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Abstract—We developed a new two-step approach for automated masking of clouds and their 

shadows in Landsat imagery. The first step is comprised of detecting clouds and cloud shadows in 

every Landsat image independently by using the Fmask algorithm. We modified two features of the 

original Fmask: we dropped the termination criterion for shadow matching and we appended a 

darkness filter to counteract false-positives in bifidly structured dryland areas. The second step 

utilizes the scene-by-scene detections of the first step and additional time series of cloud and cloud 

shadow probabilities. All clear-sky observations of a pixel are used to estimate the probabilities’ 

median and standard deviation. Any observation that deviates more than a multiple of the standard 

deviation from the median is considered an outlier and thus a remaining cloud or cloud shadow. The 

method was specifically designed for use in water-limited dryland areas, where event-based 

precipitation is predominant. As an effect, green vegetation peaks are highly variable, both in timing, 

magnitude and frequency with adverse effects on commonly used Fourier-based outlier detection 

methods. The method is designed to be robust even if temporally dense data coverage is not available. 

Index Terms—Cloud detection, drylands, Landsat, multitemporal, remote sensing, time series. 

 

I. INTRODUCTION 

LANDSAT data are one of the most valuable resources for earth observation [1]-[2], because of long term 

data continuity [3], free data access [4] and their optimal resolution to monitor landscape processes [5]. 

However, a great proportion of all available Landsat images is obscured by clouds and their shadows, most 

predominantly in the tropics [6]. 

The detection of clouds and their shadows is an inevitably required early step in any following image 

analysis application, because clouds adversely influence most analyses, among them atmospheric 

corrections, biophysical variables like the Normalized Difference Vegetation Index (NDVI [7]) values and 

land cover classifications [8]. 

Clouds either reduce the amount of usable data if cloud contaminated scenes are simply discarded or they 

have to be detected and masked. Historically, the overall cloud contamination of a Landsat scene was 

estimated by the Automated Cloud Cover Assessment (ACCA) system [9]-[10]. In general, ACCA fails to 

delineate the exact location and boundaries of clouds and their shadows [8] with adverse effects on 

automated analyses. Therefore, manual cloud detection was often performed, which in turn limited the 

amount of usable data, because of time and cost limitations. 

Fortunately, cloud and cloud shadow detection in Landsat imagery has matured in the previous years with 

the development of the Fmask algorithm [8]. The accuracy of the Fmask results is reported to be good: [8] 

reported an overall accuracy of 96.41%, cloud producer’s accuracy of 92.1% and cloud user’s accuracy of 

89.4%. The producer’s accuracy for shadows is more than 70% and the user’s accuracy is more than 50%. 

They used 142 manually screened reference images, globally stratified over 9 latitudinal zones. 

The Fmask algorithm applies one scene-specific probability threshold for all pixels in a scene [8]. Cloud 

and cloud shadow masks can be further enhanced by applying time series based detection methods that 

make use of the scene-by-scene detections of Fmask. Besides other multi-temporal cloud detection 

approaches (e.g. [11]), [12]-[13] presented a subsequent time series analysis of TOA reflectance, developed 

in a rather humid study area in the Northeastern United States. They fit series of sine and cosine functions 

to the remaining clear-sky observations for each pixel and detect outliers (i.e. missed clouds and cloud 

shadows) using the model residuals. 

Unlike temperate areas, water-limited dryland areas are often comprised of evergreen woodlands, open 

forests and grasslands that do not follow a strict sinusoidal phenological course. Phenology in arid areas is 

rather driven by event based precipitation [14] that is highly variable, both in timing, magnitude and 

frequency and can trigger a flush of (green) vegetation growth. In these cases, the conditions of 

equidistantly spaced phenology peaks is not met anymore and thus, fitting a Fourier based model of sine 



 

and cosine functions might not be an appropriate choice [15]. Large data gaps are a general problem where 

either the acquisition plan or the cloud coverage do not permit a high frequent data coverage, e.g. areas 

outside the U.S., which were frequently not part of Landsat's acquisition plans. Although the current effort 

of reallocating data from foreign data providers [16] eases this drawback to a certain degree, temporal 

dense coverage is still an issue in many places. In addition, dryland biomes are often characterized by a 

pronounced partitioning of seasonality into a dry and wet season. During the wet season, where phenology 

is most dynamic, cloud-free Landsat data are often not available. Therefore, fitting a sine-based model 

might not be the best choice under these specific circumstances. 

Here we present an approach to identify additional clouds and cloud shadows in Landsat imagery using a 

two-step cloud screening procedure, especially tailored for dryland ecosystems. The first step is comprised 

of applying the Fmask algorithm to the individual Landsat images [8]. We modified two criteria of the 

Fmask algorithm to perform better in a dryland environment. The second step is a subsequent time-series 

based outlier detection method, based on the results of the first step to reduce omission errors. It is designed 

as an alternative to the method presented by [13] for areas where the middle of the growing period(s) does 

not occur at the same time every year. 

 

 
Fig. 1:  Study Area. 

 

 

 

II. STUDY AREA 

The method was developed in an Australian savanna ecosystem in Queensland. The study area is 

included in WRS-2 Path/Row 093/078 and is centered at approximately 26°00’08’’S and 147°25’48’’E. 

The location of the study area (150 x 150 km) is displayed in Fig. 1 as the white box. The structural 

formations dominating the area, namely open forests and woodlands, are characteristic for Queensland's 

savannas, accounting for over 70 % of Australian forests in terms of structure and biomass [17]. The major 

tree communities in this area are formed by evergreen eucalyptus, acacia or callitris dominated woodlands 

to open forests (Regional Ecosystem Mapping of 2006 [18]). The region is characterized by variable 

rainfall and the ecosystem itself is generally water limited. The average monthly evaporation exceeds the 

average monthly rainfall throughout the year [19] with a pronounced dry and wet season, where the rainfall 

is precipitated by short duration storms with high temporal and spatial variability [19]. 



 

III. Data 

All available Landsat-5 Thematic Mapper (TM) data of WRS-2 path/row 93/78 for the three year period of 

2007-2009 were used in this study. Standard terrain corrected (Level 1T) Landsat data were obtained from 

the U.S. Geological Survey archive (USGS). Images that were not corrected to L1T precision were 

discarded, as a reliable co-registration among images was considered to be of major importance. 

 

 

IV. Methods 

The presented method is a two-step cloud screening procedure, where the first step is comprised of scene-

by-scene detections with a slightly modified version of the Fmask algorithm [8]. The results from the first 

step are utilized in the second step, where the cloud and cloud shadow probabilities and the final masks are 

used in a time-series based outlier detection method. 

A. Step 1: Fmask 

Fmask is a fully automated cloud and cloud shadow screening application based on TOA reflectance [8]. 

Fmask is based on physical properties of clouds and their shadows to produce potential layers of clouds and 

cloud shadows. Cloud shadows are found by combining several existing approaches; i.e. object matching 

and lapse rate methods. The original algorithm is described in detail in [8]. Here we adapted the code in 

two major points to meet our requirements: 

 

1) Termination criterion 

In Fmask [8], shadows are matched by utilizing the geometrical relationship between a cloud and its 

shadow as well as modeling the three-dimensional shape and its presumed base height by using 

temperature information. This 3D shape is projected to the ground, while iterating through possible 

cloud base heights. For every iteration, a match similarity between the calculated shadow and a potential 

layer of shadows is computed. Iteration proceeds until the match becomes less than 98% of the 

maximum match similarity. We decided to discard this termination criterion. Shadow matching was 

found to terminate too early in many cases, which meant that only a fraction of the shadow was 

captured. In this implementation, the shadow match with the highest match similarity was considered the 

winner if the score was greater than 0.3. Otherwise no shadow was matched. 

2) Darkness Filter 

In the dryland ecosystems under investigation, we encountered a special case of land cover 

composition, where Fmask occasionally produced a high rate of false positives. This applies if the image 

is composed of two extremely different land cover classes with uneven areal distribution. Drylands are 

often comprised of very bright and hot surfaces (due to their sparse and dried-out vegetation cover), but 

in the presence of open water, patches of active vegetation can co-exist in the same image (e.g. river 

deltas, river basins and the like). These dark vegetation patches might be classified as clouds if the 

bright surface types are more dominant in terms of area. 
During the selection of the PCPs (Potential Cloud Pixel), dark pixels might pass because the 

implemented Whiteness filter is rather a “Flatness” filter, which excludes pixels that have a high 

variability in the visible bands. Thus this filter also lets sufficiently black or grey pixels pass. We 

integrated an additional darkness filter into the PCP selection query (i.e. potentially cloudy only if the 

mean reflectance of the visible bands > 0.15). This filter is based on the observation that clouds are 

normally rather white. 

Furthermore, the cloud probability of these features is usually very high because of the large 

temperature difference between the bright surrounding area and the vegetated surface. In Fmask, the 

temperature probability is derived by a quantile based approach that uses all non-PCP pixels. In the 

savanna systems under investigation, the bright and hot part of the image often dominates in terms of 

area, thus the temperature probability gets biased towards the hot surfaces. Water-cooled and 



 

transpirating vegetated surfaces are then significantly colder and hence show a very high cloud 

probability. Therefore, the darkness filter was also added in the selection of the final cloud layer, where 

the cloud probability is otherwise the dominant driver to identify cloudy pixels. 

 

In addition to the original Fmask implementation, the internal intermediate probability products, namely the 

cloud and cloud shadow probabilities are stored. Pixel-based time series of these probabilities are used to 

capture additional clouds and their shadows in the second step. A short description of the probability layers 

is presented in the following, details can be found in the original Fmask publication [8]. 

 

1) Cloud probability 

In Fmask, the cloud probability is derived by combining land or water specific thematic probabilities. For 

both land and water, a temperature probability is estimated by rescaling the Brightness Temperature (BT) 

by percentiles of the land/water clear-sky pixels' BT. Various spectral tests are performed to obtain 

estimates of clear sky pixels in an early stage of the algorithm. In case of water, a brightness probability is 

computed. It exploits the property of water to have a very low, but stable reflectance in Band 5 and a 

significant increase in case of a cloud. Contrary, optical reflectance is very inconsistent for different land 

cover types, while being quite constant for clouds [8]. Thus a variability probability is computed instead of 

a brightness probability. The Whiteness Index [20] and modified versions of NDVI [7] and NDSI 

(Normalized Difference Snow Index [21]) are used to capture the earth land surface’s spectral variability. 

Modified versions of NDVI and NDSI are used to counteract inconsistent index behavior in case of 

saturated VIS but under-saturated NIR and SWIR bands [22]. 

2) Shadow probability 

Shadowed areas are mainly illuminated by scattered radiation and the scattering in NIR and SWIR bands 

is weaker than in VIS [23]. Additionally, NIR and SWIR reflectance is usually higher than the reflectance 

in VIS. Thus, a stronger darkening effect is evident in the long wavelength bands. Therefore, a 

morphological flood-fill transformation of bands 4 and 5 is performed in Fmask [24]-[25]. This filling 

procedure causes objects with a local depression in reflectance compared to their surroundings (e.g. cloud 

shadows, but also lakes or patches of vegetation in a desert) to be filled with the values along their border. 

 

B. Step 2: Outlier detection 

Once all individual images are processed with Fmask and the cloud and cloud probabilities are saved as 

second output product, we implemented a time series algorithm, which detects additional clouds and 

shadows on a per-pixel basis. The cloud and shadow masks are used to provide the clear-sky observations, 

whereas the probabilities are used to separate some remaining clouds and shadows from this data heap. 

Clear-sky observations are used to estimate basic statistics of the land surface. A deviation from these 

statistics is considered as cloud remnant. The process is illustrated as workflow in Fig. 2. 

 

 
Fig. 2:  Workflow of the two-step algorithm. 



 

The probabilities of the clear-sky observations are assumed to be stable throughout time – at least for a 

restricted period of time. Therefore an anomaly in any of the probabilities throughout a three-year-period 

was considered as being an undetected cloud or cloud shadow. For each pixel (x,y), the median and the 

standard deviation of the clear-sky time series are computed for each probability probj, with j = {cld, shd}. 

A pixel at time ti, i=1,…,n (n = number of images) is marked as outlier if any probj is greater than a 

threshold thrj (eq. 1), which is its median plus a multiple m of its standard deviation (eq. 2). The multipliers 

mj are the only tweakable input parameters of our algorithm. They allow for balancing the omission and 

commission errors. Ideally, they can be found by inverting the code with a Look-up-Table approach, where 

the parameters are chosen that match the best with an independent dataset. In practice, this might not be 

applicable due to problems in setting up a reference dataset of sufficient quality as outlined by [13]. 

Therefore, the choice of the multipliers mj will be in practice based on visual scene analysis. For our 

presented data, we set mshd to 3.5, mcld was set to 3, though we suggest that these parameters should be 

reconsidered for every study site. 
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This approach tends to identify many small outlier objects accidentally. Therefore, rigorous spatial 

filtering is applied to each mask image at times ti. An outlier pixel is only accepted if it is completely 

surrounded by other outliers in an 8-connected neighborhood. If not, the outlier is rejected and considered 

to be clear-sky. Finally, all remaining outliers are buffered by 7 pixels and the outlier masks and original 

Fmask-derived masks are combined for each point in time i. 

 

 

 

 

 

V. Results and Discussion 

Fig. 3 illustrates the outlier method for two pixels (marked in Fig. 4) that were missed by Fmask. The 

outlier detection algorithm was capable of detecting data points within the shadow probability time series 

(a) and the cloud probability time series (b). In the case of the cloud probability example (b), the 

importance of the removal of Fmask identifications (yellow) for calculating the statistics is evident, where 

the inclusion of these data points could bias the standard deviation and the median (the effect on standard 

deviation might be more severe) in a way that the outlier would not be detected anymore. In addition, 

apparently the use of cloud and shadow probabilities allows us to use rather simple thresholding techniques 

compared to [13] as the probability layers are mostly free of phenological fluctuations. We superimposed 

the clear-sky NDVI time series in Fig. 3. It can be seen that there is an irregular, rainfall driven phenology, 

which is clearly visible in the NDVI, but not in the probability time series. The fluctuations in the 

probability time series are rather erratic and do not seem to inherit from phenological processes. 

Furthermore, it can be seen that detecting clouds and shadows in this specialized data space allows even 

for the detection of thin clouds (example b), where the cloud is not even clearly visible in the NDVI 

transformation. 



 

 
Fig. 3:  Illustration of the time series outlier detection for two pixels marked in Fig. 4. An outlier (blue bars) 

is detected if its cloud/shadow probability is greater than the pixel median + a standard deviation multiplier 

(statistics retrieved from the clear-sky observations, black bars), thus being in the grey area. Fmask 

detections (yellow bars) are used to separate most of the observations before calculating the statistics. 

NDVI time series of the clear-sky observations are plotted in green. 

 

 
Fig. 4:  Landsat RGB-composite (bands 4/5/3, i.e. NIR/SWIR1/RED) for the illustration of the outlier 

detection method (blue) as compared to the Fmask detections (yellow). The image was captured on 

02/03/2007, which corresponds to the date with the blue bars in Fig. 3; the corresponding pixels are marked 

with a) and b). 

 

 

Fig. 4 (a) depicts typical results of Fmask and of the extension for an example of a densely packed 

cumulus formation. Yellow polygons depict the Fmask results and additional outliers are drawn in blue. 

Especially cloud shadows are subject to omission in Fmask, which was to be expected as the shadow 

inaccuracy was determined to be higher [8]. This is particularly true in cases where the cloud was missed or 

the cloud is extremely cold and high and thus too far away to be linked properly to its shadow. 

Furthermore, small and almost transparent clouds were sometimes not detected, too (e.g. the cloud marked 

by b). Very thin stratus clouds or plumes of thick haze/high aerosols were also of concern (not depicted 

here). A high proportion of these objects could be captured with the additional outlier approach. The outlier 

detection produced reasonable results for most land cover types. As an exception, there were some false 

positives when dark objects of short duration were present. Fresh burn scars are characterized by a charred 

and dark surface, thus the shadow probability increases rapidly for a short time. Therefore, some recently 

burned areas were flagged partially as being shadow. We expect that this is also true for other transient dark 



 

features (as temporal flooding), though we did not encounter this in our testing data. In a future version of 

our algorithm, we might account for this problem by exploiting the cloud/shadow geometry, e.g. by 

implementing another repeat of the Fmask shadow matching routine after the outlier detection step or by 

simply rejecting shadow detections that are too far away from the next cloud.  

The time series based outlier detection in the probability images was designed to decrease the error of 

omission. The error of commission might increase to some degree or might remain unaffected. As a 

suggestion, this method can be used in applications that are very sensitive to remaining cloud 

contamination, but are robust in case of missing data. For example, STARFM (Spatial and Temporal 

Adaptive Reflectance Fusion Model [26]) predictions are very likely to decrease if transient changes in 

reflectance are present (e.g. clouds) and are per se designed to bridge temporal data gaps and make use of 

multiple images and neighborhood information. This means in most cases there will still be an estimated 

pixel value, even if that specific pixel was masked out in one image. 

 

 

VI. Summary 

Cloud and cloud shadow detection in Landsat imagery has matured recently with the introduction of 

Fmask [8]. Fmask accuracy is known to be of very high quality, though not perfect. Therefore, a two step 

cloud and cloud shadow screening method was introduced to decrease omission errors for applications that 

are sensitive to remaining cloud contamination. We modified two features of the original Fmask code (first 

step). Firstly, the termination criterion for shadow matching was dropped. Secondly, we added a darkness 

filter to improve detections for areas that are characterized by large surface property gradients. 

A robust time series based outlier detection method was developed to reduce omission errors. The method 

utilizes the scene-by-scene detections of the first step. All clear-sky observations of a pixel are used to 

estimate the median and standard deviation of the cloud and cloud shadow probability time series. The 

cloud and cloud shadow probabilities are intermediate products of Fmask [8]. 

Contrary to existing add-ons [12]-[13] the presented algorithm was specifically developed for dryland 

areas that are characterized by the absence of phenology peaks at regular intervals. Furthermore, the 

algorithm is considered to be more robust in case of temporally sparse Landsat data and bad acquisition 

distributions over the year due to a pronounced dry/wet seasonality because of the conceptual simplicity. In 

addition, the method’s simplicity and its non-iterative nature might give it an edge compared to [13] if 

computation speed or access to high-end hardware is a limiting factor. 
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