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1 Introduction 20 

1.1 Drylands 21 

Drylands cover about 41% of the earth’s land surface, comprising hyper-arid to dry sub-22 

humid climate zones which are defined by low mean annual precipitation amounts compared 23 
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to potential evaporation, i.e. a ratio of mean precipitation to potential evaporation less than 1 

0.65 (Safriel et al., 2005; Thomas and Middleton 1994; see figure 1). They include a large 2 

number of ecosystems which belong to the four broad biomes: forests, Mediterranean, 3 

grasslands, and deserts (Safriel, et al., 2005) and are home to about one third of the global 4 

population, with many residents directly depending on dryland ecosystem services including 5 

the provision of food, forage, water, and other resources (Millenium Ecosystem Assessment, 6 

2005a). Drylands also provide ecosystem services of global significance, such as climate 7 

regulation by sequestering and storing vast amounts of carbon due to the large areal extent 8 

(Lal, 2004) (Table 1). 9 

<Place figure 1 app. here> 10 

Drylands are characterized by high variability in both rainfall amounts and intensities and the 11 

occurrence of cyclic and prolonged periods of drought. Most frequently, soils contain low 12 

nutritious reserves and have low contents of organic matter and nitrogen (Skujins, 1991). In 13 

addition, surface runoff events, soil-moisture storage, and groundwater recharge in drylands 14 

are generally more variable and less reliable than in more humid regions (Koofhafkan and 15 

Stewart, 2008). 16 

 <place table 1app.here> 17 

Water availability and the tolerance to periods of water scarcity are key factors in dryland 18 

productivity (Stafford Smith et al., 2009). In response to water scarceness and prolonged 19 

drought periods, fauna and flora of dryland ecosystems have adapted to these conditions 20 

following manifold strategies (morphological, physical, chemical), such as the development 21 

of drought-avoiding (i.e. ephemeral annual grasses) or drought-enduring (i.e. xerophytes) 22 

plant species as well as plant adaptations such as xeromorphological leaf structures. Fire is a 23 

further important element in functioning and maintenance of dryland ecosystems (Bond and 24 

Keeley, 2005).  25 
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1.2 Land use in dryland areas 1 

For thousands of years humans developed strategies to use the goods and services provided by 2 

drylands in a sustainable way (Table 1), thereby responding to the level of aridity. Thus, land 3 

use systems in drylands are very diverse, including a variety of shifting agriculture systems, 4 

annual croplands, home gardens and mixed agriculture–livestock systems, including nomadic 5 

pastoral and transhuman systems (Koofhafkan and Stewart, 2008). The vast majority of dry-6 

lands that support vegetation are used as rangelands (69%), which sustain about 50% of the 7 

world’s total livestock population, whereas 25% of the dryland areas are used as croplands 8 

(Reid et al., 2004). However, land use varies largely among dryland climates. The proportion 9 

of rangeland increases with aridity, from 34% in sub-humid regions to 97% in hyper-arid are-10 

as (Millenium Ecosystem Assessment, 2005b), whereas arable cultivation is restricted to 11 

semi-arid and dry sub-humid regions (Koofhafkan and Stewart, 2008). Also the use of fire as 12 

a land use management tool has a history of millennia in drylands and includes the use of fire 13 

by pastoralists to improve rangeland conditions (Naveh, 1975), but also for slash and burn 14 

agriculture, honey collection, charcoal production and opening landscapes to facilitate hunting 15 

as practised in African Savannahs (Mbow et al., 2000). Even though dryland ecosystems are 16 

adapted to fires, changing fire regimes may cause land degradation and loss of biodiversity as 17 

they impact species composition and vegetation structure and severally affect nutrient cycling 18 

(e.g. Trapnell, 1959, Anderson et al., 2003). 19 

Countries with drylands differ in their socio-economic development. Differences range from 20 

agrarian via industrialized to service oriented societies, whereby at least 90% of the dryland 21 

population lives in developing countries (Safriel, et al., 2005). The development stage defines 22 

to a large extent the land use systems and the corresponding process framework of land 23 

use/land cover changes (DeFries et al., 2004). Even though land use changes are affecting 24 

almost all terrestrial ecosystems, drylands are considered as most vulnerable to degradation 25 
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processes. Thus, water scarcity, overuse of resources and climate change are a much greater 1 

threat for dryland ecosystems than for non-dryland systems (Millenium Ecosystem 2 

Assessment, 2005a). 3 

1.3 Land degradation and desertification  4 

Degradation of terrestrial dryland ecosystems, also termed desertification, is recognized as 5 

one of the major threats to the global environment impacting directly on human well-being 6 

(Millenium Ecosystem Assessment, 2005a) and threatening to reverse the gains in human 7 

development in many parts of world (UNU, 2006). The terms land degradation and 8 

desertification received worldwide attention following the prolonged Sahel drought during the 9 

1970s and 1980s which caused a humanitarian catastrophe. As result of the United Nations 10 

Conference on Desertification (UNCOD) in 1977 a “Plan of action to combat desertification” 11 

was approved. Limited progress in reducing the problem of desertification since then, led the 12 

Rio Conference in 1992 to call on the United Nations General Assembly to prepare through 13 

intergovernmental negotiation a Convention to Combat Desertification (CCD). Thus, in 1994 14 

the UNCCD (United Nations Convention to Combat Desertification) was adopted and brought 15 

into force in 1996 having received notification of the 50
th

 ratification of the Convention, 16 

which by now has 193 signatory parties. The definition of both terms was subject to highly 17 

controversial debates (Hermann and Hutchinson, 2005).  18 

A nowadays widely accepted definition of land degradation and desertification is provided by 19 

the UNCCD. According to the UNCCD (1994) land degradation is defined as “the reduction 20 

or loss, in arid, semi-arid and dry sub-humid areas, of the biological or economic 21 

productivity and complexity of rainfed cropland, irrigated cropland, or range, pasture, forest 22 

and woodlands resulting from land uses or from a process or combination of processes, 23 

including processes arising from human activities and habitation patterns”. Desertification is 24 
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defined as “land degradation in arid, semi-arid and dry sub-humid areas, resulting from 1 

various factors, including climatic variations and human activities” (UNCCD 1994).  2 

This definition aims to cover at large the broad range of complex processes that cause a 3 

sustained decrease of ecosystems services throughout all terrestrial ecosystems in drylands. 4 

Nevertheless, this also leaves room for interpretation and uncertainties concerning the 5 

terminology (Vogt et al. 2011) and, hence, also arouses different perceptions of the processes 6 

that lie behind these two terms. 7 

1.4 Scientific perception of land degradation 8 

In the past decades, the scientific communities’ understanding has undergone a shift 9 

concerning the key factors that are required to allow for adequate assessment and monitoring 10 

of land degradation. The assessment of land degradation changed from a mere biophysical 11 

perception to a more holistic approach where human-induced or climate-driven underlying 12 

forces as well as spatial and temporal scale issues have been recognised as factors that should 13 

be considered to understand and identify land degradation processes (Vogt et al., 2011).  14 

The understanding of land degradation processes, including their causes and consequences on 15 

ecosystem functioning as well as the identification of affected areas and regions at risk, are a 16 

prerequisite to develop strategies to mitigate and avoid land degradation. Accordingly, over 17 

the past decades many national and international research initiatives reviewed the status of 18 

land degradation sciences and identified gaps and developed strategies to assess and monitor 19 

land degradation and desertification. 20 

This chapter provides an overview of important studies on remote sensing of land degradation 21 

in drylands. Section 17.2 presents general considerations regarding the assessment and 22 

monitoring of land degradation including suitable indicators as well as sensor systems. The 23 

following sections give a review of the state of the art on the assessment of land condition 24 
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(section 17.3), the monitoring of land use/land cover changes to assess land degradation 1 

processes (section 17.4) and the identification of human-induced drivers of land degradation 2 

using integrated concepts (section 17.5) whereas section 17.6 describes limits and 3 

uncertainties regarding dryland observation. This chapter concludes with a summary of land 4 

degradation assessment and monitoring by remote sensing techniques (section 17.7). 5 

2 Remote Sensing of dryland degradation processes 6 

Various scientific disciplines contribute valuable information that enhances the understanding 7 

of land degradation and desertification at different temporal and spatial scales. These include 8 

studies ranging from the plot scale to global assessments as well as the collection of 9 

biophysical or socio-economic data and the implementation of models to predict land use 10 

changes in future decades. 11 

Earth observation is a tool that essentially contributes to the assessment and monitoring of 12 

ecosystems from a local to a global scale. Hence, information extracted from remote sensing 13 

data can be employed to: (i) assess the extent and condition of ecosystems, and (ii) monitor 14 

changes of ecosystems conditions and services over long time periods (Foley et al., 2005; 15 

Turner II et al., 2007). The use of earth observation data fundamentally contributes to the 16 

understanding of dynamics and responses of vegetation to climate and human interactions 17 

(DeFries, 2008). 18 

Monitoring drylands requires observation data that are able to observe long-term trends and 19 

short-term disturbances across large areas. For this reason, remote sensing data are important 20 

components of monitoring strategies, as they provide objective, repetitive and synoptic 21 

observations across large areas (Graetz, 1996; Hill et al., 2004). Three major components are 22 

particularly important to provide (i) a comprehensive observation of dryland areas, (ii) ensure 23 
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their relevance for policy and management and (iii) help preventing unsustainable use of 1 

ecosystems goods and services: 2 

(i) Assessment of actual land condition, i.e. the capacity of an ecosystem to provide 3 

goods and services (compare 17.3),  4 

(ii) monitoring of land cover changes and assessment of their implications for land 5 

condition separating natural processes, i.e. climate variability and fire, from human-6 

induced land use/land cover-related processes (compare 17.4), and 7 

(iii) integrated concepts that link remotely sensed results to the human dimension in order 8 

to identify drivers of land degradation (compare 17.5). 9 

Neither the condition of ecosystems nor the processes affecting them can directly be measured 10 

by earth observation data. Rather, suitable indicators have to be identified (Verstraete, 1994) 11 

that (i) can be related to the status and processes and (ii) can be derived in standardized and 12 

replicable way.  13 

2.1 Suitable remote sensing indicators for dryland observation 14 

A range of approaches and models has been developed allowing to derive a variety of 15 

biophysical parameters appropriate for the observation of drylands (Hill, 2008; Lacaze, 1996). 16 

Depending on the spatial and spectral characteristics of the remote sensing data these 17 

qualitative and quantitative measures include vegetation indices related to greenness, 18 

vegetation cover, pigment and water content, soil organic matter of the topsoil, landscape 19 

metrics etc. (e.g. Blaschke and Hay, 2001; Hill et al., 2004). 20 

Even though land degradation indicators related to soil have proven to provide important 21 

information on land degradation, vegetation cover hampers the remotely sensed assessment of 22 

soil properties. Thus, soil properties can only be reliably assessed at low vegetation cover 23 

(Jarmer et al., 2009). Furthermore, many of the proposed indicators, e.g. grain size 24 
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distribution, mineral content and soil organic carbon, require hyperspectral data. To date, 1 

these data are mostly acquired using airborne systems, making them costly and only available 2 

for small areas. As a result, only few studies exist that use hyperspectral imagery for land 3 

degradation assessment (e.g. Shrestha et al., 2005, De Jong and Epema, 2011). However, 4 

various hyperspectral, space-borne missions are currently being developed,  (e.g. EnMAP 5 

(Environmental Mapping and Analysis Program) under the lead of the German Aerospace 6 

Center (DLR), or HyspIRI (Hyperspectral Infrared Imager) by the National Aeronautics and 7 

Space Administration (NASA) and it is to be expected that the utilization of this hyperspectral 8 

imagery in the context of land degradation assessment will increase in the near future. 9 

2.2 Biophysical remote sensing indicators for long-term dryland 10 

observation 11 

The biological productivity of ecosystems is one of the key factors that describe the 12 

functioning of an ecosystem and it is also explicitly stated in the definition of desertification 13 

and land degradation of the UNCCD (Del Barrio et al., 2010). Parameters related to 14 

productivity such as greenness, vegetation cover and biomass can therefore serve as proxies to 15 

assess and monitor land degradation. These parameters are especially suitable for earth 16 

observation methods due to the distinct spectral signature of vegetation.  17 

A commonly used vegetation index calculated from the red and near-infrared spectral 18 

information is the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974; 19 

Tucker, 1979). It was shown that the NDVI is a proxy for greenness and is linearly related to 20 

the fraction of absorbed Photosynthetic Active Radiation (faPAR) (Myneni and Williams, 21 

1994, Fensholt et al., 2004) which in itself is an important factor of assessing the Net Primary 22 

Productivity (NPP). However, the NDVI has well-known weaknesses due to its sensitivity to 23 

soil background, especially when vegetation cover is low (Price, 1993, Elmore et al., 2000). 24 

Advanced vegetation indices overcome these problems, like the Enhanced Vegetation Index 25 
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(EVI) (Huete et al., 2002) and the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988). 1 

More advanced methods to derive parameters that are related to vegetation are the Tasselled 2 

Cap Transformation (TC) (Kauth and Thomas, 1976) and Spectral Mixture Analysis (SMA) 3 

(Adams et al., 1986; Smith et al., 1990). The latter directly provides vegetation cover if 4 

correctly parameterized and is often used for Landsat-based land degradation assessment in 5 

drylands (Sonnenschein et al., 2011). Nevertheless, for temporal analysis it seems to be of 6 

more decisive importance to employ a robust and consistent measure (Udelhoven and Hill, 7 

2009; Sonnenschein et al., 2011).  8 

2.3 Earth observation platforms used in dryland observation 9 

High variability of precipitation amounts infers also a high variability of vegetation cover and 10 

its vitality. Moreover, disturbances like fires create abrupt changes of vegetation cover. 11 

Dryland obervation requires to consider these variations by using long-term observation to 12 

separate gradual long-term trends from short-term variations. Among the numerous space-13 

born sensors, only few satellites are fulfilling the two criteria of collecting data that (i) cover a 14 

long time period and (ii) provide a systematic global coverage. These systems can be 15 

distinguished in two major groups: the first provides a medium spatial resolution, but has a 16 

limited temporal resolution, the second provides a coarse scale resolution, but has a high 17 

temporal resolution. Table 2 gives information of important sensors and derived archives, 18 

which are presented in more detail in the following sections. 19 

<Place table 2 app. here> 20 

2.3.1 Medium spatial resolution sensors  21 

The Landsat program consists of a series of multi-spectral optical sensors that record the 22 

reflected radiance in the visible to middle infrared domain (complemented by band(s) in the 23 
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thermal domain) which allows the derivation of several surrogates related to vegetation 1 

properties (Fang et al., 2005). Landsat Thematic Mapper (TM), Enhanced Thematic Mapper 2 

(ETM+) and Operational Land Imager and Thermal Infrared Sensors (OLI/TIRS), 3 

respectively are providing data of the earth’s surface with a spatial resolution of 30 m x 30 m 4 

since 1982 (Goward and Masek, 2001). The temporal revisit rate of the sensor is 16 days and 5 

could theoretically provide a time series of earth observations with similar density compared 6 

to those provided by coarse scale sensors, but also in many dryland areas cloud cover impedes 7 

the acquisition of utilizable images. Thus, often only few images of sufficient quality can be 8 

acquired per season.  9 

The SPOT (Satellite Pour l’Observation de la Terre) satellites operated by Centre National 10 

d’Études Spatiales (CNES) provide multi-spectral data since 1986 with a spatial resolution of 11 

6 m x 6 m up to 20 m x 20 m with a revisit rate of 26 days. The SPOT system is operated 12 

commercially, which offers the possibility to prioritize the observation of specific areas. 13 

Whereas the Landsat sensors are restricted to Nadir-acquisition, the SPOT sensors are able to 14 

incline the sensor allowing for the acquisition of data for specific areas more often than these 15 

26 days. At the same time this means that other areas are not recorded on a regular basis.  16 

2.3.2 Coarse spatial scale satellite sensors 17 

Regional to global dryland studies are mostly based on coarse-scale imagery with higher 18 

temporal resolution. Due to the long legacy of the mission, the National Oceanic and 19 

Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer 20 

(AVHRR) sensor series is one of the most important sensors in this context. Within the 21 

Global Inventory Monitoring and Modeling System (GIMMS) project, the most commonly 22 

used global NOAA AVHRR time series are provided. The recent version NDVI3g (third 23 
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generation GIMMS NDVI from AVHRR) spans the time period from 1981 to 2012 and 1 

consists of bi-monthly measurements of the NDVI data at a pixel size of about 8 km x 8 km.  2 

Higher resolution NOAA AVHRR archives data are available for some parts of the world, 3 

such as the Mediterranean Extended Daily One-km AVHRR Data Set (MEDOKADS). The 4 

archive consists of a 10-day maximum value composite of full resolution NOAA AVHRR 5 

channel data covering the whole Mediterranean region from 1989 to 2004 with a spatial 6 

resolution of about 1 km² (Koslowsky, 1996). Another regional datasets is for example a 1-7 

km
2
 dataset covering Australia (BOM, 2014). 8 

A prerequisite for long-term observation analyses are well-calibrated data archives. This is 9 

especially demanding in case of the NOAA AVHRR data archives as pre-processing 10 

comprises the correction of effects caused by orbital drift of the sensor (i.e. changing overpass 11 

time) as well as the inter-calibration of the spectral channels between the different AVHRR 12 

sensors employed to create the long-term archives. Due to the limited spectral properties of 13 

the NOAA AVHRR sensors the derivation of biophysical parameters is limited and usually 14 

based on the NDVI.  15 

The Moderate-resolution Imaging Spectroradiometer (MODIS) provides a better spatial and 16 

spectral resolution and which allows to derive more enhanced biophysical surrogates. NDVI 17 

and EVI are provided as standard vegetation parameter products. Moreover, the sensor 18 

properties facilitate the provision of a consistent high quality data archive including the 19 

possibility to derive Bi-directional Reflectance Distribution Function (BRDF) corrected data 20 

(Strahler et al., 1999). Other sensors delivering time series suitable for land degradation 21 

assessment are e.g. Satellite Pour l’Observation de la Terre (SPOT) Vegetation, Sea-Viewing 22 

Wide Field-of-View Sensor (SeaWIFS), and Medium Resolution Imaging Spectrometer 23 

(MERIS). However, in comparison to the NOAA AVHRR data sets these archives are still 24 

confined to rather short observation periods. Several studies aimed at combining different data 25 

archives to overcome the different spectral responses, differing observation characteristics 26 
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including observation geometry and diverging spatial resolutions of the sensor systems 1 

(Ceccherini et al., 2013). 2 

2.3.3 Recent developments for obtaining medium spatial and high temporal 3 

resolution time series 4 

Although both coarse and medium sensor types provide data that allow for adequate dryland 5 

observation, there is a trade-off between geometric and spectral level of detail, areas covered 6 

and temporal resolution that needs to be considered. With the planned launch of the ESA 7 

(European Space Agency) Sentinel-2 satellites in 2015 and 2016, two additional Landsat-type 8 

sensors will be available. Together with the Landsat OLI the repetition rate of acquiring data 9 

from the entire globe will be much higher, augmenting also the probability of cloud-free 10 

observations. Another promising technique is the fusion of Landsat and MODIS images with 11 

the Spatial and Temporal Adaptive Reflectance Fusion Model STARFM (Gao et al., 2006) 12 

aiming at providing time series with a temporal resolution of MODIS but the spatial 13 

resolution of Landsat. The approach was applied successfully to dryland areas (Schmidt et al., 14 

2012; Walker et al., 2012) and offers the possibility to monitor land degradation processes in 15 

more detail. One drawback of this procedure is that the fusion can only be performed after the 16 

launch of MODIS Terra in the year 2000. 17 

2.3.4 Analysis techniques 18 

Long term monitoring requires accurate geometric and radiometric correction of the data to 19 

reduce noise that originates from observational conditions including observation geometry, 20 

atmospheric conditions and sensor degradation. A meaningful analysis necessitates a rigorous 21 

pre-processing scheme for all the time series images (Röder et al., 2008a).  22 

The creation of a medium resolution time series is challenging because images should 23 

originate from comparable phenological stages. Therefore, many of the early studies 24 
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investigating time trajectories of vegetation based on Landsat time series are confined to only 1 

one observation per season (e.g. Hostert et al., 2003; Röder et al., 2008a).  2 

The opening of the Landsat archives distributed by the United States Geological Survey 3 

(USGS) has enabled new opportunities to assess land cover changes based on the full range of 4 

available data from the archive, including images with high cloud cover. Thus, new 5 

approaches move from image based analysis towards pixel based analysis. This comes along 6 

with new methodologies that allow for pre-processing and analysing the data in an automated 7 

way. It includes the provision of geometrically corrected Landsat L1T data by USGS, cloud 8 

detection via fmask (Zhu and Woodcock 2012) and automated radiometric correction schemes 9 

like the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et 10 

al., 2006) or the Australian BRDF correction scheme (Flood et al., 2013). Recently, the U.S. 11 

Geological Survey (USGS) has embarked to distribute higher-level Landsat data products, 12 

e.g. Landsat Surface Reflectance Climate Data Record (CDR) and Landsat Surface 13 

Reflectance Derived Spectral Indices (http://landsat.usgs.gov/CDR_ECV.php). For 14 

Queensland, Australia a Fractional Vegetation Cover product is available since 1986 15 

providing seasonal images for the entire state (http://www.auscover.org.au).  16 

With the changes in data policy and increases in data quality as well as computational 17 

improvements, time series approaches were developed that allow for the detection of gradual 18 

or abrupt changes, or both simultaneously. Several methodologies and tools were published, 19 

e.g. Landsat based detection of trends in disturbance and recovery – LandTrendr (Kennedy et 20 

al., 2010), the Vegetation Change Tracker – VCT (Huang et al., 2010), Breaks For Additive 21 

Seasonal and Trend – BFAST (Verbesselt et al., 2010), Continuous Monitoring of Forest 22 

Disturbance Algorithm – CMFDA (Zhu et al., 2012) and Continuous Change Detection and 23 

Classification – CCDC (Zhu and Woodcock, 2014). Many of these approaches were 24 

implemented and tested in boreal and temperate forest ecosystems (e.g. Griffiths et al., 2011, 25 

Schroeder et al., 2011). In such ecosystems the vegetation signal is high and yearly variations 26 



15 
 

are small compared to dryland areas. Moreover, vegetation communities in drylands are often 1 

very complex and the spatial arrangement of the landscape very heterogeneous. These factors 2 

plus the occurrence of fires hamper the detection of subtle modifications of vegetation cover 3 

due to land degradation processes. Therefore, enhanced time series analyses tools are gaining 4 

more and more importance as they allow for monitoring not only the overall increase or 5 

decrease of greenness, but also more complex change patterns including its character, i.e. 6 

gradual and abrupt changes (De Jong et al., 2012). This represents reality better as trends are 7 

rarely uniform during a long observation period, e.g. due to droughts, fire events and macro 8 

weather situations. 9 

The techniques that are used to explore the coarse scale data archives are very similar to the 10 

ones used to examine Landsat time series. Additionally, due to the dense temporal resolution, 11 

the phenology of vegetation and its changes can be portrayed by deriving phenological 12 

metrics using specialised software like for instance Timesat (Jönsson and Eklundh, 2002) and 13 

Timestats (Udelhoven, 2011).  14 

3 Assessing land condition 15 

Land degradation may be defined as a long-term loss of an ecosystem’s capacity to provide 16 

goods and services. Therefore, a major component of a comprehensive dryland observation is 17 

the assessment of land condition which can be linked to ecosystem status. Even though land 18 

degradation is recognized as a severe threat, only few global land degradation assessments 19 

have been carried out until today (Millenium Ecosystem Assessment, 2005a; Vogt et al., 20 

2011).  21 

The first global assessment of land quality was provided in the framework of the GLASOD 22 

project (Global Assessment of Human-Induced Soil Degradation, 1987-1990) where human-23 
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induced soil degradation (extent, type and grade) was mapped at a scale of 1:10 million based 1 

on expert judgement (Oldeman, et al., 1990). Another global assessment was provided by 2 

Dregne and Chou (1992) who also integrated information on vegetation status based on 3 

secondary sources. Whereas the map provided by GLASOD indicated that 20% of soils in 4 

drylands were degraded, Dregne and Chou estimated that 70% of dryland areas were affected 5 

either by degradation of soil or vegetation. A more recent study (Lepers, 2003) prepared for 6 

the Millenium Ecosystem Assessment covered over 60% of all dryland areas. Several data 7 

sources, including remote sensing data, were integrated in the analyses and indicated that 10% 8 

of the observed area was affected by land degradation. One of the major points of criticisms 9 

related to the subjectivity of the studies which impede operational use or comparability 10 

(Millenium Ecosystem Assessment, 2005a). In recent years, different concepts were 11 

developed and implemented to assess land condition which will be described in the following 12 

part. A selection of studies and the techniques used is summarized in table 3. 13 

<place table 3 app. here> 14 

3.1 Assessment of land condition related to the biological productivity of 15 

ecosystems 16 

In recent years, the assessment of land condition has been primarily related to the biological 17 

productivity of ecosystems. The concept is based on the fact that land degradation, which 18 

might be caused by a wide variety of climate- and human-induced processes, results in a 19 

decline of the potential of the soil to sustain plant productivity (Del Barrio et al., 2010). Using 20 

the example of rangelands, figure 2 clearly illustrates the dependence of biological 21 

productivity on grazing pressure, rainfall and soil properties. In this respect, soil properties 22 

like water holding capacity and nutrient supply are essential factors that directly affect 23 

primary productivity. Ongoing overgrazing drives feed-back loops between vegetation and 24 

soil, resulting in a degradation of these soil properties and triggers a sustained decrease of the 25 



17 

soil’s capacity to sustain primary productivity. As a consequence, the ecosystem’s capacity to 1 

utilize local resources (such as soil nutrients and water availability) in relation to its potential 2 

capacity may be defined as land condition. This in turn allows drawing conclusions on the 3 

degradation status of observed areas (Boer and Puigdefabregas, 2005). Hence, biological 4 

productivity is considered a suitable surrogate to assess land condition and surrogates derived 5 

from remote sensing are predestined to support this assessment. 6 

< place figure 2 app. here> 7 

At local scale Boer and Puigdefabrégas (2005) conceptualized and implemented a spatial 8 

modelling framework to assess land condition based on climate data as well as on NDVI data 9 

derived from the Landsat sensor, which served as a proxy for primary productivity. The 10 

approach is based on the assumption that in arid and semi-arid areas water availability is the 11 

major limiting factor of productivity and furthermore, that the water balance, which depends 12 

on rainfall, soil properties (evaporation), vegetation (interception and transpiration) and 13 

discharge, reflects land condition. Based on this theoretical concept they proposed a long-term 14 

ratio of mean actual evapotranspiration and precipitation to assess land condition.  15 

Prince (2004) and Prince et al. (2009) introduced the Local Net Primary Productivity Scaling 16 

(LNS) method where the actual NPP is compared to the potential NPP of the corresponding 17 

Land Capability Class (LCC). The LCCs are homogenous areas that are determined by 18 

climate, soils, land cover and land use, and are independent of actual NPP. The magnitude of 19 

the difference provides a measure of land degradation and at the same time the loss of carbon 20 

sequestration. The actual NPP is derived for each pixel from multi-temporal earth observation 21 

data. The potential NPP, i.e. the NPP that could be expected without human land use, equals 22 

the maximum NPP found in the corresponding LCC and enables to implement this approach 23 

for large physical heterogeneous areas. The implementation of this method for Zimbabwe 24 

(Prince et al., 2009, see figure 3) showed that only 16% of the land cover reached the level of 25 

the potential NPP whereas over 80% were found to have an actual NPP far below the 26 
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potential one suggesting a loss of carbon sequestration of 7.6 Mio. tons C yr
-1

. Similar1 

methodologies were developed by Bastin et al, (2012) and Reeves and Baggett (2014) to 2 

identify rangeland conditions in Queensland, Australia and the southern and northern Great 3 

Plains, USA, respectively. 4 

3.2 Assessment of land condition including climate and its variability 5 

Wessels et al. (2007) used a residual trend analysis (RESTREND) to identify potentially 6 

degraded areas by decoupling the NDVI signal from rainfall variability based on NOAA 7 

AVHRR data. This methodology identifies areas were a reduction in productivity per unit 8 

rainfall has occurred by comparing modelled accumulated NDVI values based on rainfall data 9 

to the observed NDVI. While the method proved capable of identifying potentially degraded 10 

areas in South Africa, Wessels et al. (2007) stressed that the cause of the negative trend 11 

cannot be explained solely by this approach, but needs detailed investigation. Li et al. (2012) 12 

transferred the RESTREND methodology to a rangeland area in Inner Mongolia, China. Their 13 

results showed that until the year 2000 heavy overgrazing deteriorated rangelands in this area, 14 

but grasslands recovered afterwards due to the implementation of new land use polices. The 15 

authors concluded that the methodology is useful to identify human-induced changes in 16 

drylands, but also underlined that the results need careful interpretation. 17 

Other developed approaches make use of the concept of Rain Use Efficiency (RUE), which 18 

was introduced by Le Houérou (1984). RUE is defined as the ratio of NPP to precipitation 19 

over a given time period and may be interpreted as being “proportional to the fraction of 20 

precipitation released to the atmosphere” (Del Barrio et al., 2010). Several studies explored 21 

RUE in dryland areas based on remote sensing (e.g. Prince et al., 1998; Bai et al., 2008) 22 

causing debates between scientists due to supposed weaknesses in the rationale (Hein and de 23 

Ridder, 2006; Prince et al., 2007; Wessels, 2009). In the framework of the LADA (Land 24 
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Degradation Assessment in Drylands) project Bai et al. (2008) proposed a methodology to 1 

assess and monitor land condition by deriving RUE based on the global NOAA AVHRR 2 

GIMMS dataset. The implemented methodology and the results were criticized (Wessels, 3 

2009) because rainfall is not a limiting factor in more humid areas and moreover, RUE values 4 

are dependent on precipitation amounts and thus impede the direct comparison of RUE values 5 

from regions of diverging aridity level. Fensholt et al. (2013) proposed to only use NPP-6 

proxies that are positively linearly correlated to precipitation and to only consider the rainy-7 

season-variation of NDVI for those areas where the correlation between RUE and annual 8 

precipitation is close to zero. 9 

Del Barrio et al. (2010) presented an approach which takes the dependency of RUE on aridity 10 

into account. The approach was implemented for the Iberian Peninsula based on 1 km
2
 NOAA 11 

AVHRR NDVI data and spatially interpolated climate data. Due to the strong climatic 12 

gradient across the Iberian Peninsula, the derived RUE values were in a first step de-trended 13 

for aridity to ensure the comparability of the derived data between different climatic zones. In 14 

a next step, statistically derived boundaries of minimum and maximum RUE were employed 15 

to calculate relative RUE values. Based on the assumption that healthy and undisturbed 16 

vegetation is characterized by a maximum RUE value the relative RUE can be treated as a 17 

measure for land condition. Results of this study indicated that land condition of the Iberian 18 

Peninsula was better than expected with localised areas of ongoing land degradation caused 19 

by current or recent intensive land use (Del Barrio et al., 2010; see figure 4). This study also 20 

focussed on the monitoring of changes in primary productivity and considered effects of 21 

climatic variations. The results suggest that areas already in good conditions further improved 22 

whereas degraded areas remained static. One disadvantage of this approach is the statistical 23 

determination of land condition lacking absolute references of vegetation performance 24 

comparable to the LNS method. 25 
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4 Monitoring of land use/land cover changes to assess land 1 

degradation processes 2 

Land cover is defined by the attributes of the land surface including all aspects such as flora, 3 

soil, rock, water and anthropogenic surfaces whereas land use has been defined as the purpose 4 

for which humans employ land cover (Lambin et al., 2006). Changes in land use are often 5 

accompanied by alterations in land cover that always imply changes in ecosystem functions, 6 

such as for instance primary productivity, soil quality, water balance and climatic regulation 7 

(e.g. Foley et al., 2005; Turner II et al., 2007). The monitoring of landscape dynamics forms 8 

therefore an essential component for dryland observation as it provides information about the 9 

nature and extent of the changes and allows for the evaluation of the consequences for 10 

ecosystem functions.  11 

Land cover changes can be distinguished in two major groups: (i) conversion and (ii) 12 

modification (Lambin et al., 2006). Land use conversion commonly involves the replacement 13 

of one land use/land cover class by another (e.g. shrublands with arable land) whereas 14 

modification is usually related to gradual changes within one thematic class (e.g. shrub 15 

encroachment within natural ecosystems). The assessment of both conversion and 16 

modification is important to provide a comprehensive picture of land use/land cover changes. 17 

The assessment of land use/land cover conversion is often based on land use change detection 18 

performed at defined years of interest. Several strategies and methods were developed to 19 

optimise the results of change detection analyses. A detailed overview of change detection 20 

techniques and their application, potentials and limits is for instance given in Hecheltjen et al. 21 

(2014). 22 

The assessment of modifications is a crucial element in dryland areas, because land cover 23 

changes related to land degradation are often associated with a modification of the landscape 24 

(Lambin, et al. 2006; Lambin and Geist, 2001). These include for instance vegetation cover 25 
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loss due to overgrazing or primary or secondary succession on abandoned fields and 1 

rangelands. The detection and monitoring of a modification is often more challenging as 2 

changes of biophysical properties have to be observed and distinguished from inter-annual 3 

variability. This is especially important for dryland areas where primary productivity is 4 

dependent on the highly variable climatic conditions in terms of rainfall (Turner II et al., 5 

2007). Time series analysis of remote sensing archives is a suitable methodology to assess 6 

gradual changes of land cover (Udelhoven, 2010), providing means to delineate inter-annual 7 

variability from long-term trends. This requires consistent long-term data of biophysical 8 

parameters connected to surface properties, such as those provided by the broad remote 9 

sensing data sources described in the previous chapter.  10 

The high geometric detail of Landsat data often matches the scale of land management 11 

decisions (Cohen and Goward, 2004; Lambin et al., 2006), whereas coarse scale NOAA 12 

AVHRR data are more suitable to cover large areas providing a much higher temporal 13 

repetition rate. These data archives therefore permit the detection of changing parameters 14 

connected to vegetation cover as well as the deduction of changes in phenology (e.g. Andres 15 

et al., 1994; Brunsell and Gillies, 2003, Stellmes et al., 2013). Numerous studies exists that 16 

assess landscape dynamics in dryland areas based on these data sources, giving useful insights 17 

on process-patterns from local to regional and global scales (see table 4).  18 

<place fig 4. app. here> 19 

4.1 Local scale studies to detect land degradation related modifications 20 

At a local scale, many studies focused on monitoring both long-term and abrupt modifications 21 

using Landsat time series. In this context, the impact of grazing pressure on vegetation cover 22 

has been analysed in different parts of the world, e.g. in Bolivia (Washington-Allen et al., 23 

2008), Greece (Hostert et al., 2003; Röder et al., 2008a; Sonnenschein et al., 2011) and Nepal 24 
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(Paudel and Andersen, 2010). These studies used either vegetation indices like the NDVI or 1 

enhanced parameters such as proportional vegetation cover derived from Spectral Mixture 2 

Analysis. Degradation processes were identified in all study areas and often additional 3 

information layers were used to explain these findings. Washington-Allen et al. (2008) 4 

assessed the effect of an El Niño-Southern Oscillation (ENSO) induced drought on a 5 

rangeland system in Bolivia employing Landsat time series. This study showed that the 6 

decrease in vegetation cover of the rangelands resulted in an increased risk of soil erosion. In 7 

northern Greece (Röder et al., 2008a) patterns of over- and undergrazing were identified 8 

following changed rangeland management practices from transhumance to sedentary 9 

pastoralism (see figure 5). Similar patterns were observed on the island of Crete, Greece 10 

(Hostert et al., 2003). Another important dimension in land degradation science is the 11 

understanding of impacts of land use/land cover changes on ecosystems. Hill et al. (2014) 12 

used the ecosystem services concept (Millenium Ecosystem Assessment 2005a) to estimate 13 

changes in ecosystems services introduced by land use/land cover changes detected using a 14 

Landsat TM/ETM+ time series in Inner Mongolia, China between 1987 and 2007.  15 

Other studies were focusing on abrupt changes caused by fires, including studies on mapping 16 

fire patterns (Diaz-Delgado and Pons, 2001; Bastarrika et al., 2011) or post-fire recovery (e.g 17 

Viedma et al., 1997; Röder et al., 2008b). Yet, assessments of the relationship of gradual and 18 

abrupt vegetation changes in the Mediterranean are largely missing (Sonnenschein, 2011).   19 

While many studies focused on local areas, i.e. covering one Landsat scene, operational 20 

systems for the monitoring of rangeland areas have been set up in Australia during the last 21 

decades (Wallace et al., 2006; 2004). Several regional projects use parameters derived from 22 

Landsat time series to monitor land cover changes and land condition, which are integrated in 23 

the Australian Collaborative Rangeland Information System (ACRIS) on a nationwide level. 24 

Furthermore, the software tool VegMachine was developed where satellite imagery and 25 
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expert knowledge are combined to assess the health status of grazing grounds and to support 1 

pastoral producers as well as management decisions (CSIRO, 2009).  2 

4.2 Regional to global scale studies to detect land degradation related 3 

modifications 4 

Most studies covering large dryland areas (including continental and global studies) are based 5 

on NOAA AVHRR archives or similar sensor systems. Many of these studies focussed on 6 

ordinary least-square regression or non-parametric trend tests such as the Mann-Kendall-test 7 

on NDVI values, which were often seasonally aggregated and served as a proxy for NPP (e.g. 8 

Eklundh and Olsson, 2003; Anyamba and Tucker, 2005) or other parameters related to 9 

greenness (e.g. Lambin and Ehrlich, 1997; Cook and Pau, 2013). Only in recent years, 10 

changes in phenological metrics were analysed to monitor dryland areas (e.g. Heumann et al., 11 

2007; Stellmes et al., 2013, Hilker et al., 2014) and change detection techniques were applied 12 

to also describe non-linear trends (e.g. Jamali et al., 2014).  13 

A major concern of monitoring dryland areas is the distinction between land cover changes 14 

driven by climatic fluctuations and those caused by human intervention. Various techniques 15 

were employed for assessing the effect of climatic variabilty such as the before-mentioned 16 

RUE (Geerken and Ilaiwi, 2004; Fensholt et al., 2013) and RESTREND methodology 17 

(Wessels et al., 2007), but furthermore linear regression analysis (Helldén and Tottrup, 2008), 18 

distributed lag models (Udelhoven et al., 2009), multiple stepwise regression (Zeng et al., 19 

2013) and dynamic factor analysis (Campo-Bescós et al., 2013). of teleconnections of macro 20 

weather situations (Williams and Hanan 2011) and  global sea surface temperature (Huber and 21 

Fensholt, 2011). 22 

Many of the large-scale studies focused on Africa, especially on Sub-Saharan Africa 23 

including the Sahel region. Droughts in the first decades of the 20
th

 century as well as in the 24 

1960s to 1980s caused disastrous famines in the Sahel zone and had a strong impact on 25 
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vegetation cover. Yet, resilience in these systems often led to recovery under more profitable 1 

climatic conditions, while the term desertification involves a permanent and irreversible 2 

reduction in vegetation productivity. In the 1990s remote sensing studies started to support the 3 

analysis based on time series analyses. Recent studies dealing with greening trends in the 4 

Sahel found vegetation recovery in most parts of the Sahel (e.g. Eklundh and Olsson, 2003; 5 

Herman et al., 2005). Heumann et al. (2007) showed that both annual and perennial 6 

vegetation recovery processes drive the observed greening and Dardel et al. (2014) 7 

demonstrated that soil type and soil depth are important factors for recovery. Jamali et al. 8 

(2014) implemented an automated approach to account for non-linear changes. Results 9 

showed a dominance of positive linear trends distributed in an east-west band across the Sahel 10 

whereas regions of non-linear change occur only in limited areas, mostly on the peripheries of 11 

larger regions of linear change (see figure 6). These studies all implied that vegetation 12 

recovered after the severe droughts in the 1970s and 1980s and that land degradation not 13 

related to water availability/droughts is not a widespread phenomenon but is confined to 14 

smaller areas (Fensholt et al., 2013).  15 

Also in other parts of the world a large proportion of dryland areas showed “greening-up” 16 

trends (e.g. Helldén and Tottrup, 2008; Hill et al., 2008; De Jong et al., 2012; Fensholt et al., 17 

2012; Stellmes et al., 2013). The global study of Cook and Pau (2013) focussed on rangeland 18 

productivity between 1982 and 2008 and indicated that almost 25% of the rangelands were 19 

affected by significant trends. These trends were found to be mostly with increasing 20 

productivity whereas decreasing productivity related to land degradation was found in rather 21 

isolated spots, mainly in China, Mongolia and Australia. Whereas in many other regions 22 

rainfall was the dominant factor influencing NDVI, in Mongolia 80% of the decline in 23 

greenness could be attributed to an increase in livestock (Hilker et al., 2014).  24 

Generally, a comprehensive analysis of land degradation needs to include, also at regional to 25 

global scale, the fire regime and possible inter-linkages to land use and land cover, e.g. by 26 
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analysing recovery after fire events (Katagis et al., 2014). The two MODIS fire products, 1 

Active Fire and Burned Area, allow monitoring of important variables of fire regimes (Justice 2 

et al., 2006; Loboda et al., 2012), such as fire frequency, fire seasonality and fire intensity and 3 

allow for identifying drivers (Archibald et al., 2009) and model potential changes (Batllori et 4 

al., 2013).  5 

5 Integrated concepts to assess land degradation 6 

The previous sections have illustrated that time series analysis allows to discriminate human-7 

induced land cover changes and changes caused by inter-annual climatic variability. Beyond 8 

this, a crucial element of land degradation assessment is the identification of underlying and 9 

proximate causes of human-induced changes (e.g. Reynolds et al., 2007). Only in this manner 10 

the coupled human-natural character of land cover changes can be understood and an 11 

identification of the mechanisms that drive land degradation is possible. This knowledge 12 

provides the foundation to support the development of sustainable land management 13 

strategies. 14 

A comprehensive framework designed to capture the complexity of land degradation and 15 

desertification was provided by Reynolds et al. (2007). They introduced the term “Drylands 16 

Development Paradigm” (DDP), which “represents a convergence of insights and key 17 

advances drawn from a diverse array of research on desertification, vulnerability, poverty 18 

alleviation, and community development” (Reynolds et al., 2007). The DDP aims at 19 

identifying and synthesizing those dynamics central to research, management, and policy 20 

communities (Reynolds et al., 2007). The essence of this paradigm, which consists of five 21 

principles, builds on the assumption that desertification cannot be measured by solitary 22 

variables, but that it has to consider biophysical and socio-economic data at the same time 23 
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(Vogt et al., 2011) as well. A limited number of “slow” variables (e.g. soil fertility) are 1 

usually sufficient to explain the human-natural system dynamics. These slow variables 2 

possess thresholds and if these thresholds are exceeded the system moves to a new state. 3 

“Fast” variables, for instance climatic variability, often mask the slow variables and thus, 4 

aggravate the assessment of the slow variables, which is a prerequisite to understand the 5 

ecosystem behaviour. Moreover, it is important to consider that human-natural systems are 6 

“hierarchical, nested, and networked across multiple scales” (Reynolds et al., 2007). 7 

Accordingly, both the human component, e.g. stakeholders at different levels, and the 8 

biophysical component, e.g. slow variables at one scale can be affected by the change of slow 9 

variables operating at another scale (Reynolds et al., 2007). 10 

Prior to the DDP, Geist and Lambin (2004) examined the main mechanisms that trigger land 11 

degradation processes and conclude that these processes, which often manifest in land 12 

use/land cover changes, are governed by proximate causes (immediate human and biophysical 13 

actions) which in are depending on underlying drivers (fundamental social and biophysical 14 

processes). Figure 7 illustrates the dependencies of land use/land cover changes from 15 

proximate causes and underlying drivers. Furthermore, alterations of ecosystem services 16 

caused by land use/land cover changes can again alter underlying drivers, proximate causes 17 

and even external constraints, hence, resulting in a feedback loop. Policy plays an important 18 

role in avoiding positive feedback mechanisms which can accelerate unsustainable land use 19 

(Reid et al., 2006). 20 

<place figure 7 app.here> 21 

5.1 Integrated studies at local scale 22 

Several local studies linked the biophysical dimension of land use/land cover changes to the 23 

human dimension in various dryland areas such as Spain (Alvarez-Martinez et al., 2014; 24 
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Améztegui et al., 2010; Serra et al. 2008), Greece (Lorent et al., 2008), Kenya (Were et al., 1 

2014), China (Li et al., 2012), Mongolia (Hilker et al., 2014), and Uzbekistan (Dubovyk et al., 2 

2013). Regression-based models are the most widely used approach to identify the major 3 

drivers of change (Were et al., 2014) and mostly rely on land cover changes derived from land 4 

use/land cover classifications at several time steps. However, time series of remotely sensed 5 

data were only rarely used (Lorent et al., 2008; Dubovyk et al., 2013). The drivers of land 6 

use/land cover change depend very much on the contextual framework of the study area 7 

including physical and socio-economic characteristics. Therefore, it is essential to first set up 8 

a hypothesis that identifies major underlying drivers of land use/land cover change. For 9 

instance, in Spain and Greece the Common Agricultural Policy (CAP) subsidies of the 10 

European Union (EU) were identified as one of the important drivers. These largely 11 

influenced agricultural developments like intensification and land abandonment, where 12 

abandonment of marginal areas involved forest expansion and bush encroachment. 13 

(Améztegui et al., 2010; Lorent et al., 2008; Serra et al., 2008). In the grasslands of Inner 14 

Mongolia/China many factors explained observed grassland degradation between 1990 and 15 

2000 and the reduced degradation rate between 2000 and 2005, which were altitude, slope, 16 

annual rainfall, distance to highway, soil organic matter, sheep unit density, and fencing 17 

policy. Fencing policy was negatively correlated suggesting that fencing of sensitive areas can 18 

reduce land degradation. The analysis of cropland degradation in the Khorezm region, 19 

Usbekiztan, based on MODIS time series (Dubovyk et al., 2013) revealed that one third of the 20 

area was characterized by a decline of greenness between 2000 and 2010. Ground-water table, 21 

land use intensity, low soil quality, slope and salinity of the ground water were identified as 22 

the main drivers of degradation. These examples show that the combination of remote sensing 23 

supported land use/land cover change and underlying and proximate causes may reveal the 24 

most important drivers of land degradation. However, this analysis is often hampered by the 25 

fact that for each study area (i) all potential and relevant drivers have to be identified and (ii) 26 
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spatially explicit information of each driver or a proxy has to be available with a sufficient 1 

spatial resolution.  2 

5.2 Integrated studies at regional to global scale 3 

Another approach capable to support land degradation assessment is the syndrome approach 4 

which has been developed in the context of global change research (Cassel-Gintz and 5 

Petschel-Held, 2000; Petschel-Held et al., 1999). It aims at a place-based, integrated 6 

assessment by describing global change by archetypical, dynamic, co-evolutionary patterns of 7 

human-nature interactions instead of regional or sectoral analyses. In this framework, 8 

syndromes (as a “combination of symptoms”) describe bundles of interactive processes 9 

(“symptoms”) which appear repeatedly and in many places in typical combinations and 10 

patterns. Sixteen global change syndromes were suggested and distinguished into utilisation, 11 

development and sink syndromes. Downing and Lüdeke (2002) applied the approach to land 12 

degradation. Based on the set of global change syndromes they identified the syndromes that 13 

are of relevance in dryland areas and linked vulnerability concepts to degradation processes. 14 

The syndrome concept is considered a suitable interpretation framework that allows for an 15 

integrated assessment of land degradation (Sommer et al., 2011; Verstraete et al., 2011). This 16 

concept was transferred to earth observation based studies and implemented for Spain based 17 

on NOAA AVHRR data between 1989 and 2004 (Hill et al., 2008; Stellmes et al., 2013) thus 18 

enabling to monitor changes in land cover after the accession of Spain to the European Union 19 

(see figure 8). In these studies, the focus was not on the identification of land cover changes, 20 

but also on the link of these findings to underlying causes enabling the designation of 21 

syndromes of land use change. The main findings of the two studies comprise three major 22 

land cover change processes caused by human interaction: shrub and woody vegetation 23 

encroachment in the wake of land abandonment of marginal areas, intensification of non-24 
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irrigated and irrigated, intensively used fertile regions, and urbanization trends along the 1 

coastline caused by migration and the increase of mass tourism.  2 

<place figure 8 app.here> 3 

At a global scale LADA has recently implemented a Global Land Degradation Information 4 

system (GLADIS), which provides information on land degradation with a spatial resolution 5 

of 8 km x 8 km. The interpretation of ecosystem changes in GLADIS includes RUE, NPP and 6 

climatic variables and is based on an integrated land use system map. This map entails 7 

information about the main proximate causes of LUCCs such as livestock pressure and 8 

irrigation. The major constraints of this approach concerns the derivation of the RUE and the 9 

NPP from the GIMMS NOAA AVHRR dataset (compare section 3) (Wessels, 2009) and the 10 

coarse spatial resolution that hampers the detection of land cover changes (Vogt et al., 2011). 11 

Nevertheless, Vogt et al. (2011) emphasized that this assessment is a first step towards an 12 

integrated assessment. 13 

Another spatially explicit assessment concept that was not specifically designed in the context 14 

of land degradation, but was adapted and implemented, is the Human Appropriation of Net 15 

Primary Production (HANPP, Erb et al., 2009; Haberl et al., 2007). HANPP represents the 16 

aggregated impact of land use on biomass available each year in ecosystems as a measure of 17 

the human domination of the biosphere. Global maps of the parameter were prepared based on 18 

vegetation modelling, agricultural and forestry statistics and geographical information 19 

systems data on land use, land cover, and soil degradation (Erb et al., 2009; Haberl et al., 20 

2007). In a global study Zika and Erb (2009) estimated the annual loss of NPP due to land 21 

degradation at 4% to 10% of the potential NPP of drylands, ranging up to 55% in some 22 

degraded agricultural areas. 23 
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6 Uncertainties and limits 1 

Manifold methods were developed for assessing and monitoring land degradation ranging 2 

from detailed local to broad global studies. Nevertheless, until today no comprehensive 3 

picture of the state of drylands is available. This results from different aspects some of which 4 

shall be discussed here.   5 

6.1 Uncertainties regarding the definition of land degradation and its 6 

derivation 7 

Monitoring of drylands is often based on analysing indicators related to the productivity of 8 

vegetation. Thereby, the loss of productivity is considered to be linked to degradation 9 

processes. However, it should be stressed that the decrease of primary productivity does not 10 

necessarily imply land degradation processes. This was for instanced illustrated by an 11 

example in Syria where unsustainable irrigation agriculture was transformed to near-natural 12 

rangelands in Syria (Udelhoven and Hill, 2009). In turn, a positive trend of productivity is not 13 

always an indicator for improving land condition, a greening-up of, for instance, rangelands, 14 

does not necessarily imply an improvement of pastures (Miehe et al., 2010). In marginal areas 15 

of the European Mediterranean, greening-up has been shown to be caused by bush 16 

encroachment due to land abandonment and the consequences for ecosystems are heavily 17 

discussed (Stellmes et al., 2013). Thus, on the one hand soils can be stabilized and soil 18 

erosion can be reduced (Thomas and Middleton, 1994), more carbon can be sequestered 19 

(Padilla et al., 2010), but on the other hand run-off and groundwater recharge is reduced 20 

(Beguería et al., 2003), biodiversity is altered (Forman and Collinge, 1996) and the fire 21 

regime changes (Duguy et al., 2007). Thus, including additional information sources, for 22 

instance on land use, is required to allow a meaningful interpretation of time series results 23 

(Vogt et al., 2011). The same is also true in case of fires which strongly affect the time series 24 
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signal, e.g. induce short-term decreases in productivity and subsequent increase in 1 

productivity due to vegetation recovery.  2 

6.2 Uncertainties regarding remote sensing data 3 

6.2.1 Remote sensing archives and their analysis 4 

Uncertainties in remote sensing observations pose a set of methodological and practical 5 

challenges for both the analysis of long-term trends and the comparison between different 6 

data archives. Creating consistent remote sensing time series is challenging and the 7 

prerequisite for a meaningful trend analysis. Using combined data from different sensors 8 

affording high temporal resolution such as AVHRR, MODIS and SPOT-VGT in principle 9 

allow for the construction of time-series in surface reflectance and related changes back to the 10 

early 1980s. However, this is hampered by several sources of uncertainties in the 11 

comparability between different sensor products (Yin et al., 2012). Comparison of the 12 

absolute NDVI values from different archives as well as the derived trends showed strong 13 

differences; where a good correspondence of derived NDVI trends was found at the global 14 

scale, while spatial trends at the local to regional scale often showed remarkable discrepancies 15 

(Beck et al., 2011; Fensholt and Proud, 2012; Hall et al., 2006; Yin et al. 2012).  Beck et al. 16 

(2011) found, amongst others, good agreements between GIMMS, PAL, FASIR, Land Long 17 

Term Data Record version 3 (LTDR v3), see table 2,  in Australia and tundra regions, 18 

moderate consistency for North America and China but inconsistent trends for Europe and 19 

Africa including the Sahel zone. A comparison with Landsat NDVI showed that MODIS data 20 

performs better than any of the NOAA AVHRR archives. Also the trends of NDVI between 21 

GIMMS and SPOT-Vegetation considerably disagreed for different land use systems across 22 

Northern China (Yin et al., 2012) indicating that trends have to be interpreted with caution 23 

and bearing in mind the limitations of the datasets. LTDR v3 showed apparent trends within 24 
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the Sahara (Beck et al., 2011), which hints on calibration problems. A new and enhanced 1 

version of the GIMMS data set was published in June 2014 (http://ltdr.nascom.nasa.gov/cgi-2 

bin/ltdr/ltdrPage.cgi), but still regional inconsistencies with MODIS data appear (figure 9).  3 

<place figure 9 app.here> 4 

As an example, figure 9 shows trends derived from NOAA NDVI3g and MODIS MOD13Q1 5 

NDVI data covering the same observation period (2001-2011) of the eastern Sahel. Even 6 

though the general picture is quite similar for the mean annual NDVI trends, a more detailed 7 

analysis reveals a considerable disagreement between both datasets that also addresses the 8 

temporal trends for a phenological parameter (i.e. the amplitudes of the annual NDVI cycle). 9 

Possible explanations for these incoherencies include different data pre-processing schemes 10 

for different sensors. The effects of sensor degradation on the captured signal are different and 11 

AVHRR data need to be additionally corrected for orbital drift effects that introduce 12 

systematic changes in the bidirectional characteristics of surfaces. Another factor are different 13 

spectral mixture effects in heterogeneous regions effects that arise from the different spatial 14 

resolutions of the GIMMS and MODIS data products.  15 

The comparability of many studies is additionally hampered by the fact that the used methods 16 

and techniques, vegetation proxies and thresholds to exploit the time series are very diverse, 17 

since the implemented methods are often adapted to specific objectives and certain study 18 

areas. This is often necessary as drylands are very diverse concerning the degradation 19 

processes and the environmental settings including climate, soil, geology, fauna and flora. 20 

6.2.2 Observation period 21 

As outlined before, rainfall variability is a key driver of variability of vegetation productivity 22 

within drylands. In consequence the observation period will substantially influence the 23 

derived trends depending on the assembly of drier and wetter periods. Figure 10 illustrates the 24 
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difference of trends for different observation periods derived from the NOAA NDVI3g 1 

archive. 2 

<place figure 10 app. here> 3 

This underlines that drylands monitoring should always consider rainfall variability, e.g. 4 

implemented in the RESTREND method (Wessels et al., 2007). Hereby, similar to remote 5 

sensing archives, the homogeneity and reliability of the precipitation time series is of utmost 6 

importance. Even though some authors generated interpolated precipitation fields for their 7 

studies themselves (Wessels, 2007; Del Barrio, 2010) diverse global and regional gridded 8 

precipitation data are available, e.g. Global Precipitation Climatology Centre (GPCC) (Meyer-9 

Christoffer et al., 2011) and ARC2 (Novella and Thiaw, 2013).  The choice of an appropriate 10 

dataset should be based on plausibility checks (e.g. Anyamba et al. 2014). Tozer et al. (2012) 11 

demonstrated for three monthly gridded Australian rainfall datasets that interpolated data are 12 

rather restricted as a useful proxy for observed point data, although these grids are “based” on 13 

observed data. Gridded datasets often significantly vary from gauged rainfall datasets, and 14 

they do not capture gauged extreme events. Apart from observation errors these uncertainties 15 

are mainly introduced by the spatial interpolation algorithms, which always introduce some 16 

artificiality. Furthermore, it is difficult to verify the “ground truth” of the gridded data in areas 17 

or epochs with sparse observation gauges. Tozer et al. (2012) recommend always to 18 

acknowledge these uncertainties in using gridded rainfall data and to try to quantify and 19 

account for it in any study, if possible. 20 

6.2.3 Spatial Scale 21 

One drawback of regional to global studies is the coarse pixel resolution which often impedes 22 

the monitoring of small-scale land degradation processes (e.g. Stellmes et al., 2010; Fensholt 23 

et al., 2013) as illustrated in figure 11. 24 
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<place figure 11 app.here> 1 

Moreover, species composition cannot be identified and vegetation structure is not resolved, 2 

and often the focus is put on green vegetation cover even though dry vegetation is an 3 

important component in drylands. Some approaches try to solve some of these gaps, e.g. 4 

decomposition of time series to assess woody and herbaceous components (Lu et al., 2001) or 5 

using a clumping index to estimate woody cover from MODIS data (Hill et al., 2011). Other 6 

methods make use of alternative sensor systems such as passive microwave radar to derive 7 

Vegetation Optical Depth (VOD), which is sensitive to both photosynthetic active and non-8 

active biomass (Andela et al., 2013) or combine the analysis of optical and radar imagery 9 

(Bucini et al., 2010).  10 

Methods like STARFM or the improved availability of Landsat-like medium resolution data 11 

(e.g. Sentinel-II mission) will only partially solve the problem, since dryland observation 12 

requires long term archives. However, these sensors and methods will improve the situation 13 

over the long term. The same is true for operational satellite-based hyperspectral data that will 14 

allow for the development and application of enhanced indicators for dryland observation. 15 

7 Summary and Conclusions 16 

The definition and perception of land degradation and desertification have undergone a 17 

substantial transformation within the past decades. While in the beginning the biophysical 18 

assessment of degradation processes, which often focused on soil degradation, was the 19 

primary objective of many research initiatives, in recent years the necessity to investigate the 20 

mechanisms of human-environmental systems as a prerequisite to create a comprehensive 21 

understanding of land degradation processes has been recognized. This is considered essential 22 

to understand the impacts of land degradation on the provision of ecosystem goods and 23 
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services and thus, its impact on human well-being (Millenium Ecosystem Assessment, 1 

2005a). In recent years, great efforts were put into developing methodologies to enhance the 2 

understanding of coupled human-environmental systems and the influence of natural climatic 3 

variations.  4 

One of the major challenges that remains is to link these observations with socio-economic 5 

data, thus connecting biophysical and socio-economic information to yield combined 6 

information of land change processes and their underlying causes. This proves especially 7 

crucial for large scale assessments of land degradation from national to global scales. This 8 

intricacy even increases if degradation is not only defined as a loss of productivity of 9 

ecosystems but as the decline of important ecosystem services as suggested by the 10 

Millennium Ecosystem Assessment (2005a). Even though this definition further increases the 11 

complexity of dryland assessment, it might be more compliant with the needs of policy 12 

makers and land management to develop and establish sustainable land use practices. 13 

This complexity might also explain that until today no comprehensive picture of dryland 14 

condition is available, even though manifold methods were developed for assessing and 15 

monitoring land degradation ranging from detailed local to broad global studies. Moreover, 16 

dryland studies differ in implemented techniques, indicators, observation periods, thresholds 17 

and significance levels as well as the spatial and temporal resolution and the spectral 18 

characteristics of the sensor, hampering a comparison of the studies to form a picture of 19 

global dryland condition. Therefore, it is of utmost interest to promote international 20 

cooperation in order to harmonize dryland studies, such as the initiative to compile a new 21 

World Atlas of Desertification (WAD) under lead of the United Nations Environment 22 

Programme (UNEP) and the European Commission Joint Research Center (EC-JRC). In 23 

particular, it is not likely that one singular methodology will be sufficient to comprehensively 24 

analyse drylands; rather, depending on the respective physical and socio-economic 25 
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framework, complementary approaches have to be applied as introduced in the preceding 1 

sections. 2 

The land degradation and desertification topic is part of the more broadly perceived debate on 3 

global change. Thereby, climate change and its environmental and economic consequences 4 

are major environmental issues of global interest. Human activities have transformed a major 5 

part of the earth’s terrestrial ecosystems to meet rapidly growing demands for food, fresh 6 

water, timber, fibre and fuel. Land use practices have not only affected global and regional 7 

climate due to the emission of relevant greenhouse gases, but also by altering energy fluxes 8 

and water balances (Foley et al., 2005). Additionally, even seemingly “unaffected” areas are 9 

also influenced and altered indirectly through pollutants and climate change (DeFries et al., 10 

2004; Foley et al., 2005).  11 

Whereas in the past, conservation of ecosystems was given priority to maintain ecosystem 12 

services, in the face of global change it cannot be assumed that the future behaviour of 13 

ecosystem responses to changes will be the same as in the past (Chapin III et al., 2010). 14 

Instead, the challenge of future land use management will include the assessment of trade-offs 15 

between acute human needs and the long-term capacity of ecosystems to provide goods and 16 

services (DeFries et al., 2004; Foley et al., 2005).  17 

It is essential to consider that ecosystem responses to land use changes vary in time and space 18 

and moreover, analysis should encompass larger areas with sufficient spatial resolution to 19 

ensure that on- and off-site ecosystem responses are detected. Sustainable management of 20 

ecosystems requires information concerning the actual conditions and furthermore, alterations 21 

of ecosystems in relation to reference states. Such information allows for a thorough analysis 22 

of ecosystem functionality and enables rating trade-offs between ecosystem services which 23 

policy decisions (where necessary considering climate change scenarios) could impose by 24 

inducing land use changes (DeFries et al., 2004). The understanding of the impact of land 25 

use/land cover changes is even more urgent in the context of climate change, and the prospect 26 
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land use will be further intensified to satisfy humanities’ growing demand for resources 1 

(Foley et al., 2011). Especially when considering the expected rise to 10 billion people by the 2 

end of the 21
st
 century (Lee, 2011), pressure on dryland ecosystems could further increase, 3 

making the development of integrated, multi-component dryland observation and 4 

management even more important. 5 
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Figure 1: The spatial extent of drylands based on the aridity index (AI equals ratio of rainfall (P) and 

Potential Evapotranspiration (PET) for the period from 1951 to 1980). Hyper-arid: P/PET < 0.05; arid: 

0.05 ≤ P/PET < 0.20; semi-arid: 0.20 ≤ P/PET < 0.50; dry sub-humid: 0.50 ≤ P/PET < 0.65. Projection 

Goode Homolosine (source:  UNEP (2014): The UNEP (United Nations Environment Programme) 

Environmental Data Explorer, as compiled from UNEP/DEWA/GRID-Geneva: 

http://geodata.grid.unep.ch, ESRI Data & Maps). 

  



 

Figure 2: Aspects of landscape function using the example of grazing. Changes of ground cover, 

which are at shorttime scales mainly driven by rainfall variability and grazing pressure, can affect soil 

properties negatively. If thresholds are crossed the cycle moves towards a new state that is 

characterized by degraded soil properties and a long-term loss in productivity. Even though a negative 

feedback exists to grazing intensity, management interventions often weaken this mechanism by 

maintaining constant stock numbers (modified from Stafford Smith et al., 2009). 

  



 

 

 

Figure 3: Local NPP Scaling (LNS) of Zimbabwe, where LNS provides the NPP lost as a result of 

degradation. Communal and commercial area boundaries are in black. Inset, higher resolution segment 

SWof Gweru showing communal area degradation (top left) and commercial area degradation (lower 

right). (from Prince et al., 2009). 

  



 

 

Figure 4: Assessment of land condition in the Iberian Peninsula (1989–2000) (from Del Barrio et al., 

2010). 

  



 

 

 

Figure 5: Degradation index map integrating the gain coefficient and average value derived from 

linear trend analysis of the Landsat-TM/-ETM+ time series for the rangelands of Lagadas Greece; 

agricultural areas were masked out (black) (from Roeder et al., 2008). 

  



 
 

Figure 6: Results of a polynomial fitting-based approach to account also for non-linear trends (Jamali 

et al., 2014). Trend slope for the linear trends, range of annual variations of NDVI for the concealed 

trends and trend sign for the cubic and quadratic trends obtained by using the annual GIMMS–NDVI 

data series for the Sahel (1982–2006) in the trend classification scheme. Concealed trends are 

indicating that no net change in vegetation productivity has occurred, but the curve exhibits at least 

one minimum or maximum. Areas with a mean yearly NDVI < 0.1 were masked out (from Jamali et 

al., 2014). 

 

 

 

 



 

Figure 7: Conceptual model illustrating the feedback loop of Land Use/Land Cover Changes (LUCC), 

its consequences and the underlying and proximate causes (modified from Reid et al., 2006). 

 

  



 
 

Figure 8: Syndromes and main drivers of the identified land cover changes in Spain derived from 

MEDOKADS NDVI data, 1989-2004 (from Stellmes et al., 2013) 

  



 
Figure 9: Trends derived from linear regression analysis for the annual total sum of NDVI based on 

the NOAA NDVI3g archive (upper panels) and MODIS MOD13Q1 NDVI time series (lowest panel) 

for the Eastern Sahel from 2001 to 2012. Time series analysis performed with Timestats (Udelhoven, 

2010). 

  



 

 

Figure 10: Change of the NDVI derived for three different observation periods based on the NOAA 

NDVI3g archive and Sahel Precipitation Index from 1982 to 2012 (Janowiak 1988). Time series 

analysis performed with Timestats (Udelhoven, 2010). 

 

 



 

 

 

 

Figure 11: Effects of spatial degradation of Landsat TM/ETM+ time series (1990-2000) from a 

geometric resolution of 30 m x 30 m to 1000 m x 1000 m on the derived regression coefficient of a 

linear trend analysis. The three presented subsets represent different types and scales of land cover 

change (modified from Stellmes et al., 2010). 



Table 1: Key dryland ecosystem services (after Millenium Ecosystem Assessment 2005a). 

Supporting Services 

Services that maintain the conditions for life on earth 

- Soil development (conservation, formation) 

- Primary production 

- Nutrient cycling 

- Biodiversity 

Provisioning Services 

Goods produced or provided by 

ecosystems 

Regulating Services 

Benefits obtained from regulation 

of ecosystem processes 

Cultural Services 

Nonmaterial benefits obtained from 

ecosystems 

- Provision derived from 

biological productivity: food, 

fibre, forage, fuelwood, and 

biochemicals 

- Fresh water 

- Water purification and 

regulation 

- Pollination and seed dispersal 

- Climate regulation (local 

through vegetation cover and 

global through carbon 

sequestration) 

- Recreation and tourism 

- Cultural identity and diversity 

- Cultural landscapes and 

heritage values 

- Indigenous knowledge systems 

- Spiritual, aesthetic and 

inspirational services 



Table 2: Selection of important sensors and available data products suitable for dryland monitoring. Archives marked with an asterisk are/were often used in 

dryland studies (as of 2014): 

Sensor Coverage name Source Observation 

period 

Spatial 

Resolution 

Temporal resolution Indicator 

Coarse resolution        

NOAA AVHRR global PAL GES-DAAC, NOAA/NASA 

James and Kalluri (1994); Smith et al. 

(1997) 

1981-2001 8 km 10-daily NDVI 

  FASIR (ISLSCP II) ISLSCP II 

Sietse (2010) 

1981-1998 8 km monthly NDVI 

  GIMMS* GLFC, University of Maryland 

Tucker et al. 2005 

1981-2006 8 km bimonthly NDVI 

  GIMMS3g* GLFC, University of Maryland 

Pinzon and Tucker 2014 

1981-2012 8 km bimonthly NDVI, LAI, 

faPar 

  LTDR v4 NASA/GFSC; University of Maryland 

Pedelty et al. 2007 

1981-present 0.05° daily NDVI 

 regional NDVI (Australia) Bureau of Meteorology; AusCover 

BOM (2014) 

1992-present 0.01°/0.05° 10-daily/monthly NDVI 

  MEDOKADS 

(Mediterranean) 

Freie Universität Berlin 

Koslowsky (1998) 

1989-2005 1 km 10-daily NDVI 

SeaWiFS global L3 Land- NDVI NASA/GFSC 

OceanColor WEB 

(http://oceancolor.gsfc.nasa.gov/) 

1997 - 2010 4 km/9 km daily, 8-daily, 

monthly, annual 

NDVI 

  faPAR EC-JRC 

Gobron et al. (2006) 

1997 - 2006 0.01° 10-daily faPAR 

SPOT Vegetation  VGT-S10 VITO; CNES 

Achard  et al. (1995) 

1998 - present 1 km 10-daily NDVI 

Envisat-MERIS global EM-10 VITO; ESA; Belspo; EC-JRC 

Gobron (2011) 

2002 - 2012 1.2 km 10-daily NDVI; 

faPAR 

  MGVI ESA/JRC-EC 

Gobron et al. (1999) 

2002 - 2012 1.2 km 10-daily faPAR 

MODIS 

Terra/Aqua 

global MOD/MYD13Q1* NASA LP DAAC 

Huete et al. (1999) 

2000 - present 250 m - 1 km 16-daily/monthly EVI, NDVI 

  MOD/MYD/MCD15A NASA LP DAAC 

Knyazikhin  et al. (1999); Myneni et al. 

(2002) 

2000 - present 1 km 4-daily/8-daily faPAR 

  MOD/MYD17A NASA LP DAAC 

Running et al. (2000) 

2000 - present 1 km 8-daily/annual GPP/NPP 

  TIP.faPAR EC-JRC 

Pinty et al. (2011) 

2000 - present 1 km 16-daily faPAR 



Combined        

NOAA 

AHRR/MODIS 

global LTDR v3 NASA/GFSC; University of Maryland 

Pedelty et al. 2007 

1991-2012 0.05° daily NDVI 

SeaWIFS/MERIS  faPAR EC-JRC 

Ceccherini et al. (2013) 

1997-2012 1.2 km 10-daily faPAR 

Moderate 

resolution 

       

Landsat local Individual* Individually; USGS 

e.g. Röder et al. (2008), Sonnenschein et al. 

(2011) 

1982 to present 30 m multi-seasonal to 

annual 

Vegetation 

indices, SMA 

  Surface Reflectance 

Climate Data Record 

(CDR) 

USGS-ESPA  

Masek et al. (2006) 

1982 to present 30 m multi-seasonal to 

annual 

Vegetation 

indices 

 regional Seasonal Fractional 

Vegetation Cover, 

Queensland (Australia) 

JRSRP; DSITIA; AusCover 

Danaher et al. (2010), Flood et al. (2013), 

Muir et al. (2011) 

1986 to present 30 m multi-seasonal Fractional 

vegetation 

cover 

 global WELD v1.5 Product NASA LP DAAC/USGS 

Roy et al. (2010) 

2002 to 2012 30 m annual Tree cover 

SPOT local individual Individually; CNES 

ASTRIUM (http://www.astrium-geo.com/) 

1986 to present 6 m /20 m multi-seasonal to 

annual 

Vegetation 

indices 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Selection of studies evaluating land condition using remote sensing data. 

Extent Study area RS data and Indicator Methodology Observation 

period 

Result References 

Local       

 Spain Landsat NDVI Water balance model 1993-1994 Long-term ratio of mean actual evapotranspiration and 

precipitation able to assess land condition, e.g. poor land 

condition due to soil erosion 

Boer and 

Puigdefabregas 

2005 

Regional       

 Zimbabwe MOD13Q1 NDVI  Local NPP Scaling (LNS) 2000-2005 Over 80% were found to have an actual NPP far below 

the potential one 

Prince 2004, 

Prince et al. 2009  

 North east 

Queensland, 

Australia 

Landsat Persistent Ground 

Cover time series 

Automated detection of 

rangeland condition based on 

reference areas. 

1986-2008 Management-related change in ground cover in 

savanna woodlands at three spatial scales was 

detected. 

Bastin  et al. 2012 

Regional 

to global 

Great Plains, 

USA 

MOD13Q1 NDVI  Rangeland productive 

capacity is derived relative to 

reference conditions 

2000-2012 16% of the northern and 9% of the southern study area are 

degraded 

Reeves and 

Baggett 2014 

 Bishri Mountain, 

Syria 

NOAA AVHRR NDVI Residual trend analysis 1981-1996 Areas showing a negative temporal trend in residuals of 

NDVImax and rainfall coincide with areas that are most 

heavily used by humans. 

Geerken and Ilaiwi 

2004 

 South Africa NOAA AVHRR VI Residual trend analysis 

(RESTREND) 

1985-2003 Identification of potentially degraded areas in South 

Africa 

Wessels et al. 

2007a 

 Inner Mongolia 

China 

GIMMS NDVI Residual trend analysis 

(RESTREND) 

1981-2006 Heavy overgrazing deteriorated rangelands in this area but 

grasslands recovered afterwards due to the 

implementation of new land use polices 

Li et al. 2012 

 Sahel, Africa GIMMS NDVI(NPP) Rain use efficiency (RUE) 1982-1990 Systematic increase of RUE in the Sahel; recovery of 

vegetation after the severe drought 

Prince et al. 1998 

 Spain MEDOKADS Green 

Vegetation Fraction 

Rain use efficiency (RUE) 1989-2000 Ongoing land degradation appeared only in localized 

areas caused by current or recent intensive land use  

Del Barrio et al. 

2010 

  GIMMS NDVI; MODIS 

MOD13C1 NDVI 

Rain use efficiency (RUE), 

Residual trend analysis 

1982-2007 

 

Very limited anthropogenic land degradation in the Sahel-

Sudanian zone could be observed by trend analyses. 

Fensholt and 

Rasmussen 2011 

 Sahel, Africa GIMMS3g NDVI (SPOT 

Vegetation NPP) 

Rain use efficiency (RUE) 1982-2010 Only few areas (0.6%) were affected by land degradation 

processes 

Fensholt et al. 

2013 

Global       

 60% of global 

drylands covered 

Several (meta analysis) Expert judgement 1980-2000 Sahel not a hot spot of land degradation, Asia shows 

largest area of degradation but other drylands are not 

covered well by studies 

Lepers 2003 

  GIMMS NDVI  

(MOD17 NPP) 

Rain use efficiency (RUE) 1981-2003 Declining rain-use efficiency-adjusted NDVI on ca. 24% 

of the global land area  

Bai et al. 2008 



 

Table 4: Selection of studies monitoring land degradation in drylands.  
Extent Study area RS data and indicator Methodology Time range Result References 

Local  

Grazing induced vegetation loss/gain in rangelands 

 California, USA; 

Utah, USA 

Landsat SAVI/ SSI time 

series 

Trend analysis based on 

SAVI/SSI (soil stability 

index) 

1982-1997 Landscape showed an increased susceptibility to soil 

erosion due to drought events and grazing 

Washington-Allen et 

al. 2006, 2010 

 Crete, Greece Landsat SMA time series Trend analysis based on 

SMA-derived vegetation 

abundances 

1984-2000 Pattern of over- and undergrazing as a result of rangeland 

management practices from transhumance to sedentary 

pastoralism 

Hostert et al.  2003 

 Lagadas, Greece Landsat SMA time series Trend analysis based on 

SMA-derived vegetation 

abundances 

1984-2000 Pattern of over- and undergrazing as a result of rangeland 

management practices from transhumance to sedentary 

pastoralism 

Röder et al. 2008a 

 Crete, Greece Landsat vegetsation proxy 

time series 

Comparative trend analysis 

based on SMA, NDVI and TC 

1984-2006 Different vegetation estimates result in similar vegetation 

trend pattern 

Sonnenschein et al. 

2011 

 Nepal Landsat NDVI time series 

/ GIMMS NDVI 

Landsat: Trend analysis based 

on NDVI; GIMMS: residual 

trend analysis 

1976-2008/ 

1981-2006 

Inter-annual vegetation variability driven by annual 

precipitation, degradation result of overgrazing or other 

processes  

Paudel and Andersen 

2010  

Fire regime 

 Catalonia, Spain Annual NDVI Landsat 

images 

NDVI time series to generate 

a map series of fire history 

1975-1993 Methodology to create maps of fire distribution Diaz-Delgado and 

Pons 2001 

 Portugal, Southern 

California 

Multiseasonal Landsat 

imagery 

Two-step approach to detect 

fires at medium resolution 

1993 The algorithm showed a good agreement with the official 

burned area perimeters was shown 

Bastarrika et al. 2011  

 Alicante, Spain Landsat NDVI time series Nonlinear regression analysis 

of NDVI values and time 

elapsed since the fire event 

1984-1994 After fire events two recovery trends were found that can 

be explained by species type 

Viedma et al. 1997 

 Ayora, Spain Landsat SMA time series Trend analysis and diachronic 

thresholding to procure a fire 

perimeter data base and depict 

post-fire dynamics  

1975-1990 Typical recovery phases were described by exponential 

functions and were related to plot-based botanical 

information 

Röder et al. 2008b 

 Peloponnese, 

Greece 

Landsat time 

series/MODIS NBR time 

series 

Analysis of the temporal 

dimension of assessing burn 

severity 

2006-2008 Within the limitations of available Landsat imagery, 

caution is recommended for the temporal dimension when 

assessing post-fire effects 

Veraverbeke et al. 

2010 

Relationship of vegetation trends and climatic factors 

 Altiplano,Bolivia Landsat time series Mean-variance analysis 1972-1987 Landscape showed an increased susceptibility to soil 

erosion during  ENSO-induced droughts 

Washington-Allen et 

al. 2008 



Regional to global 

Change of vegetation cover 

 Sub-Saharan Africa NOAA AHRR NDVI and 

surface temperature 

Seasonal analysis of Surface 

temperature-NDVI 

trajectories 

1982-1991 Only 4% of the study area showed consistent trends 

(increase/decrease) of vegetation cover. 

Lambin and Ehrlich 

1997 

 Sahel, Africa PAL NDVI Trend analysis of NDVI 1982-1999 Increase in seasonal NDVI was observed over large areas 

in the Sahel 

Eklundh and Olsson 

2003 

 Sahel, Africa GIMMS NDVI Trend analysis of NDVI/ 

Residual trend analysis with 

gridded rainfall data 

1982-2003 Rainfall was found to be a major reason for the increase in 

vegetation greenness and most of the Sahel does not show 

large scale human-induced land degradation 

Herman et al. 2005 

 Sahel, Africa GIMMS NDVI Trend analysis of NDVI 1981-2003 NDVI data indicate a gradual and slow but persistent 

recovery from the peak drought conditions that affected the 

region in the early to mid-1980s. 

Anyamba and Tucker 

2005 

 Sahel, Africa GIMMS NDVI3g, MOIS 

MOD12C2 NDVI 

Trend analysis of NDVI 1981-2011 Recovery rate of vegetation is dependent on factors like 

soil type and soil depth 

Dardel et al. 2014 

 Sahel, Africa GIMMS NDVI3g Trend analysis of growing 

season averages of NDVI 

1981-2012 NDVI behaviour reflects the variability of rainfall 

condition such as the drought in the 1980s and the weather 

conditions starting in 1994; data might be used as a land 

surface climate data record in a semi-arid areas where 

detailed ground-based meteorological data are missing 

Anyamba et al. 2014 

 Sahel, Africa GIMMS NDVI Automated mapping of 

vegetation trends with 

polynomials 

1982-2006 Dominance of positive linear trends distributed in an east-

west band across the Sahel. Regions of non-linear change 

occur on the peripheries of larger regions of linear change.  

Jamaili et al. 2014 

 Global, Pastures GIMMS LAI3g Trend analysis of maximum 

LAI; correlation analysis with 

rainfall and temperature 

1982-2008 Degradation of pastures is not a globally widespread 

phenomenon but an increase of greenness in many areas 

was observed; precipitation was the dominant climate 

control on inter-annual variability of LAImax in pastures 

Cook and Pau 2013 

 Global GIMMS NDVI BFAST was used to map 

gradual an abrupt changes of 

NDVI and breakpoints 

1982-2008 Abrupt greening prevailed in semi-arid regions, probably 

due to their strong reactions to climatic variations. These 

abrupt greening events were often followed by periods of 

gradual browning. 

De Jong et al. 2012 

Change in phenologocal characteristics 

 Sahel and Soudan, 

Africa 

GIMMS NDVI Trend analysis of 

Phenological metrics derived 

with Timesat 

1981-2005 Significant positive trends for the length and the end of the 

growing season for the Soudan and Guinean regions were 

detected but not in the Sahel; this can be attributed to two 

types of greening trends associated with rainfall change 

since the drought in the early 1980s 

Heumann et al. 2007 

   Trend analysis of 

Phenological metrics for an 

integrated analysis 

 listed in table 5 

 

Hill et al. 2008; 

Stellmes et al. 2013 

Hilker et al. 2014 



Relationship of vegetation trends and climatic factors 

   RUE   listed in table 3  

   RESTREND  listed in table 3  

 Major areas of 

global drylands 

GIMMS NDVI Linear regression models 1981-2003 A strong general relationship between NDVI and rainfall 

over time characterizes large parts of the drylands; no large 

scale land degradation was observed but rather an increase 

of vegetation cover 

Helldén and Tottrup 

2008 

 Spain MEDOKADS NDVI Distributed lag models 1989-1999 Significant relationships between lagged NDVI and rainfall 

anomalies up to 3 months are confined to sub-humid/semi-

arid areas; severe drought periods might have an enduring 

influence on biomass production in subsequent years 

Udelhoven et al. 

2009 

 Global semi-arid 

areas 

GIMMS NDVI Correlation analysis of NDVI 

and precipitation/air 

temperature 

1981-2007 Semi-arid areas, on average, experience an increase in 

greenness; similar increases in greenness may have widely 

different explanations 

Fensholt et al. 2012 

 Okavango,  

Kwando, upper  

Zambezi, Africa 

GIMMS NDVI3g/ 

MODIS MOD13A3 

NDVI 

Dynamic factor analysis 1982-2010 

/2001-2010 

The spatial distribution of soil moisture and precipitation as 

determinants of NDVI is important in areas with mean 

annual precipitation under 750 mm 

Campo-Bescós et al. 

2013 

 Global GIMMS 

NDVI3g/MODIS MOD 

and MYD13C2 

Multiple stepwise regression  1982-2010 Precipitation showed the highest correlation to temperate to 

tropical water-limited herbaceous systems where rainfall 

partially explains more than 40% of NDVI variability 

Zeng et al. 2013 

Teleconnections 

 Sahel, Africa GIMMS NDVI Correlations between NDVI 

and climate indices and global 

sea surface temperatures 

1982-2007 Global SST anomalies and Sahelian NDVI showed strong 

correlations with different characteristics for western, 

central and eastern Sahel 

Huber and Fensholt 

2011 

 Africa GIMMS NDVI/MODIS 

NDVI for correction 

Land surface model driven by 

meteorological data and 

NDVI o analyze response of 

photosynthesis to macro 

weather situations 

1982-2003 ENSO and IOD induce large seasonal anomalies of 

precipitation, vegetation, humidity as well as  , 

photosynthesis across the main part of Africa 

Williams and Hanan 

2011 

Fire reegime  

 Central Asia MODIS Active Fire and 

Burnded Area product 

Validation of MODIS 

products and mapping of fire 

occurrence 

2001-2009 In average about 15 million ha of land burns annually 

across Central Asia with the majority of the area burned in 

August and September in grassland areas. 

Loboda et al. 2010 

 Southern Africa MODIS Burnded Area 

product 

Random forest regression tree 

procedure to determine the 

factors of wild fires 

2003 Areas where identified where fire is rare due to low rainfall 

regions, regions where fire is under human control and 

higher rainfall regions where burnt area is determined by 

rainfall seasonality. 

Archibald et al. 2009 

 Mediterranean 

Biomes 

MODIS Active Fire 

product 

Statistical fire-climate models 

driven by ensembles of 

climate projections under the 

IPCC A2 emissions scenario 

2001-2007 

 

Fire activity was found to be sensitive to environmental 

changes and productivity may be the key to future fire 

occurrence in this biome 

Battlori et al. 2013 



Table 5: Selection of studies evaluating land degradation based on integrated concepts and use of remote sensing products.  

Extent Study area RS data Methodology Observation 

period 

Result References 

Local       

 North-West 

Spain 

Time series of 

orthorectified aerial 

photographs 

Species Distribution Modelling 

techniques (MaxEnt and 

BIOMOD) 

1956-2004 Land-use history primarily controlled forest expansion 

rates, as well as upward altitudinal shift 

Alvarez-Martinez et 

al. 2014 

 North-East 

Spain 

Bi-temporal analysis of 

aerial photographs 

Logistic regression models  1956-2006 Effects of several topographic and socio-economic 

variables were analyzed; patterns of observed forest 

expansion are highly related to patterns of farmland 

abandonment 

Améztegui et al. 

2010 

 Lagadas, Greece Landsat SMA image Cost surface modelling to 

understand the influence of 

grazing management on 

vegetation cover. 

2000 Uneven distribution of livestock causes both over- and 

undergrazing to occur in close proximity, which 

negatively affects the ecosystem through various 

feedback loops 

Roeder et al. 2007 

 North-East 

Spain 

Landsat MSS and TM 

land cover maps 

Multiple logistic regressions 

(MLOR) combining biophysical 

and human variables 

MSS: 1977-

1993; TM: 

1991-1997 

EU subsidies were one major driver of land use/cover 

changes, e.g. intensification of subsidised herbaceous 

crops on the coastal agricultural plain. 

Serra et al. 2008 

 Lagadas, Greece annual Landsat 

TM/Etm+ vegetation 

fraction time series  

Combined use of household-level 

land-use data, remote sensing 

products, and standardised socio-

economic data 

1984-2000 Major driver of land use/cover changes were EU 

subsidies, e.g. lowprofit farmers maintained extensive 

farming activities on the most erodible, steep-sloped 

land due to subsidies 

Lorent et al. 2008 

 Xilinhot, Inner 

Mongolia, 

China 

Landsat TM/ETM+ 

land use and NDVI 

(three time steps) 

Multinomial logistic regression 

model  

1991-2005 Main drivers of observed trends in rangelands were 

altitude, slope, annual rainfall, distance to highway, soil 

organic matter, sheep unit density, and fencing policy 

Li et al. 2012 

 Lake Nakuru 

drainage basin, 

Kenya 

Landsat TM/ETM+ 

land use maps (three 

time steps) 

Logistic regression models  1985-2011 Major drivers of forest-shrubland conversions, 

grassland conversions and cropland expansions were 

identified; significance of the influential factors varied 

depending on the time period observed and the land 

cover change type 

Were et al. 2014 

Regional       

 Mongolia MODIS daily 1B data 

(MYD021KM), NDVI 

MAIAC 

Regression analysis between 

variables on a provincial level 

2002-2012 About 80% of the decline in NDVI explained by 

increase in livestock; 30% of changes across the 

country by precipitation 

Hilker et al. 2014 

 Uzbekistan MOD13Q1 NDVI  Spatial logistic regression 

modeling 

2000-2010 One third of the area was characterized by a decline of 

greenness. ground-water table, land use intensity, low 

soil quality, slope and salinity of the ground water were 

identified as the main drivers of degradation 

Dubovyk et al. 2013 



 Spain MEDOKADS NDVI Syndrome approach 1989-2004 Only few areas affected by land degradation in the 

sense of productivity loss; shrub and woody vegetation 

encroachment due to land abandonment of marginal 

areas, intensification, urbanization trends along the 

coastline caused by migration/increase of mass tourism 

Hill et al. 2008 

Stellmes et al. 2013 

Global       

  SPOT Vegetation 

Global land cover map 

2000 (GLC2000) 

HANPP ~2000 Annual loss of NPP due to land degradation at 4% to 

10% of the potential NPP of drylands, ranging up to 

55% in some degraded agricultural areas 

Zika and Erb (2009) 

  NOAA AVHRR NDVI 

and MOD17A 

GLADIS: NPP trend detrended 

via RUE and RESTREND; 

biomass, soil quality, water 

quantity, biodiversity, economic 

and social services are used as 

indicators to describe the status of 

land degradation 

1981-2003 

(with MODIS 

1981-2006) 

Degraded lands are found to be highly variable; 

degraded land occurs mostly in drylands and steep 

lands; the capacity to deliver ecosystem  services is also 

generally less in developing countries as compared to 

industrial nations 

Nachtergaele et al. 

2011 

 


