
- 1 - 

 
 
 
 
 
 
 
 
 

Remote Sensing and Geographical Information Systems for 
Environmental Studies  

 
Applications in Forestry 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Christoph Kleinn 
Jens Nieschulze 

Branislav Sloboda  
(editors) 

 
Göttingen 

October 2004 
 



- 25 - 

TREE SPECIES AND AGE CLASS MAPPING  
USING HYPERSPECTRAL DATA AND GEOSTATISTICS 

H. Buddenbaum, M. Schlerf and J. Hill 

Remote Sensing Department, University of Trier, Germany 
email: henning@buddenbaum.de 

ABSTRACT 
Geostatistics were used to improve tree species and age class classification of a forest in 
western Germany. The performances of different geostatistical techniques were compared 
using two HyMap images and a forest-GIS. Airborne hyperspectral data (HyMap) were 
acquired in the years 1999 and 2003. The 1999 HyMap image was spectrally degraded to 
Landsat-TM spectral resolution in order to compare the information content of hyper- and 
multispectral data. Four age classes of norway spruce and douglas fir stands were 
differentiated through image classification. One main objective was to improve the 
classification without using information from additional data. The improvement in 
classification accuracy was to be achieved by calculating image texture through 
geostatistical analysis from the existing bands. Geostatistical bands were calculated using 
moving window procedures. Different band combinations were used in spectral angle 
mapping (SAM) classifications to evaluate their value for discriminating tree species and 
age classes. Training and validation were performed using a Forest-GIS that contains stand 
information on species composition and tree age. The best results were achieved using 
maxima of pseudo-cross madograms derived from the first MNF channels of the 
hyperspectral data as geostatistical texture channels. Complete madograms as texture 
channels also led to good results. The gain in classification accuracy was comparable to the 
gain achieved by using a channel containing the stem density. Classification using the 
multispectral data could also be improved by adding geostatistical data.  
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1 INTRODUCTION 
Information on tree species and age class composition in forests is critical to both forest 
resource management and scientific research. Forest inventories routinely collect species 
and age distribution, which is a very time-consuming task when done manually. 
Hyperspectral remote sensing data have the ability to differentiate between many classes of 
land cover (Lillesand & Kiefer, 2000; Koch et al., 1993), and two sets of HyMap data of 
the study area were available. They are better suited for a precise classification of forest 
stands than multispectral data (Lee et al., 2004; Ustin & Xiao, 2001; Köhl & Lautner, 
2001). But to identify different kinds of coniferous tree stands is a difficult task as their 
spectral response pattern is very similar (Coleman et al., 1990; Niemann, 1995). The 
accuracy can be improved using additional data sources. Hildebrandt (1996) states three 
methodical ways to differentiate between classes that cannot be distinguished using 
classical remote sensing techniques: 

• Using remote sensing data recorded at different dates (multitemporal approach) 

• Using non-spectral additional information, and 
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• Using specific textural parameters. 

Key et al. (2001) utilised multitemporal image data, but did not achieve better results 
compared to a single date classification. Franklin et al. (1994) improved classification by 
using topographic data additional to multispectral remote sensing data. Schlerf et al. (2003) 
employed stem density information derived from high resolution orthophotos to improve 
tree species and age class classification. The classification accuracy could be increased 
compared to a classification without using the stem density. However, high resolution 
orthophotos of the study area are not always available and the derivation of stem density 
from low- or medium resolution data is error-prone. So the intention of this work was to 
improve the classification accuracy without using additional data. Instead, image texture 
was derived from the image itself and used in the classification process. 

The general objective of the study was to match the classification accuracies reached by 
adding information from high resolution remote sensing imagery without using additional 
data. Works by St-Onge and Cavayas (1995 & 1997), Hay et al. (1996) and Treitz and 
Howarth (2000) show the potential of texture aided classifications of remote sensing data. 
Different approaches of integrating geostatistic image texture data into the classification 
process were tested and compared.  

2 STUDY AREA AND DATA 
The area of study (49° 40’ N, 7° 10’ E) is located in the Idarwald forest in south-western 
Germany on the north-western slope of the Hunsrück mountain ridge. The dominant forest 
tree species are Norway spruce (picea abies), beech (fagus sylvatica), oak (quercus 
petraea) and Douglas fir (pseudotsuga menziesii). Active forestry practices in this area 
include selective cutting, plantation establishment and thinning.  

Airborne hyperspectral data were acquired in July 1999 and in July 2003 using the HyMap 
sensor built by Integrated Spectronics, Australia. HyMap records data in 128 contiguous 
bands covering the spectral range of 0.4-2.5 µm with a spectral resolution of 10-20 nm. The 
spatial resolution was set to 5 m with a full scene covering about 2.5 km x 10 km. The 1999 
data were geometrically and radiometrically corrected, the 2003 data were geometrically 
corrected. To correct the effect related to the change in sensor view angle an cross-track 
illumination correction was applied the each spectral band independently. For this purpose, 
a second-order polynomial was fitted to the data. Based on the fitted polynomials, a 
normalisation procedure was applied (cross-track illumination correction). Parametric 
geocoding was performed using the software PARGE (Schläpfer et al., 1998, 2002). 
Radiometric corrections of the HyMap data were performed at the Remote Sensing 
Department, University of Trier, following an approach by Hill et al. (1995, 2003) that uses 
a modified version of the 5S-Code by Tanré et al. (1991). The processing steps involved 
atmospheric correction and sensor calibration. The first step converted digital numbers to 
at-sensor-radiances. In the second step the effects of the atmosphere were removed 
including errors due to pixel orientation.  

Data reduction and enhancement was performed using a Minimum Noise Fraction (MNF) 
transformation (Green et al., 1988). Only the first ten MNF channels were used in the 
further steps. The 1999 HyMap image was spectrally degraded to Landsat-TM spectral 
resolution (six channels in the visible, near-infrared and mid-infrared spectral regions) in 
order to compare the information content of hyper- and multispectral data for tree species 
classification. The HyMap data’s spatial resolution of 5 m was kept. All together, three data 
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sets were obtained: The MNF-transformed 1999 HyMap data, the simulated 1999 Landsat-
TM data and the MNF-transformed 2003 HyMap data. The geostatistic calculations and the 
classifications were performed with each of these data sets. 

The most recent forest inventory for the study area (October 1994) including stand 
information on species composition and age classes has been integrated into a Forest 
Geographical Information System (FoGIS) by Vohland (1997). 

3 METHODS 

3.1 GEOSTATISTICS 
Several geostatistic measures were tested to quantify image texture. Geostatistics and the 
theory of regionalized variables have been introduced to remote sensing by Woodcock et al. 
(1988) and by Curran (1988). Geostatistics can be used to measure the spatial variability of 
a variable and so to quantify the image texture. Several geostatistic tools exist to measure 
the spatial variability. The best-known tool is the semivariogram, also called variogram or, 
to highlight that it is a monovariate measure, auto variogram. It gives the relationship 
between similarity and distance in a viewed surrounding. Z(x) and Z(x+h) are two 
realisations of the variable Z located at x and x+h. The two locations are separated by the 
vector h, which is called the lag. The variogram values (γ(h)) are calculated as the mean 
sum of squares of all differences between pairs of values with a given distance. The 
variogram is a discrete function of variogram values at all considered lags (e. g. Isaaks & 
Srivastava, 1989; Curran, 1988):  
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Another measure of spatial variability is the madogram (or auto madogram). Instead of 
squaring the differences, the absolute differences are taken (e. g. Chica-Olmo & Abarca-
Hernández, 2000; Deutsch & Journel, 1998): 
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Alternatively, the texture can be quantified by bivariate measures. The cross variogram 
measures the joint spatial variability (cross correlation) between two variables Y and Z at 
the locations xi and xi+h (Chica-Olmo & Abarca-Hernández 2000, Journel & Huijbregts 
1978):   
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The pseudo-cross variogram represents the semivariance of the cross increments instead of 
the covariance of the direct increments as above (Chica-Olmo & Abarca-Hernández, 2000): 

( )∑
=

+−=
n

i
ii hxZxY

n
h

1

2)()(
2
1)(γ  (4) 

To combine the advantages of the before-mentioned texture measures, the pseudo-cross 
madogram is introduced. The pseudo-cross madogram is similar to the pseudo-cross 
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variogram, but again instead of squaring the differences, the absolute values of the 
differences are taken which leads to a more generous behaviour towards outliers: 
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All the above mentioned geostatistical tools were used separately in this work to obtain 
values for image texture. They were calculated from one (univariate case) or the two 
(bivariate case) MNF-channels using a 7 x 7 pixel moving window. Values were merged to 
form seven lags, so that seven geostatistic values were available at each pixel of each 
considered channel. To reduce the amount of data two general approaches were tested. In 
the first approach, variograms and madograms were calculated from only the first 
(monovariate case) or the first two (bivariate case) MNF channels resulting in seven 
additional channels per texture measure. In the second approach, auto madograms for the 
first ten MNF channels and pseudo-cross madograms of all combinations of the first five 
MNF channels were calculated. Accordingly, for the simulated Landsat TM data set, auto 
madograms of the 6 channels and pseudo-cross madograms of all combination of these 
channels were calculated. Of these madogram channels, the maxima were identified and 
taken as input channels for classifications. The results of the first approach are listed in 
table 1, the results of the second approach in table 2.  

3.2 CLASSIFICATION 
Two classification schemes were designed. The first scheme classified the 1999 HyMap 
data, the second scheme classified all three data sets. The primary aim of the first scheme 
was to compare different geostatistic texture measures, using complete vario- or 
madograms. The aim of the second scheme was to compare HyMap and TM spectral 
resolution and to compare the 1999 and 2003 images using madogram maxima.  

All classifications were carried out in the same way to ensure comparability. Four age 
classes of Norway spruce (10-30 years, 30-50 years, 50-80 years, and above 80 years) and 
two age classes of Douglas fir (10-30 years and 30-50 years) were chosen to be 
differentiated as these were the most common types of coniferous stands. As a preliminary 
processing step, an unsupervised classification (Isodata algorithm) was applied on the 
HyMap data set to identify coniferous forest areas. The classification result was used to 
create a mask so that only the coniferous stands were considered in the following steps. 

The supervised classification process can be divided into three stages: Training, 
classification and validation. The aim of the training stage is to collect a set of statistics that 
describe the spectral response pattern and/or the texture for each desired information class. 
The polygons in the FoGIS representing the forest stands were used to extract spectral 
signatures for each class (5-13 polygons per class, 100-1000 pixels per polygon). In total, 
52 subclasses and 17 609 pixels were obtained. 

The classification scenarios differ from each other in the input channels used. The first ten 
MNF channels (HyMap) or the six simulated TM channels were taken as input to the 
classification in each pass. Geostatistic or conventional texture channels were added to the 
input data sets. Before the main classifications, all input data channels were normalised to a 
mean value of zero and a standard deviation of one. 

The classifications were performed using the Spectral Angle Mapper (SAM, Kruse et al., 
1993). The SAM algorithm determines the spectral similarity between two spectra by 
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calculating the angle between the spectra, treating them as vectors in a space with 
dimensionality equal to the number of bands (Kruse et al., 1993). SAM compares the angle 
between the spectrum vector of the known class and each pixel vector (unknown class) in 
n-dimensional space. In the classification stage, the class with the smallest angle is assigned 
to the corresponding image pixel.  

The resulting 52 subclasses obtained from the classification were merged into the desired 6 
main information classes. Then the post-classification algorithms sieve and clump were 
applied to the classification result to remove isolated pixels. For the validation stage 62 
areas (6-15 polygons per class, 100-1000 pixels per polygon, 31 700 pixels in total) were 
selected as ground truth using the FoGIS. These areas did not overlap with the training 
polygons. A confusion matrix was generated from the validation pixels for each 
classification, both before and after the post-classification operations. The confusion 
matrices are not included in this article but can be obtained from the authors. Two measures 
of classification accuracy were reported. Overall accuracy (OAA) quantifies the percentage 
of pixels correctly classified: 
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where nkk is the number of correctly classified validation pixels (confusion matrix 
diagonals), q is the number of classes, and n is the total number of validation pixels used. 

The kappa coefficient compensates the effects of chance agreement: 
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where nk+ is the sum of the validation pixels in a class and n+k is the sum of the classified 
pixels in that class (Foody, 2001). 

4 RESULTS 
The results of the first set of classifications are listed in table 1. These all refer to 
classifications of  the 1999 HyMap data set. Classifications were performed using the SAM 
algorithm. The performances of the classifications are presented in terms of two accuracy 
measures, kappa coefficient and overall accuracy. Both, results before and after the 
application of post-classification procedures (sieve and clump) are shown as considerable 
differences are present. The first two lines of results in the table show the results of two 
classifications using no texture channels. Classification A uses only the spectral 
information of the HyMap data (MNF bands). Additionally to the first 10 MNF bands, the 
standwise means and standard deviations of stem density, derived from high spatial 
resolution orthophotos (Atzberger & Schlerf, 2002) were used in classification B. This led 
to slightly higher accuracies, and set a benchmark for the following classifications. The 
kappa coefficient before post-classification was increased from 0.53 to 0.61, after post-
classification from 0.66 to 0.74.  

The accuracy assessments’ results of the classifications using each of the geostatistic 
measures of spatial variability mentioned above are presented in table 1 as classifications C 
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to G. The madograms lead to higher accuracies than the variograms, a difference between 
mono- and bivariate measures is hardly discernable. After post-classification, the 
madogram classifications reach a kappa coefficient of 0.74 like the benchmark 
classification B, before post-classification the results are slightly lower than those of 
classification B.  

Table 1: Overall accuracies and kappa coefficients of SAM classification using different 
input data sets  

  No post-class. Sieve & clump 
 Input data (all HyMap 1999) Kappa OAA Kappa OAA 
 Spectral data     
A. MNF 0.53 59.9 0.66 70.0 
 Spectral data and stem density from high spatial resolution data 
B. MNF, stem density (mean & variance) 0.61 66.6 0.74 77.2 
 Spectral and geostatistic texture data     
C. MNF, variogram 0.54 59.9 0.68 72.7 
D. MNF, madogram 0.58 63.7 0.74 77.3 
E. MNF, cross variogram 0.52 58.6 0.69 73.7 
F. MNF, pseudo-cross variogram 0.53 59.8 0.67 71.6 
G. MNF, pseudo-cross madogram 0.59 64.8 0.74 77.8 
 Spectral and conventional texture data     
H. MNF, 8 co-occurrence channels from MNF 1 0.55 61.4 0.68 72.7 
I. MNF, 16 co-occurrence channels from MNF 

1 & 2 
0.53 59.3 0.64 69.0 

J. MNF, 10 co-occurrence channels from MNF 
1-5 (mean & variance) 

0.59 64.5 0.73 76.2 

 Combination of all data types     
K. MNF, 10 co-occurrence channels from MNF 

1-5 (mean & variance), pseudo-cross 
madogram channels, stem density (mean & 
variance) 

0.66 71.1 0.74 77.8 

 
The co-occurrence matrix based channels (classifications H to J) only partially increase the 
classification accuracies. The kappa coefficient of classification H, which uses co-
occurrence matrix based bands from MNF channel 1, is increased by 0.02 compared to 
classification A. Classification I, which adds co-occurrence matrix based bands from MNF 
channel 2, performs even worse than classification A. Classification J, using the mean and 
variance texture measures from the first five MNF bands, has high kappa coefficients 
comparable to the madogram-based classifications (D and G). 

A combined input data set consisting of the first ten MNF channels, ten co-occurrence 
matrix based channels from the MNF bands 1 to 5 (mean & variance), pseudo-cross 
madogram channels and the stem density channels, resulted in the highest classification 
accuracy (classification K). Obviously, the information contained in these different bands is 
not completely redundant. 

Table 2 shows the classification accuracies of the second approach. The first ten MNF 
channels (classifications L, O, and R) and the maxima of monovariate auto madograms of 
the first five MNF channels (classifications M, P, and S) and bivariate pseudo-cross 
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madograms of all combinations of the first five MNF channels (classifications N, Q, and T) 
were taken as input data.  

Table 2: Overall accuracies and kappa coefficients of SAM classifications using input data 
sets of two different spectral resolutions and two dates. For each data set classification 
results with and without maximum-of-pseudo-cross madogram channels are presented. 

  No post-class. Sieve & clump 
 Input data Kappa OAA Kappa OAA 
 HyMap 1999     
L. MNF 0.53 59.9 0.66 70.0 
M. MNF, Madogram maximum channels 0.56  62.2 0.72 75.6 
N. MNF, Pseudo-cross madogram 

maximum channels 0.60 65.7 0.70 74.2 
 TM 1999     
O. TM 0.39 47.2 0.51 56.6 
P. TM, Madogram maximum channels 0.34  42.1 0.39 44.8 
Q. TM, Pseudo-cross madogram 

maximum channels 
0.50 55.7 0.52 57.3 

 HyMap 2003     
R. MNF 0.47 53.2 0.56 61.9 
S. MNF, Madogram maximum channels 0.51  56.5 0.62 66.8 
T. MNF, Pseudo-cross madogram 

maximum channels 
0.61 66.1 0.69 72.5 

 

The 1999 HyMap data’s classification results were improved by adding geostatistical 
channels. The kappa coefficients of the classifications before post-classification rose from 
0.53 using only MNF channels to 0.56 using auto madogram maxima to 0.60 using pseudo-
cross madogram maxima. After application of the post-classification measures, the auto-
madogram lead to better results than the pseudo-cross madogram. The pseudo-cross 
madogram still performed best. After post-classification, the differences between the input 
data sets became low; the auto madogram input data set (classification M) performing 
worse than the basic ML classification (L). 

The simulated TM data yielded lower classification accuracies. The classification of auto 
madogram data (classification P) performed worse than that using no texture data 
(classification O). The pseudo-cross madogram (classification Q) data increased the 
accuracy from 0.39 (Kappa before post-classification) to 0.50. 

The 2003 HyMap data shows the same pattern as the before mentioned data sets. The 
classification using the pseudo-cross madograms (classification T) reached higher 
accuracies than one using the auto madogram (classification S), which reached higher 
values than those using only the reflectance data (classification R).  

5 DISCUSSION 
Most of the texture channels used improved the classification accuracy. Among the 
geostatistic measures (classifications C-G, table 1), the madograms performed better than 
the variograms. The madogram’s better performance is probably due to the fact that outliers 
are less emphasized than in the variogram where differences between pixel values are 
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squared. The pseudo-cross madogram (data set G) yields the best results both before and 
after post-classification. The classification accuracy increases from 70.0% OAA after post-
classification using dataset A (only MNF channels) to 77.8% using data set G (MNF- and 
pseudo-cross madogram channels). After post-classification, data set G even exceeds the 
performance of data set B (77.2% OAA) where very high spatial resolution data was 
included into the classification procedure. Because of this, pseudo-cross madograms were 
the basis for the second set of classifications, where the stability of the classification in 
terms of the classifier, the spectral resolution of the input data and the temporal aspects was 
inspected. 

The co-occurrence channels perform comparably well. The best result is achieved by taking 
the first five channels but only two texture measures into account (classification J). The 
reduction of classification accuracy between classifications H and I is a hint towards the 
effect of the Hughes phenomenon. The number of input channels is increased but the 
classification accuracy decreases. Presumably, the information in the additional channels 
seems to be redundant. The combination of geostatistic, co-occurrence, and stem density 
channels increased the accuracy further than any of the other input channel combinations, at 
least before the post-classification measures. So there is little redundancy in these channels. 

The ability of geostatistic texture measures to improve classification accuracies is also 
observable in the second approach. Each of the three remote sensing data sets could be 
classified better by adding pseudo-cross madogram maxima. This improvement takes place 
at all classification scenarios (HyMap data from 1999 and 2003 and artificial TM data from 
1999). The improvement can most clearly be seen before the post-classification procedures 
which dampen the effect a little. The concept seems to be transferable to different data as 
the positive effect exists on all three tested data sets, two of which are hyperspectral data 
and the third is multispectral data. The highest raise in classification accuracy could be 
observed at the classifications of 2003 HyMap data where the kappa coefficient before 
post-classification rose from 0.47 to 0.61. The raise in accuracy for the TM data from 0.39 
to 0.50 (without post-classification), though on a low level, is also impressive. The lack of 
detailed spectral information could obviously be compensated by the use of textural 
information. Most of the classifications were also improved by adding maxima of auto 
madograms, but the pseudo-cross madogram is clearly superior. 

6 CONCLUSIONS AND FUTURE PERSPECTIVES 
A problem in this approach to textural classification is the emphasis of stand borders. In 
some of the resulting geostatistic channels, the surroundings of such borders stand out 
because of the great variance of these borders. One way to cope with this issue would be to 
combine object-based and textural classification procedures, which was not tested in this 
study. Therefore, in a further research it is aimed to compute geostatistical texture measures 
on objects rather than using a moving window of fixed size. But still the positive effects 
outweigh the negative ones so that this approach of a classification using geostatistic 
channels to include textural information can be deemed a success. 
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