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On the derivation of a spatially distributed aerosol climatology for its 

incorporation in a radiometric Landsat pre-processing framework 

We developed a spatio-temporal path reflectance climatology for use in 

atmospheric corrections for a Landsat pre-processing framework. The climatology 

is intended as a fallback strategy for aerosol estimation in bright Southern African 

savannah ecosystems where the rarity of dark objects decreases the applicability 

of common image-based aerosol estimation strategies and the widespread burning 

prohibits the use of a fixed aerosol loading. We predicted the climatological path 

reflectance surface by applying a multivariate regression model to all available 

path reflectance retrievals on basis of the geolocation and the days of the year on 

which the data were acquired. The resulting predictions are able to successfully 

model major spatio-temporal gradients of the path reflectance distribution. The 

prediction error (weighted RMSE at 0.483 µm) was less than 1% reflectance while 

the prediction itself varied by 4.6% reflectance. Thus, using the modelled 

climatology for atmospheric correction is favourable compared to a fixed aerosol 

content. 
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1. Introduction 

Recent advances in open data policies (Woodcock et al. 2008) have drastically changed 

the use of Landsat data and encouraged the development of mass-processing frameworks 

(Wulder et al. 2012). Concurrently, the use of an increasing amount of Landsat images 

also raised the demands on the radiometric processing quality and on the derivation of 

ready-to-use standard products (Hansen and Loveland 2012). Currently, radiative transfer 

modelling (e.g. Tanré et al. 1979) is agreed to be the quasi-standard in radiometric 

corrections and as such the estimation of aerosol optical depth (AOD) becomes a key 

parameter due to its profound impact on biophysical parameters (Gillingham, Flood, and 

Gill 2012). State-of-the-art large area generation systems like the widely used LEDAPS 

approach (Landsat Ecosystem Disturbance Adaptive Processing System, Masek et al. 

2006) estimate the AOD directly from the imagery. It is assumed that a few virtually zero 

reflectance pixels exist in every image (Hill and Sturm 1991) and the aerosol loading is 

commonly derived by applying the dark, dense vegetation method (DDV, e.g. Kaufman 

and Sendra 1988) or the dark object subtraction approach (DOS, e.g. Moran et al. 1992, 

Chavez 1996). Whilst these are generally accepted approaches, the estimation of AOD 

with dark object methods is not usable if there are no suitable targets. Kaufman and 

Sendra (1988) already identified regions where the large-scale absence of dark vegetation 

restricts the operational usage of the DDV approach, which applies for some larger parts 

of our study area in the bright Southern African savannahs. Gillingham et al. (2011) 

already documented the inability to operationally apply the DDV under the similar 

Australian conditions which led to the decision of simply fixing the AOD to a reasonable 

value in the Eastern Australian Landsat pre-processing scheme (Flood et al. 2013). 

Nevertheless, it is more desirable to correct each image with a more appropriate 

atmospheric parameter set, which is especially mandatory if the assumption of a stable 

AOD is violated. Southern African savannahs are amongst the most fire-prone and most 

frequently burnt ecosystems in the world (Bond and Keeley 2005) and as such substantial 

seasonal and spatial variations in aerosol loadings are prevalent (Eck et al. 2001). 

We report on the derivation of a spatially explicit path reflectance climatology for 

its intended use in an operational pre-processing framework as a substitute for 



occasionally erroneous image-based path reflectance and AOD estimations in the case 

that meaningful dark objects cannot be identified in a given image. This climatology 

generates a smooth surface from the surrounding reliable retrieved path reflectance 

values, thus bridging the gaps where the image-based aerosol characterization failed. The 

corrected Landsat data are intended to be used in a pixel-based compositing application 

in the context of wall-to-wall deforestation and forest degradation assessments, as well as 

being intended for time series applications in general. 

2. Methods 

2.1 Background 

We implemented an operational large-area pre-processing framework for the generation 

of multi-sensor surface reflectance Landsat datasets (Frantz et al., in submission). The 

approach includes methods for the automatic detection of clouds and cloud shadows (Zhu 

and Woodcock 2012, Zhu, Wang, and Woodcock 2015), functions for reprojecting the 

data to a shared coordinate system and the partitioning of the data to gridded data 

structure. The radiometric correction includes a C-correction for terrain normalization 

(Kobayashi and Sanga-Ngoie 2008, Teillet, Guindon, and Goodenough 1982). The 

atmospheric correction module is based on Tanré’s formulation of the radiative transfer 

(Tanré et al. 1979) and includes adjacency effect correction, the correction of water 

vapour absorption by a MODIS-derived (Moderate Resolution Imaging 

Spectroradiometer) water vapour database and a joint database- and image-based 

estimation of AOD over dark objects. The employed dark object database holds 

information on the temporal persistence of dark objects and was generated by an 

exhaustive analysis of all available uncorrected Landsat images. The darkest pixels were 

identified in each image and the dark object persistency (DOP = [0 … 100], i.e. the 

percentage of the time a pixel is dark) is derived for each pixel in the study area. The most 

permanent objects are then favoured in the actual radiometric processing for the path 

reflectance estimation. The usage of the DOP substantially increases the quality of 

retrieved values over the dark objects because transient dark features like temporal 

flooding or burnt areas are successfully rejected while perennial water bodies or 

topographic shadows are favoured. A visualization of the DOP for two sample areas is 

appended as electronic material in the “figshare” section. We processed all available 

57,371 Level 1T Landsat images for Angola, Zambia, Zimbabwe, Botswana and Namibia 

and recorded the estimated path reflectance ρp, on which our prediction model is based. 

The path reflectance is closely related to AOD (Hill and Sturm 1991), which can be 

inferred with a scattering model (e.g. the multiple scattering approximation, Sobolev 

1975) as demonstrated in (Frantz et al., in submission). 

2.2 Observations 

We successfully characterized the scattering effects for the majority of the Landsat 

images with this approach. Nevertheless, we encountered serious problems in deriving 

AOD for a substantial number of Landsat images (~43% of all images), which especially 

was a problem in southern Namibia and Botswana where the dry season surface is bright 

and dark objects are rare or not apparent at all. Therefore, we closely investigated the 

seasonal and spatial patterns of the 57% successful ρp estimates. Figure 1 depicts ρp for 

an illustrative Landsat frame at the Namibian/Angolan border that includes the perennial 

Cubango and Cuito rivers. The retrieved ρp values in this frame were of high quality and 



all depicted points were estimated from permanent dark objects, i.e. objects that are the 

darkest pixels in the given scene over time. There is a clear seasonal pattern, which is 

especially pronounced in the visible bands, where the effect of aerosols is most 

prominent. The depicted region follows the typical southern African climate with two 

main seasons, i.e. a wet and a dry season. The dry season begins in May and lasts until 

September, though the hottest temperatures are not reached until October, when the 

rainfall sums are also still relatively low (Weber 2013). Path reflectance values are small 

during the wet season and begin to increase with the onset of the dry season. The increase 

continues until the approximate end of the dry season in September/October after which 

the values quickly drop back to the wet season base value. 

Please place Figure 1 approximately here. 

 

In addition to the temporal pattern, we also identified spatial dependencies. Figure 

2 displays mean ρp values for the blue wavelength band for the dry season acquisition 

months. The aerosol accumulation apparently starts earlier in North-western Angola and 

progresses towards Botswana in the South-Eastern part of the region. The aerosol 

depletion also starts earlier in North-Western Angola while the highest loadings are found 

in the centre of the study area in the late dry season. Overall, the amplitude of the aerosol 

accumulation is lowest in the South. Figure 2 also indicates the Landsat frames where the 

identification of dark objects failed, which are especially the southern dry savannah 

ecotypes, whereas reliable estimates were retrieved in the darker regions, e.g. the 

Okavango catchment area. In addition, some frames in northern Angola are also suspect 

of missing data, though this is due to a substantial decrease in data availability because 

of persistent cloud overcast in the tropics. 

Please place Figure 2 approximately here. 

2.3 Modelling 

As a consequence of the observed temporal and spatial patterns, we aimed at 

generating a spatially distributed ρp climatology, modelled from the available data. This 

climatology is intended to be used as fallback strategy in the implemented Landsat pre-

processing framework when actual AOD cannot be retrieved from dark targets. 

A multivariate regression model described by the geolocation – coordinates (X,Y) 

- and the acquisition day-of-year (DOY) of the 57% successful ρp estimates was employed 

for every Landsat band b: 

 𝜌p,b = 𝑐0 + 𝑐1𝑋 + 𝑐2𝑌 + 𝑐3𝑋𝑌 + 𝑐4𝑋
2 + 𝑐5𝑌

2 + 𝑐6(DOY) + 𝑐7(DOY)
2 +  

 𝑐8𝑋 sin(2π(DOY) 365⁄ ) + 𝑐9𝑋 cos(2π(DOY) 365⁄ ) +  

 𝑐10𝑌 sin(2π(DOY) 365⁄ ) + 𝑐11𝑌 cos(2π(DOY) 365⁄ ) +  

 𝑐12𝑋 sin(4π(DOY) 365⁄ ) + 𝑐13𝑋 cos(4π(DOY) 365⁄ ) + (1) 

 𝑐14𝑌 sin(4π(DOY) 365⁄ ) + 𝑐15𝑌 cos(4π(DOY) 365⁄ ) +  

 𝑐16𝑋 sin(6π(DOY) 365⁄ ) + 𝑐17𝑋 cos(6π(DOY) 365⁄ ) +  

 𝑐18𝑌 sin(6π(DOY) 365⁄ ) + 𝑐19𝑌 cos(6π(DOY) 365⁄ ).  

 

The DOP (in %, see also Figure 3) was used to weight the observations during the 

estimation of the regression coefficients c0-19 by the means of weighted least squares 

fitting. We assumed that temporally persistent dark objects are more reliable for 

characterizing atmospheric scattering effects due to their inherent pseudo-invariant 



reflectance, which is often exploited for improving atmospheric correction methods 

(Themistocleous et al. 2013). The coefficient c0 is the path reflectance intercept; the 

coefficients c1-5 explain purely spatial trends on the path reflectance, whereas the 

coefficients c6-7 explain the non-interacting temporal trend. The remaining coefficients 

describe combined spatio-temporal effects by modelling seasonal cycles of varying 

frequency with geolocation-dependency. As a boundary condition, the prediction is 

enforced to be cyclic by twofold data repetition yielding three identical annual cycles. 

3. Results 

Table 1 summarizes ρp prediction errors for the employed spatio-temporal model, i.e. the 

Mean Error (ME) as a measure for the prediction bias, the Mean Absolute Error (MAE), 

the Root Mean Squared Error (RMSE) and its weighted counterpart (WRMSE). 

The ME indicate that the residuals ei are close to zero and have a small bias. The bias is 

largest in the blue wavelength band. The MAE, RMSE and WRMSE all report similar 

errors and the errors for the first four wavelengths are very similar and in the order of 1% 

reflectance. The MAE values are smallest and RMSE values are the greatest due to the 

stronger contribution of outliers. The WRMSE might be the most appropriate measure 

for quantifying the goodness of the fit since we also employed a weighted prediction. 

 

Please place Table 1 approximately here. 

 

Figure 3 depicts the blue wavelength ρp retrievals (points) for one path of Landsat data 

(one orbit in approximate North-South direction), as well as the resulting prediction (line). 

The prediction successfully modelled the main seasonal and latitudinal variations in ρp. 

It is also apparent that there are fluctuations and outliers around the modelled fit, which 

surely affect the prediction errors shown in Table 1. Figure 4 summarizes the latitude 

dependency of several key parameters of the data show in Figure 3. Figure 4 (a) 

corroborates the previous finding that the aerosol peaking is delayed in the south. The 

maximum values (Figure 4 b) are found at medium latitudes, though this might be 

different in other orbital slices in the study area. Concurrently, the minimum predictions 

(Figure 4 c) increase southwards, indicating a higher base level of aerosol loading. 

Please place Figure 3 approximately here. 

Please place Figure 4 approximately here. 

 

We inferred the aerosol optical depth at 483 µm from the modelled ρp climatology by 

using the multiple scattering approximation (Frantz et al., in submission). Figure 5 

illustrates the spatial AOD surfaces for selected dates in the dry season. The prediction 

resulted in a smooth and seamless AOD surface for the entire study area and corroborates 

the earlier findings, i.e. (1) an earlier onset in aerosol accumulation in the North, (2) 

stronger aerosol loadings in the north, (3) earlier aerosol depletion in the north and (4) 

highest aerosol loadings in the centre of the study area towards the end of the dry season. 

The complete and animated daily time series of AOD surfaces is appended as electronic 

material in the “figshare” section of this article. 

Please place Figure 5 approximately here. 



 

In order to quantitatively evaluate the goodness of the retrieved ρp and AOD values, we 

compared our results with data from the Aerosol Robotic Network (AERONET). The site 

at Mongu, Zambia (15.254°S, 23.151°E) is the only station with multiple years of data 

within our study area. We computed the average seasonal AOD cycle at 0.483 µm and 

used the corresponding Landsat frame (175/071) for the comparison, see Figure 6. The 

ME between the AERONET climatology (points) and the inferred AOD climatology 

(dashed line) is 0.137 which indicates that the path reflectance estimations are 

systematically too low. We tried to quantitatively assess the underestimation in ρp by 

inverting the multiple scattering computations such that the RMSE between the 

AERONET and the predicted AOD is minimized: ρp is then underestimated by 0.0074 

reflectance (dotted line in Figure 6). The AERONET climatology and the offset AOD are 

very similar. 

 

Please place Figure 6 approximately here. 

4. Discussion 

Our prediction model generates seamless and smooth ρp and AOD surfaces for the entire 

study area and for each DOY. We intended to model the large-scale spatial path 

reflectance climatology and aimed to reproduce the major aerosol gradients in the study 

area. The presented model statistics indicated that the prediction model generally adapts 

to the input data, but there are also deviations from the underlying data. The weighted 

RMSE indicated that the prediction error is in the order of 0.01 reflectance for the short 

wavelength bands. The blue-band ρp prediction range (i.e. predicted maximum – 

minimum) is 0.046 and the input ρp range is even higher: 0.07 (99% of the data). 

Therefore, the prediction error is 4.6 (7) times smaller than the predicted (observed) data 

range and thus, we conclude that using such a climatology is preferable over using a 

constant aerosol loading in the radiometric correction. This observation is also supported 

by the findings of Gillingham, Flood and Gill (2012), who found that a fixed AOD (at 

0.5 µm) of 0.05 only ensures reliable results if the actual AOD is less than 0.1. The annual 

AOD variability is significantly higher in our study area (compare with Figure 5) but a 

quantitative assessment about the effect on generated products when using a constant vs 

a climatological aerosol characterization would be useful for future work. Nevertheless, 

these findings should be verified for other study areas where burning might be less 

influential. In areas where the AOD is rather stable throughout the year, fixing AOD 

might be the more practical approach. 

In general, aerosol tends to accumulate during the course of the dry season but the onset, 

end, minimum and maximum of the accumulation are variable. The northern part of the 

study area is more affected by aerosol. The southern African burning regimes are a major 

factor in the spatio-temporal distribution of aerosols (Eck et al. 2001). In southern Africa, 

the seasonality is very strictly partitioned into a wet and a dry season. In the wet season, 

the aerosol loading is washed out (Eck et al. 2001). In the dry season, burning is very 

widespread (Stellmes et al. 2013) and the absence of precipitation allows for the 

accumulation of biomass burning aerosol particles. The burning season starts and stops 

earlier in the North (Stellmes et al. 2013) and so does the aerosol accumulation. The 

aerosol loading is also higher, which could be partially caused by the early burns because 

the potential accumulation time is prolonged. In addition, northern Angola is 

characterized by the highest fuel loads due to the latitudinal rainfall gradient, which 



results in a larger amount of burned biomass and emitted aerosols per burned area if the 

burning efficiency is assumed to be constant (Scholes, Kendall, and Justice 1996, Barbosa 

et al. 1999). Smaller amounts of fuel, as well as the late start of the main fire season 

(Stellmes et al. 2013) could be responsible for the delayed aerosol accumulation and the 

decreased aerosol loadings in the South and centre of the area. 

The comparison between the inferred AOD and AERONET data revealed that our 

method systematically underestimates ρp and AOD. The ρp underestimation was less than 

1% reflectance but the effect on AOD was clearly visible. AERONET data availability in 

our study area is very limited (only one site with sufficient data) and as such, we cannot 

confirm nor verify that this bias globally applies to our data or if there are regional 

deviations. The initial estimation of the path reflectance was performed in the employed 

Landsat pre-processing framework (Frantz et al., in submission) where it was attempted 

to identify the true reflectance of the dark objects. The iteration step for determining the 

true reflectance was set to 1% reflectance and thus the underestimation of less than 1% 

could result from this. Potentially, the increase of the iteration resolution would 

compensate for the underestimation and will be considered in the next re-processing. 

While the approach well represents large scale gradients in the aerosol 

distribution, the generalized model may not adequately resolve local variations at a spatial 

extension of approximately two Landsat scenes or less. The observed variations (see e.g. 

Figure 2) could be caused by distinct local fire regimes, the distribution of urban centres 

and potentially also locally driven deviations from the climate regime, e.g. the occurrence 

of orographic rainfalls. In addition, uncertainties in estimating ρp over dark objects could 

also add to the heterogeneity. Nevertheless, we aimed at reproducing the large-scale 

variations in order to provide a regionally adapted alternative to using a fixed aerosol 

characterization in a radiometric pre-processing scheme and as such, we conclude that 

the local deviations are acceptable in the practical implementation. 

5. Conclusion 

We developed a climatology based alternative strategy for coping with variable aerosol 

loadings under the environmental constraint of absent dark objects in bright ecoregions. 

Contrary to fixing the aerosol optical depth to a reasonable value, our approach explicitly 

models the spatio-temporal aerosol distribution from the available surrounding path 

reflectance estimations and thus reproduces the major large-scale gradients. The 

predictions are intended to serve as input to an operational radiometric pre-processing 

framework for the generation of large area surface reflectance Landsat datasets. 
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Figures and Tables 

 
Figure 1. Successful path reflectance retrievals for the six reflective Landsat bands for an illustrative 

Landsat frame (177/072). The frame is located at the Namibian/Angolan border and includes the perennial 

Cubango and Cuito rivers. The grey background indicates the dry season. 

 

 

 

 
Figure 2. Mean path reflectance retrievals (0.483 µm). Mean values are computed for every Landsat frame 

for the depicted acquisition months; only the successful retrievals were considered. ‘?’ marks indicate 

Landsat frames where the dark object identification failed or there were no cloud-free images. 



 
Figure 3. Initial path reflectance retrievals (0.483µm) and prediction (line) for a series of Landsat frames 

within one orbit (path 170, i.e. in the Eastern part of the study area). The path/row is labelled in the bottom 

right corner. The persistence of the dark objects (DOP) which were used for estimating the path reflectance 

is indicated by the variable point size. The persistence was used to weight the observations in the prediction. 

 

 

 

 
Figure 4. Latitude dependence of (a) the timing of peak aerosol loading, (b) the maximum predicted path 

reflectance and (c) the minimum predicted path reflectance. The data are inferred from the depicted 

prediction in Figure 3. 

 

 



 
Figure 5. Predicted aerosol optical depth surfaces at 0.483µm for three dates in the dry season; see the 

online version of this article for the complete and animated time series. 

 

 

 

 

 

 
Figure 6. Average annual AOD cycle for the AERONET Mongu site and the corresponding AOD 

prediction. The path reflectance offset was found by inverting the multiple scattering computation such that 

the RMSE between the AERONET and the predicted AOD is minimized. 

 

 

 

 

Table 1. Path reflectance prediction errors for every Landsat band: Mean Error (ME), Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) and weighted Root Mean Squared Error (WRMSE). All errors 

are reported in reflectance units. ei are the residuals between the model fit and the actual data for every data 

point i, wi are the weights used for the prediction. 

Wavelength 

(µm) 
Landsat band ME MAE RMSE WRMSE 

  ∑ 𝑒i 𝑛⁄𝑛
𝑖=1   ∑ |𝑒i| 𝑛⁄𝑛

𝑖=1   √∑ 𝑒i
2 𝑛⁄𝑛

𝑖=1   √∑ 𝑤i𝑒i
2𝑛

𝑖=1 ∑ 𝑤i
𝑛
𝑖=1⁄   

0.483 Blue 0.00111 0.0080 0.0110 0.0095 

0.560 Green 0.00005 0.0080 0.0108 0.0101 

0.662 Red -0.00054 0.0082 0.0109 0.0099 

0.835 NIR -0.00045 0.0080 0.0104 0.0099 

1.648 SWIR1 0.00004 0.0020 0.0032 0.0031 

2.206 SWIR2 0.00003 0.0006 0.0013 0.0012 

 


