

Derivation of Structural Forest Parameters from the Fusion of Airborne Hyperspectral and Laserscanning Data

International Workshop

3D Vegetation Mapping using Advanced Remote Sensing -Implications for Seamless Modeling of Terrestrial Ecosystems

24 – 26 September 2014, St.Oswald, Germany

Henning Buddenbaum Environmental Remote Sensing & Geoinformatics Trier University www.feut.de buddenbaum@uni-trier.de

Airborne Laser Scanning & Imaging Spectroscopy

Airborne Laser Scanning

 Active Remote Sensing technique that measures three-dimensional structure

International Workshop 3D Vegetation Mapping using Advanced Remote Sensing September 24th-26th, St.Oswald, Germany

Imaging Spectroscopy

- Also known as Hyperspectral Remote Sensing
- A full reflectance spectrum is measured in each pixel of the image
- Passive technique that measures the surface

Areas of study

- Idarwald forest near Morbach
- Pfälzerwald forest near Kaiserslautern
- Managed forests
- Dominant tree species:
 - Norway Spruce
 - Douglas Fir
 - ° Beech
 - Oak

Idarwald Forest

Morbach/

Merzalben/ Pfälzer Wald Forest

Datasets

	Idarwald	Pfälzerwald
Imaging Spectroscopy Data (125 bands, 420-2450 nm, 5m GSD)	НуМар: 2003	НуМар: 2009
Waveform Laserscanning Data	Riegl LiteMapper 5600: 2005	Optech ALTM 3100: 2009

Riegl LiteMapper 5600

Hyvista HyMap Hyperspectral Mapper

Combination of image and ALS data

One way of combining passive image data and ALS data is to project the image data on a Lidar-generated height model

Combination of image and ALS data

Another possibility is to add LiDAR-derived products like tree height or crown base height or percentile height bands.

But we wanted to use the full waveform data, not just a collection of bands.

Full Waveform Data

September 24th-26th, St.Oswald, Germany

From Waveforms to Voxels

All waves that converge on a small area.

Mean waveforms in different stand types

From Waveforms to Voxels

A mesh of Voxels atop each HyMap pixel was defined.

Each Voxel is $5 \text{ m} \times 5 \text{ m} \times 0.5 \text{ m}$

The Voxels get filled with the mean Lidar Intensity

Idarwald Forest

122 Hymap bands combined with 76 fullwave LiDAR bands.

Combined spectra show reflectance properties and stand structure.

Forest stands with nearly identical reflectance spectra can be discriminated (b-d and c-e).

Universität Trier

Environmental

Remote Sensing

& Geoinformatics

Pfälzerwald Forest:

125 HyMap bands combined with 40 LiDAR waveform bands (1 m vertical resolution)

Environmental

Remote Sensing

& Geoinformatics

Applications: Classification

Universität Trier

Remote Sensing

& Geoinformatics

Applications: ALS-based estimation of forest structure

- We can estimate tree height, crown closure and stem density using single-pulse Lidar
- Other structure parameters like crown base height and number of crown layers benefit from full waveform data

Environmental

Remote Sensing

& Geoinformatics

Universität Trier

Applications: Vertical Slices through ALS data

Applications: Horizontal Slices through ALS data

Ground 10 m above ground 20 m above ground 30 m above ground 38 m above ground

Applications: Percentile Images

90th percentile

20th percentile

Lidar percentiles have been used for the estimation of biomass, timber volume etc.

Conclusions

- Combining IS and ALS data (passive and active remote sensing) increases the dimensionality without adding much redundancy.
- Vertical intensity profiles from several small-footprint waveforms correspond to large-footprint waveforms of the pixel size.
- Valuable as
 - classification input
 - detailed description of the stand
 - physically-based derivation of structural parameters like crown base height and crown length.
- Single waveform profiles are rather noisy, composite waveforms show the vertical crown extent well

Further Reading

- Torabzadeh, H., Morsdorf, F., & Schaepman, M.E. (2014): Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems – A review. *ISPRS Journal of Photogrammetry and Remote Sensing*, 97, 25-35
- Buddenbaum, H., Seeling, S., & Hill, J. (2013): Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. *International Journal of Remote Sensing*, 34, 4511-4524
- Latifi, H., Fassnacht, F., & Koch, B. (2012): Forest structure modeling with combined airborne hyperspectral and LiDAR data. *Remote Sensing of Environment*, 121, 10-25
- Anderson, J.E., Plourde, L.C., Martin, M.E., Braswell, B.H., Smith, M.-L., Dubayah, R.O., Hofton, M.A., & Blair, J.B. (2008):

Integrating waveform Lidar with hyperspectral imagery for inventory of a northern temperate forest.

Remote Sensing of Environment, 112, 1856-1870

_ Environmental		
Universität Trier Remote Sensing		
	& Geoinformatics	

Thanks for your Attention

Contact: buddenbaum@uni-trier.de www.feut.de

If you are interested in Hyperspectral remote sensing, visit the **9th EARSeL SIG Imaging Spectroscopy workshop** 14-16 April 2015, Luxembourg http://www.earsel2015.com/

Reference:

H. Buddenbaum, S. Seeling & J. Hill (2013): Fusion of full waveform LiDAR and imaging spectroscopy remote sensing data for the characterization of forest stands. *International Journal of Remote Sensing*, 34 (13): 4511-4524.

Thanks to funding projects

