limitations of the global variant. In a first step a sub-block (rectangular) of the input
image is defined and the histogram of that region is generated [72]. Afterwards, the histogram
equalization function is calculated. Subsequent to the previous step, this function is used to equalize
the center pixel of the window. The center of the chosen region is then moved to the contiguous pixel
and the method is repeated for all pixels in the image. The computation complexity for this method
is very high due to the large amount of pixels for even small images, e.g. 307,200 times for a 640
x 480 pixel image [73]. The result of the described method, global histogram equalization, can be
seen in figure 26.

(a) Chosen test image (b) Histogram equalized image

Figure 26. Test image and the result of the global histogram equalization method

Automatic contrast enhancement, or auto-contrast, modifies the pixels, that the available range
of pixel value is fully used. This point operation maps the current brightest and darkest values to
the highest and lowest available intensity values. The intermediate values are linearly distributed.
In order to stretch the image, the highest and lowest values ahigh and alow in the intensity range
[amin, amax] are needed. In a first step the smallest value alow is mapped to zero and the contrast is
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increased by the factor (amax− amin)/(ahigh− alow). Finally the pixel value is shifted to the desired
range by adding amin. The full equation is defined as

fac(a) = amin + (a− alow)
amax − amin
ahigh − alow

, (44)

with ahigh 6= alow, which means, that the highest and lowest values of the image must not be equal.
For an 8-bit image, equation 44 can be formulated as

fac(a) = (a− alow)
255

ahigh − alow
, (45)

with amin = 0 and amax = 255.
Figure 27 shows the result for the automatic contrast enhancement method. Image 27a is ranging
from 21 to 245. After applying equation 44 to it, the range is stretched from 0 to 255, see figure 27b.
Differences between the two images can especially be seen at the darker values at the runway and at
the beach in the southern part of the image.

(a) Chosen test image (b) Automatic contrast enhanced image

Figure 27. Test image and the result of the automatic contrast enhancement method

Automatic contrast enhancement (see equation 44) is strongly influenced by few outliers, very
high or low pixel values. These pixel values may not be representative of the whole image and
therefore cause errors in the contrast enhancement. This effect can be prevented by saturating a
range of pixels (slow, shigh), which defines the upper and lower ending of the designated intensity
range. It is called modified auto-contrast. Therefore, two values a′low and a′high are determined.
These limiting values have to be chosen in a way, that the user defined quantile qlow of the image I ,
pixel values are smaller than a′low. The second quantile qhigh has to be greater than a′high. Values a′low
and a′high can be calculated from the cumulative histogram H(i) of the image and is fully dependent
on its content.

a′low = i|H(i) ≥M ·N · qlow (46)
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a′high = i|H(i) ≤M ·N · (1− qhigh) (47)

with M ·N as the amount of pixels in the image, 0 ≤ qlow, qhigh ≤ 1 and qlow + qhigh ≤ 1. All pixel
values, which are not in the range [a′low, a

′
high], are defined as new values amin and amax. In order to

map intermediate values, a linear approach to the interval is applied. The mapping function fmac can
be seen in equation 48.

fmac(a) =


amin, for a ≤ a′low

amin + (a− a′low) · amax − amin
a′high − a′low

, for a′low < a < a′high

amax, for a ≥ a′high.

(48)

As described above, equation 48 does is not depend on outliers, such as extreme maximum and
minimum pixel values. As a tradeoff, the mapping to minimum and maximum intensities is now
based on a representative number of pixels. For the upper and lower quantiles, the same values are
usually taken. Common values are qlow = qhigh = q with q = 0.005 ... 0.015 (0.5 .. 1.5%) [45]. The
result for the modified automatic contrast enhancement method is displayed in figure 28. It shows
the test image, figure 28a, and the result after applying equation 48. It can be seen that, the contrast
is highly increased for the runway, the beach in the southern part of the image and the water in the
top left corner.

(a) Chosen test image (b) Modified automatic contrast enhanced image

Figure 28. Test image and the result of the modified automatic contrast enhancement
method with a chosen range from 5 to 95% of the image values

One technique, which reduces noise and dimensionality is to calculate the average of several
images. Images can be averaged by summing them up and divide the sum afterwards by the total
amount of images [68,70]. Figure 29b shows the average of all 360 hillshades of the test area and
the hillshade itself is shown in figure 29a.
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(a) Hillshade of the test area (315 degrees) (b) Average image

Figure 29. Hillshade of the test area (315 degrees) and the average image of all 360
hillshades

The last technique, which is presented in this chapter, is the calculation of principle components
of several images. Active contour models or other level set functions utilize the visual information
of the image to detect contours of desired features. Not only the chosen test area, but most of the
national park area is covered by forest and therefore, skid trails are not visible on aerial imagery. To
make these skid trails visible, hillshades of the digital terrain model can be used to visualize the data
by shading the relief with a given, artificial light source in a certain azimuth angle. Depending on
the angle, different features in the given digital terrain model are visible. If the artificial light source
is perpendicular to the demanded feature, a shadow is visible in the exact opposite directing as the
light source. If the angle is parallel to the feature, no shadow is generated and therefore, it is not
visible on the hillshade. In order to save time by not having to perform the method 360 times, the
principle components of the stack of all hillshades were computed. Principle component analysis is
applied to reduce dimensionality and the result contains the variability of the input images with as
few dimensions as possible.
In order to calculate the principle components of several images, some steps are needed. In a first
step, each image has to be converted into a one-dimensional vector. A grayscale image with a
resolution of 512∗512 is converted into 262,144 dimensional space. Afterwards, the one-dimensional
image representations are stored in a matrix, with a row for each image. Before the calculation of
predominant directions, rows are centered around the mean image. Singular value decomposition is
normally used to state the principle components [70].
Figure 30 shows the hillshade of the test site with an azimuth angle of 315 degrees and the first three
principle components of the hillshade stack with an angle ranging from zero to 359 degrees.
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(a) Hillshade of the test area (315 degrees) (b) First principle component

(c) Second principle component (d) Third principle component

Figure 30. First three principle components of all hillshades with an azimuth angle
ranging from zero to 359 degrees

All of the source code is available at github.com/sTAKKLE5/masterthesis.

https://github.com/sTAKKLE5/masterthesis
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3. Results

3.1. Active Contour Model derived Feature Accuracy

For the detection of features, such as roads and the desired skid trails, the hillshade of the digital terrain
model with an illumination angle of 315 degrees was used. The variables of the four applications utilized
by the DRLSE method are listed in table 3. Due to the lack of usable results, no further validation and
evaluation of the results were carried out, but a visual interpretation and analysis.

Table 3. Used variables for the four applications of the DRLSE method

Variable Value
Sigma σ 5
Timestep 5
Lambda λ 5
Alpha α ±1.5
Epsilon ε 1.5

In a first step, a large starting level set function was used. It was aimed at a detection of the trail in
the center of the test cite, which has a strong contrast. Figure 31a shows this feature and the designed
starting level set function in red. The level set function is located outside the borders of the trail and
therefore, the shrinking version of the DRSLE method was chosen.

(a) Starting level set function (b) Resulting level set function

Figure 31. Attempted detection of a trail using the DRLSE method

Figure 31b shows the result of the DRLSE method. The iterations were manually stopped, after the
shape of the level set function did not significantly change anymore. It can be seen, that the initial shape
changed, but did not reach the desired feature.
In a second application of the DRLSE method, it was aimed at the detection of the main road in the
northern part of the test image. Using a large initial level set function, the detection rate on a large scale
was looked at. Furthermore, as in the first application, the level set function surrounds its target and
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the shrinking version has been used. The initial shape of the level set function is shown in figure 32a.
The desired feature, the main road, has a larger contrast than the surround and the width of the road,
approximately seven to eight meters, and is larger than skid trails.

(a) Starting level set function (b) Resulting level set function

Figure 32. Attempted detection of the main road using the DRLSE method

As like in the first use of the method, the iteration process was stopped after the shape of the level set
function did not significantly change anymore. The result after the iterations can be seen in 32b. The
level set equation was not able to capture the boundaries of the main road. On the eastern boundary, the
function adapts to the boundaries of a former coal pile. On the other hand, the main feature, the road
was not detected.
The DRLSE method does not only allow a shrinking of the level set equation, but an expansion as well.
This feature was used to detect the wide and uniform main road. Due to its width, the level set function
can be placed inside of it and detect the borders from the inside. In order to achieve this task, not only
one equation was applied, but three small ones. It was aimed at an extensive recognition of the feature.
Figure 33a displays the initial level set functions in the main road in the northern part of the hillshade.

The resulting level set function, which was again stopped manually after no significant changes
occurred anymore, did stop at the boundaries of the main road and did not violate them, see figure 33b.
The size of the initial equation did not change significantly and only small parts of the main road
were detected. The three level set functions did not recognize any further, related parts of the road.
Furthermore, the desired union of the three level set functions did not occur either.
The last test, using active contour models for feature detection, is based on the partial detection of the
coal pile in figure 32, and is aiming at the detection of it. For this task, multiple initial level set functions
were created in the center of the desired coal piles, see figure 34. The homogeneity of the contrast was
used for an expanding DRLSE method.

In direct comparison to the other three feature detection runs, most of the former coal piles were
detected well. None of the resulting level set function did violate the boundaries of it, see figure 34.
Furthermore, in four out of nine resulting equations, the whole feature was detected. The resulting five
functions did partially recognize their features.
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(a) Starting level set function (b) Resulting level set function

Figure 33. Attempted detection of the main road using the DRLSE method using multiple,
expanding initial level set equations

(a) Starting level set function (b) Resulting level set function

Figure 34. Detection of coal piles using the DRLSE method

3.2. MWSD Filter derived Binary Pixel Accuracy

The MWSD filter was carried out for the digital terrain model, using different settings. These settings are
displayed in table 4.

Table 4. Used settings for the MWSD filter for the chosen test site

Image Settings
Type Standard deviation range Distance range [m]

Figure 35a DTM [1.0;1.5] [0.5;1.0]
Figure 35b DTM [1.0;1.5] [0.5;1.5]
Figure 35c DTM [1.0;1.75] [0.5;1.0]
Figure 35d SLOPE [1.0;1.5] [0.5;1.0]
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The first column sets the reference to the resulting binary raster shown below. In the next column,
the input variables are listed. Four out of five runs used the digital terrain model, DTM. One filter run
utilized the slope product, which was computed from the digital terrain model. Lastly, the input values,
the range for the standard deviation and the distance are part of the third and fourth column. For the first
variable, the standard deviation, an absolute range from one standard deviation to 1.75 times the standard
deviation of the moving window has been chosen. The distance is ranging from 0.5 to 1.5 meters. These
variables have been visually derived from the perpendicular height profiles of skid trails in the test area,
see figure 3.
The results of the different filter settings can be seen in figure 35.

(a) (b)

(c) (d)

Figure 35. Results from the MWSD filter using different variables and input images

For the validation of the resulting binary rasters, the digitized roads, rifts and skid trails were buffered
with a width of three meters, which leads to a total width of six meters with a resulting area of
11, 524.1517m2. In a next step, all pixels with a value of one, which are located inside the buffered
features were selected and counted. The results are can be seen in table 5.
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Table 5. Number of pixels laying inside and outside the buffered feature area in the test area.
Percentage of pixels calculated from the total amount of pixels, 246,186, in the test image

Image Detected pixels
Detected pixels

inside the buffer
Detected pixels

outside the buffer
Figure 35a 3,650 (≈ 1.5%) 1,694 (≈ 46.4%) 1,956 (≈ 53.6%)
Figure 35b 42,432 (≈ 17.0%) 14,815 (≈ 34.9%) 27,617 (≈ 65.1%)
Figure 35c 4,036 (≈ 1.6%) 1,939 (≈ 48.0%) 2,097 (≈ 52.0%)
Figure 35d 94,849 (≈ 39.0%) 17,089 (≈ 18.0%) 77,760 (≈ 82.0%)

The results for the different runs of the filter, which are displayed in table 5, strongly vary. The amount
of recognized pixels ranges from 1.5 to 39 percent of all available pixels of the image. In the first run,
figure 35a, the used variables are listed in table 4, 3,650 out of 246,186 pixels were recognized as parts
of the features by the filter. These 1.5 percent can be divided into two parts, pixels inside or outside the
buffer of the digitized features. 1,694 pixels, which equals approximately 46.4 percent, are located in
the buffered feature area. On the other hand, 1,956 pixels, 53.6 percent, are not within the 6 meter buffer
width.
The second result, visually displayed in figure 35b, which was applying an increased distance range, see
table 4, shows a large increasing number of detected pixels. 42,432 pixels were classified by the filter as
a feature, which is 17 percent of all available pixels. This increasing number of recognition rate leads to
an increasing amount of pixels located inside and outside the buffer. In direct comparison to the results
from the first run, these two values are not equally balanced, but the amount of pixels, which are not in
the buffer is nearly double the size of pixels inside the buffer. 65.1 percent are not located in the buffer
and only the resulting 34.9 percent are truly part of the desired feature.
Figure 35c shows the results of the filter using an increasing standard deviation range, see table 4 for the
exact values. In the third run, more pixels were classified than in the first, but less than in the second.
1.6 percent, 4,036 pixels, were recognized by the filter with the differing input variables. If you compare
the pixels, which are laying inside the buffer width from this run to the first result, it can be seen, that a
higher percentage is located inside the buffered area. Like in the first result, the majority of pixels, 52.0
percent, are still falsely classified as features.
All three described filter runs have been using a digital terrain model, as the input image. For the fourth
run, figure 35d, the slope, which is derived by the digital terrain model, has been used. In this case, most
of the pixels in all four runs have been classified as parts of desired features, like trails and roads. 39
percent of all image pixels, which are 94,849 pixels, were detected. The ratio of pixels inside to outside
the buffer has to be named as well. More than 80 percent were laying outside the buffer shape and only
the resulting, less than 18 percent, are real parts of the buffer area.
When visually interpreting the four results, figure 35, it can be said, that three of them show the desired
features. In figure 35a and 35c the main road in the norther part and, with some further background
knowledge about the location of the skid trails, parts of the trails can be seen. Furthermore, the rift,
running in the center from north to south, is clearly visible as well. These features can also be seen in
figure 35b. In direct comparison to 35a and 35c, they are distinctly more apparent. On the other hand, the
smaller features, like the actual skid trails, are not visible due to an increasing amount of noise anymore.
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The last result, displayed in figure 35d, does not show features anymore. The absence and shape of
classified pixels in the norther part can be used to identify the main road.

3.3. MADV Method derived Feature Accuracy

The vectorization method, which has been described in chapter 2.8, has been performed using the results
shown in figure 35a with the variables as seen in table 4 in the first row. It has been chosen due to the high
detection rate of pixels inside the buffered area. In order to decrease the running time of the algorithm,
it was chosen, even though the detection rate was lower than the result of figure 35c.
The needed input variables were chosen after a visual analysis of the filter result, see figure 35a. A
maximum search angle of 30 degrees was selected. The maximum distance between nodes was set to 20
meters.
For the validation of the outcome, the method introduced by Heipke, et al. [74] was chosen. This
method needs some further information about the reference data set and the outcome. These variables
were calculated and are listed in table 6.

Table 6. Required variables for the validation method by Heipke, et al [74]

Variable Value [m]
Length of reference network 2,193.68
Length of matched reference 1,469.20
Length of matched extraction 1,394.72
Length of extracted data 2,051.53
Length of unmatched reference 724.50
Length of gaps 416.32
Chosen bufferwidth 3
No. of gaps 8

The two variables, the length of the matched reference and extraction are explained in figure 36. Both
of them are created by buffering the corresponding data with the given buffer size, three meters. For
the creation of the matched reference, figure 36a, the extracted road data is buffered and clipped with
the reference road data. The matched extraction, figure 36b, was created by buffering the reference road
data and clipping it afterwards with the extracted road data.
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(a) Matched reference (b) Matched extraction

Figure 36. Matched reference and extraction. Based on [74]

The variables are used to compare different techniques and methods for digitization of roads and
cover the completeness, correctness, quality, redundency, number of gaps per kilometer and the mean
gap length. Table 7 shows the results for the calculated variables.

Table 7. Results of the MADV method

Measurements Value
Completeness 0.67
Correctness 0.68
Quality 0.50
Redundancy 0.05
No. of gaps per kilometer 3.65
µgap length [m] 52.04
RMSE [m] 2.7

The MADV method reached an overall completeness of 67 percent with a correctness of 68 percent.
The quality of the resulting features, which is described by the following equation

quality =
length of matched extraction

length of extracted data + length of unmatched reference
,

is the measurement of the overall "goodness" and ranges from zero to one. The redundancy of the
MADV method, describes the amount of overlapping features in percent, is at five percent.
Worse results are achieved concerning the amount and length of gaps in the resulting features.
Statistically, 3.65 gaps occur every kilometer in the resulting features, with a mean length of 52.04
meters. The root mean squared error of the calculated skid trail network has a value of 2.7 meters.
Figure 37a shows the resulting features, derived by the described MADV method. The basic structure
of the trail network has been detected. Furthermore, the main road on the top part of the test side and
the skid trail running from the top to the bottom have been fully vectorized by the algorithm. Problems
occurred regarding steep curves and junctions. In the center and on the borders of the result, not only
small gaps, but large parts of the network are missing. The data set, which was used for validate the
result, is displayed in figure 37b.
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(a) Validation data set (b) Result of the vectorization method

Figure 37. Validation data set and the resulting network of the vectorization method

4. Discussion

4.1. Active Contour Models

Several studies have been carried out applying active contour models to locate roads and other features
from aerial imagery, achieving good results. Seppke, et al. used a modified active contour model to
successfully recognize coastlines in a SAR image [36]. Comparing the input data, the SAR imagery
and the data for this paper, a digital terrain model, one major difference can be spotted. The contrast
ratio between the background and the desired features, the coastlines and the skid trails, strongly differ.
Coastlines stand out against the lighter water surface. Furthermore, the noisy water surface can be
smoothed by filters, without loosing information about the coastline, due to the very high contrast
difference. In this paper, the contrast difference between skid trails and the background of the hillshade
is rather low, which decreases the detection rate of desired features. An application of filters, to reduce
the noise in the background of the hillshade, is also not possible because of the low contrast values of
pixels containing skid trails and non skid trail pixels.
Mayer, et al. applied Ribbon Snakes to automatically extract rural roads in high resolution aerial
imagery [37,39]. Achieving very good results with a correctness of 97 percent, a completeness value
of 83 percent and a RMSE of 0.46 meters, the input data and the aimed at extraction features strongly
differ from the data in this paper. Not the extraction of smaller skid trails, but wider, rural roads are
the center of the study. These roads have a higher contrast against the surrounding area. The bright
concrete of the roads stand out against the darker fields and settlements. Furthermore, no strong contrast
differences along the road network occur. The width of the roads can be utilized to apply the initial
level set equation in the center of the network. As a result of the strong border between the background
and the roads, the final level set equation does not violate the boundaries of the driving lanes. Such a
continuously high contrast value is not available in the hillshades concerning skid trails. Therefore, and
because of their much smaller width, it is not possible to place the initial level set function inside the
skid trails.



ISPRS Int. J. Geo-Inf. 2015, xx 51

Active contour models are widely used in medical informatics for segmentation [31,33,35]. In this
scope, active contour models achieve very good results, which can be explained by the input images.
Bredies and Wolinski use microscopy images to localize yeast cells [33]. The overall contrast of these
images is not very high. One of the main reason for the very good detection rate of the cells is the
delimitation among the cells by a darker boundary. An initial level set equation, which is placed in this
case in the center of each cell, cannot violate the continuous boundary of the cell. It is possible to apply
an expanding level set equation to extract the spatial expansion of each cell. Applying this technique
to hillshades of the test area, comparable results cannot be achieved due to a missing, distinct border.
Magnetic resonance imagery is used for segmentation of bone in clinical knee [33]. As like in previous
applications of active contour models, this paper relies on imagery with a high contrast and clearly
defined borders.
Concerning the results, the desired features were not detected. Unlike as in previous studies, which
detected roads and structures from high resolution satellite imagery [16,18–20,36,37,39], it was not
possible for the method to visually differentiate between the noisy background and the skid trails. The
resulting level set equation was not able to adapt to the boundaries of the skid trails, but stopped after
an insignificant distance at the wrong place. The only features, which were recognized by the DRLSE
application, were coal piles.
When discussing the application of active contour models, and in this specific case the DRLSE method,
for the detection of skid trails in hillshades, two major difficulties have to be addressed, the method
itself and the results. Starting with the application, further knowledge is needed. It does not only include
information about the test site and the data, but understanding about digital image processing, too.
Active contour models and the DRLSE method need to be tuned by different variables to lead to suitable
results. As an example, the kernel size of the Gaussian filter or the utilized time step can be named. If
the required information is available, the use of the program is fairly easy by manually creating initial
level set functions around or inside the desired features. The creation of the underlaying algorithm can
lead to problems, too. Active contour models, depending on the chosen variation, can result in numerical
errors and reach incorrect outcomes.
The use of active contour models for the detection of skid trails leads to a couple of other problems.
First, for every skid trail an initial level set equation has to be manually defined by an operator. With
an increasing size of a test area, the amount of skid trails and the amount of required initial level set
equations ascends. Due to the fact, that the initial level set equation has to be placed fairly close to the
skid trails in order to detect them, the user has to work precisely to gain good results. This functioning
is very time consuming. The second problem is the basic principle of the DRLSE, which is the detection
on a visual level. Active contour models use contrast differences to recognize feature in the image.
In this case, the data, which is able to detect skid trails, are digital terrain models. This kind of data
does not have high contrast differences and therefore, hillshades have to be created out of them. When
calculating hillshades, an illumination angle has to be defined. That can be described as the direction
of an artificial light sources. Depending on the chosen angle, different features are visible. In order
to detect all skid trails, several runs of the DRLSE application need to be carried out with varying
hillshades. These runs will directly lead to an increasing operation time.
The input data, the hillshades, can be named as the main reason for the poor localization rate of the



ISPRS Int. J. Geo-Inf. 2015, xx 52

desired skid trails. Not enough contrast between the background and the features is available for the the
method to detect skid trails. Furthermore, skid trails are not wide and equally enough to use expanding
initial level set functions. Looking at the coal piles in the hillshades and at the good detection rate of
them, the homogeneous contrast ratio can be named as the main reason. It was also possible to avoid the
noisy background by using an expanding initial level set equation due to the large spatial resolution.
In order to improve the quality of the results, input data with a higher spatial resolution could be used.
With an increasing spatial resolution of the digital terrain model, the quality of the computed hillshades
will enhance, perhaps less noise will occur in the background and therefore, the DRLSE could be able
to detect skid trails. In some cases the current available data can visually be enhanced by applying edge
preserving filters, which reduce the noise in the background or increase the contrast. These techniques
have been carried out for the provided data, but did not lead to results.

4.2. Moving Window Standard Deviation Maximum Distance Filter

Just as in the previous chapter, the discussion of the active contour model, two major topics of the moving
window standard deviation maximum distance filter have to be named. First, the method itself will be
addressed. The underlaying principle, comparing the height difference and the distance between every
possible pixel combination of the image is resulting in a long running time. This long computation time
makes it nearly impossible to apply the method on a larger area. For the chosen test image, with a pixel
resolution of 582× 423 pixels and a total amount of 246,186 pixels, the application took about an hour.
The computation was carried out at a MacBook Pro with 2.9 GHz Intel Core i7 and 16 GB memory
capacity.
Secondly, the resulting binary image of the MWSD filter needs to be discussed. On a first look at the
results, linear structures are visible. Pixels laying in every desired skid trail were localized. Subsequently,
these pixels can be used to connect linking nodes and therefore, can be utilized to detect the full feature.
On the one hand, parts of the desired features were recognized. But on the other hand, the distance
between connecting pixels is in some cases too large. Not enough pixels were detected in some parts of
the skid trails to set up a satisfying distance between nodes. Should this distance be too large, it might
not be possible to connect these pixels in a subsequent step, the MADV method, and therefore, gaps in
the resulting skid trail network will occure.
Looking at the possibles causes of the results, two reasons can be named: The input data and the applied
variables of the MWSD filter. This paper relies on a digital terrain model with a spatial resolution of
0.5 × 0.5 meters from the Landesamt für Vermessung und Geobasisinformation Rheinland Pfalz. The
height distance of skid trails to the surrounding forest floor lies in the twenty to thirty centimeter level.
Due to the fact, that the input digital terrain model is interpolated from airborne LiDAR data, information
can be lost. For a lot of scenarios, which are not dealing with these small height differences, these losses
do not matter. But in this case, the loss of information means, that skid trails might not be detected.
Input data with a higher spatial resolution could prevent these losses and might lead to better results.
The recording date of the terrain model has to be addressed, too. During a filed campaign, several skid
trails were measured. This data was ought to be used for validation. While validating the results, the
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surveyed skid trails were not recognized in the digital terrain model. The data was created in the year
2008. In order to detect all skid trails, up-to-date data is needed.
To address the running time problem, the method could be translated into a faster and more storage
efficient programming language like C++ or C#. To improve the overall quality of the results, the input
terrain model could be split up into several smaller parts. This technique allows the use of different
variables, the maximum height difference and the distance between pixels. In some parts of the test
image good results were achieved, whereas in other regions these values did not lead to satisfactory
results. By using smaller parts of the input image, the needed variables could be tuned, which might
lead to better results. The major disadvantage of this technique is the increasing running and preparation
time.

4.3. Maximum Angle Maximum Distance Vectorization Method

After the run of the maximum angle maximum distance vectorization method, the method itself and
the results need to be discussed. On a first view of the resulting skid trail network, good results were
achieved. The method was able to detect and connect linking nodes. In order to operate, the function
needs start lines for every skid trail, which have to be vectorized. These parts of skid trails need to be
digitized by an operator in a first step. To gain these trails, further work, like an analysis and evaluation
of hillshades of the test site, has to be carried out. Depending on the size and complexity of the chosen
area, this task can be complex and very time consuming. In general, the method showed that it is possible
to use the binary image, resulting from the MWSD filter, to connect linking nodes and vectorize the skid
trail network.
Looking at the quality of the result of the MADV method, a differentiation has to be carried out. Nodes,
which are belonging together and constitute a straight line are not error-prone. On the other hand, the
MADV method does not handle curved parts of the skid trail network well. They are defined by corners
or hard junctions. Due to the given maximum angle, the search angle for the function, curves in the
network can be neglected by the algorithm. In such a case, line combinations with a smaller difference,
with regard to the angle, are more likely to be chosen and falsely used by the method as a part of the
skid trail result. On account of the underlaying principle, which is the connection of nodes with the
smallest angle difference, curves and hard junctions are the main weaknesses of the MADV algorithm.
Furthermore, the distance between related nodes has to be addressed, too. In some cases, the defined
maximum distance, is not enough to connect nodes. Gaps in the resulting skid trail network will be the
result. It is caused by the previous run of the MWSD filter and the missing of detected pixels. The search
distance can be maximized, but it directly leads to an increasing, falsely vectorization. With a larger
distance, more pixel combinations are analyzed and the risk of linking wrong nodes grows.
The MADV method could be improved by utilizing smaller parts of the input binary image. With this
technique, the two necessary variables, the search angle and maximum distance between nodes, can be
tweaked and optimized. It allows to enhance the program not only for the full image, but also takes
local anomalies into account. When applying this method, two issues occur. First, for every subset of
the input image, the perfect variables need to be defined by calculating the maximum distance between
nodes and by measuring the maximum angle. The second problem are the required start lines for each
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skid trail. The amount of start lines will increase. For every subset, the user has to vectorize parts of the
skid trails in a first step. For a small area, this technique can be performed without any further problems.
But as soon as the area grows, the amount of time, needed for vectorization, will increase and will not
be in proportion to the better results anymore.

The created MADV algorithm can be improved by including some directives and assumptions
on skid trails. The layout of the skid trails plays an important role for the practicability. The shortest
distance between skid trails, machine ways and forest roads, is aspired. Therefore, most of the time,
a straight alignment is used if the terrain allows it. Connections on both sides of the trails to machine
ways or forest roads, which can result in a faster transportation of logs, are often created. The slope
has to be considered as well. With a slope larger than 15 percent, the skid trails have to be created
in the same direction as the slope. If the trails are created parallel to the slope, the risk for heavy
machinery of tipping over is too high. The second variable, that has to be considered, is the cross
slope. In order to reduce damages in the forest, the risk of tipping over and to decrease the width of
skid trails, the cross slope must not be larger than five percent. Junctions of skid trails with forest
roads should be made in an angle between 45 to 60 degrees [75]. The distance between skid trails
also can be used. Under normal conditions, these trails are build every 20 to 60 meters [7,43,75]. This
regularity can be utilized to avoid miss classifications, such as natural sinks and drainage systems.
Furthermore, most of the time, if the terrain is suitable, the trails are parallel to each other, compare
figure 5. Skid trails do not intersect the forest road network. Such an existing road network, e.g.
ATKIS R© from the Landesamt für Vermessung und Geobasisinformation Rheinland Pfalz [44], can
be applied to define the end of the localized feature. If the detected skid trail intersects the network,
the intersection point should be used as the ending point of the skid trail, and the algorithm has to
stop and continue with the next startline.
Not only man made structural variables of skid trails can be applied to improve the algorithm, but
natural conditions as well. To exclude rifts and natural drainage systems, the depth of a detected
line feature plays an important role. Thresholds could be used to remove the deeper rifts from the
searched skid trails. Terrain profiles, such as figure 3 or on-site measurements, can be used to identify
suiting threshold values. Thus, it would be possible to compare the mean depth of a detected line
feature within a certain length with the user defined values. Not only the depth, but the width of
the detected feature can be used for a differentiation between natural structures and artificial trails.
Utilizing heavy machinery for logging needs a certain width of the trails. This width ranges between
four to five meters. If the width is too small, than the machines cannot reach the destination, whereas
a too large width is avoided by foresters and forest workers [75].

5. Conclusions

This paper describes a simple, and yet effective method for the detection of skid trails in airborne LiDAR
data, using a standard deviation moving window filter and a vectorization method for the resulting binary
image. The accuracy of the developed method has been compared to active contour models, which could
not lead to any results in the chosen test area. On the other hand, the combination of the two developed
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methods detected 67 percent of the road and skid trail features with a correctness of 68 percent and a
rmse value of 2.7 meters. Due to the very high computation time and the use of predefined parts of
skid trails, the method has to be classified as experimental, and is not yet suitable for an operational use.
The imposed requirements of the two algorithms were partly met. It was proven, that it is possible to
recognize and detect skid trails in the available digital terrain model. Problems occurred regarding the
requirements of an automatic and a fast method, which can be used on a large scale. Nevertheless, the
underlaying principles can be used for an improved version with an enhanced running time and a more
automatic method.
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