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Abstract—Satellite-derived land surface phenology (LSP) serves as a valuable input source for 

many environmental applications such as land cover classifications and global change studies. 

Commonly, LSP is derived from coarse-resolution (CR) sensors due to their well-suited temporal 

resolution. However, LSP is increasingly demanded at medium-resolution (MR), but inferring LSP 

directly from medium-resolution imagery remains a challenging task (e.g. due to acquisition 

frequency). As such, we present a methodology that directly predicts medium-resolution LSP on the 

basis of the respective CR LSP and MR reflectance imagery. The approach considers information 

from the local pixel neighborhood at both resolutions by utilizing several prediction proxies, 

including spectral distance and multi-scale heterogeneity metrics. The prediction performs well with 

simulated data (R² = 0.84) and the approach substantially reduces noise. The size of the smallest 

reliably predicted object coincides with the effective CR pixel size (i.e. field-of-view). Nevertheless, 

even sub-pixel objects can be reliably predicted provided that pure CR pixels are located within the 

search radius. The application to real MODIS LSP and Landsat reflectance well preserves the 

phenological landscape composition, and the spatial refinement is especially striking in 

heterogeneous agricultural areas, where e.g. the circular shape of center pivot irrigation schemes is 

successfully restored at medium-resolution. 

Index Terms— Data fusion, Landsat, MODIS, phenology. 

 

I. Introduction 

Satellite-derived land surface phenology (LSP) provides important information for land use/cover mapping 

as well as change detection [1-3], for determining the vegetation response to climate change and variability 

[4, 5], for usage in large-scale biosphere models [6], and is considered to improve pixel-based composites 

[7]. The use of LSP has proven to improve the accuracy of derived information compared to single date 

methodologies, especially in areas where inter-annual LSP variability is high [8]. 

LSP is commonly derived by using data from coarse-resolution (CR) sensors because of their well-suited 

temporal resolution of less than 16 days [9]. While LSP derived from these sensors is accepted to be of 

good quality, its coarse resolution is insufficient to characterize LSP at higher spatial resolution and in 

heterogeneous areas [10], and as such, CR LSP is less useful for applications that rely on the description of 

LSP at the landscape level or in highly fragmented landscapes. 

On the contrary, inferring LSP directly from medium resolution (MR) imagery like Landsat is a 

challenging task due to the relatively low acquisition frequency [10], as well due to the substantially 

reduced data availability in some parts of the world; see e.g. [11]. Whilst the generation of MR LSP is 

applicable in areas like the United States [10], these methods are inappropriate for areas where the Landsat 

archive is less densely populated, especially in arid areas where the clear-sky data availability during the 

wet growing season is virtually zero. As a further constraint, Landsat-based methods are commonly 

developed in rather stable north American forests and are based on the long-term LSP average from which 

small annual deviations are inferred [6, 10, 12]. However, inter-annual variations can be significant [13]; 

for instance burning is widespread in southern Africa [14] and results in an abrupt end of the green season 

in one year, whereas the season may extend significantly longer in another year if unburnt. A high inter-

annual variability in LSP has also been observed over India [15] and Europe [16]. Few approaches exist to 

infer LSP from actual Landsat time series with methods developed for CR hyper-temporal data, e.g. [17]. 

Nevertheless, their use is strictly constrained to areas where the Landsat inter- and intra-annual data 

availability is high and constant; a data density of less than 16 days is needed to describe LSP precisely [9]. 

Another popular approach is to infer MR LSP (e.g. [18, 19]) in a two-step approach by (i) predicting a 

time series of synthetic MR surface reflectance images and (ii) applying a CR phenology detection code 

(e.g. [20]) to this synthetic MR time series. The first step is often approached by employing the spatial and 

temporal adaptive reflectance fusion model (STARFM: [21]), one of its modifications (e.g. [22, 23]) or 

regularized spatial unmixing approaches (e.g. [24, 25]). Nevertheless, landscape heterogeneity is known to 



 

decrease STARFM prediction quality substantially, which results in poor image contrast [22], while the 

enhancement of the modified codes in all environments is as yet inconclusive [26]. Moreover, recent 

research indicates that a temporal resolution of MR imagery of less than 25 days is eventually needed to 

ensure high prediction quality [27]. In addition, the technical demand on storage capabilities and processing 

time is high for large-area projects, since two computationally intensive algorithms are to be applied one 

after another. 

As opposed to existing data fusion techniques, we report on a novel approach that directly predicts LSP at 

finer resolution on the basis of the respective CR LSP and MR reflectance imagery. The prediction is 

characterized by great spatial detail and the method avoids the need of predicting a dense time series of MR 

images in the first step. Southern African (section II) MODIS LSP (III) and Landsat data (III) are used in 

this study, though the method (presented in section IV) is general enough to be also applied to other sensor 

pairs and similar continuous fields. An indirect validation is performed with a simulation study by applying 

the method to an artificial landscape in a controlled, yet realistic setting (VI). Exemplary results of the 

application to real data are presented in section VII. Relevant issues are directly discussed in the respective 

later sections (VI, VII) and the key findings are summarized in section VIII. 

II. Study Area 

The southern African study area includes the countries of Angola, Zambia, Zimbabwe, Botswana and 

Namibia (~3.7 x 106 km²; see Fig. 1) and is centered at the upcoming Kavango-Zambezi Transfrontier 

Conservation Area (KAZA TFCA). The area is phenologically diverse due to differences in large-scale 

vegetation cover, primarily as a function of climate gradients. The northwestern part of Angola is located in 

the tropics and the rainfall decreases southwards due to the temporally shorter influence of the Intertropical 

Convergence Zone (ITCZ) [28]: the mean annual rainfall is higher than 1500 mm in northern Angola and 

less than 200 mm (50 mm) in southern Namibia (Namib Desert) [29]. Continentality is also a governing 

factor, where the Namib Desert is the most arid place due to multiple aridifying effects of climate variables 

and ocean currents [30]. The vegetation cover ranges from dense Miombo forests in Angola to sparse 

xerilic savanna ecosystems in the Kalahari, and also includes more extreme surface types like swamps, salt 

pans and deserts [31]. Being in the southern hemisphere, the phenological cycle of a given year y starts 

with the peak of season (POS), followed by end of season (EOS), minimum of season (MOS) and ends 

with the start of season (SOS). Fig. 1 displays the POS, EOS and MOS for 2005 – derived from CR data 

(see III.A). Large-scale differences occur, where especially the Angolan and Western Zambian Miombo 

forests contrast the southern savanna ecotypes and the more arid Namibian landscapes. 

 

Please place Fig. 1 approximately here. 

III. Data 

A. Coarse resolution LSP: MODIS 

We used the 16-day Vegetation Indices (VI) Dataset at 250 m spatial resolution [32] to capture the CR 

LSP. The complete time series of the Terra (MOD13Q1) and the Aqua (MYD13Q1) MODIS sensors was 

incorporated. We used the Enhanced Vegetation Index (EVI) as a proxy for biomass development and the 

day-of-composite (DOC) information to recreate the actually sensed time series with a nominal temporal 

resolution of 8 days. The use of the exact acquisition dates can improve LSP accuracy [33]. The DOC was 

used as the time axis and the VI Usefulness Index [32] was used to weight the data points during the fitting 

procedure via a damped exponential transfer function. Observations that were flagged as clouds were 

assigned a weight of zero. 

CR LSP was obtained by applying the Spline analysis of Time Series (SpliTS) algorithm [34]. SpliTS is a 

computer code to fit spline models to remotely-sensed time series and to derive LSP. It is a data-driven 

method that is able to handle non-equidistant time series and to process the exact DOC. A set of 20 LSP 

parameters is derived for each pixel, including date-specific parameters, integral information about the 



 

growing seasons, amplitudes, etc. Our prediction approach can handle any of these parameters and 

simultaneously processes a number of p parameters for a given year y. CR LSP is reprojected on-the-fly 

with nearest neighbor resampling to match the extent, projection and resolution of the gridded MR data (see 

III.B). 

B. Medium resolution reflectance: Landsat 

We prepared a comprehensive Landsat surface reflectance dataset, which was specifically developed for 

its use in applications that demand simplified pixel-based access, higher-level radiometric input data and 

require as many observations as possible [35]. The atmospheric correction module includes radiative 

transfer code based correction [36] of multiple atmospheric scattering processes [37] with variable 

illumination/view geometry, a joint database- and image-based estimation of aerosol optical depth (AOD) 

over dark targets, adjacency effect correction and a spatio-temporally variable water vapor correction using 

MODIS data. Topographic normalization is achieved by a modified C-correction [38] with 30 m SRTM 

data. Cloud and cloud shadow detection is performed with a modified version of the Fmask algorithm [35, 

39-41]. All available Landsat Level 1T data (Landsat-5, Landsat-7, Landsat-8) were processed, are stored 

in a gridded data structure in binary image format, and are readily available as input candidates to our 

prediction algorithm. We define the term 'tile' as an entity of the processing grid and the term 'chip' as the 

gridded image datasets that are affiliated with a specific tile [35]. 4524 tiles with 1000 x 1000 px (i.e. 194 

WRS-2 frames) are needed to cover the study area and 963,563 chips (originating from 20,940 full Landsat 

images from 2001–2012) were considered to predict MR LSP. 

Fig. 2 displays the temporal density of all processed Landsat images per month from 2001–2012. When 

considering all tiles (Fig. 2a), there is usually an observation within four nominal Landsat repeat cycles (i.e. 

64 days) throughout the year on average. A large proportion of the data (90% quantile) is characterized by a 

lower repeat coverage. There is a pronounced seasonality where the repeat coverage in the drier months 

(May-November) is less than two repeat cycles on average (32 days) and the coverage in the wet season is 

worse. If only considering tiles that are not part of orbital overlap areas (Fig. 2b), the temporal density is 

significantly worse. The repeat coverage in the drier months reduces to around four repeat cycles and the 

coverage in the wet season is very poor with an average revisit frequency of 90–100 days or more 

(December to April). A large proportion of the images (90% quantile) has significantly worse repeat 

coverage. Due to the relative proximity of the study area to the Equator, orbital overlaps are small, and as 

such Fig. 2b is more important than Fig. 2a in assessing if it would be possible to infer LSP reliably from 

this dataset for the complete area. In addition, the temporal density shown in Fig. 2 was not corrected for 

cloud coverage, which is high in the wet season and virtually zero in the dry season, and as such would 

decrease the repeat coverage even more – of a given pixel – in the wet season. The given data density does 

not allow us to infer LSP directly, especially when considering that the vegetation period coincides with the 

wet season (roughly November to April). 

 

Please place Fig. 2 approximately here. 

 

IV. Method 

The main assumption of our method is that a few MR observations are sufficient to separate image 

regions with similar phenology qualitatively, but are not suited to quantify LSP directly with high temporal 

precision – which in turn is possible using CR data. Therefore, we propose that CR LSP can be related to 

the evolution of reflectance through time at the medium resolution – provided that the MR images are 

distributed reasonably well over the year. As such, we aim to link the very accurate CR LSP to the 

corresponding MR spatial features by exploiting their specific spatio-temporal patterns. This is achieved by 

using the information from the local pixel neighborhood at both resolutions. This approach is somewhat 

related to the well-known STARFM code [21], though we do not remain in reflectance feature space but 

directly predict LSP from CR LSP and MR reflectance inputs. Based on a few assumptions on the 



 

reliability of the CR and MR data under different conditions, we define several proxies at both resolutions 

(subsections A-C) that define the final neighboring pixel’s weight (D). In order to increase the 

computational performance, the MR reflectance data are aggregated prior to the prediction (E). The general 

workflow of the method is outlined in Fig. 3; the corresponding sections are given in the corners of the 

boxes. 

 

Please place Fig. 3 approximately here. 

 

MR LSP is predicted using a focal filter approach with a circular kernel (kernel diameter k = 2·r + 1 with 

radius r). All pixels within r are considered to contribute to the prediction. The kernel size is the main 

tweakable input parameter and controls the level of detail of the prediction as well as processing time. 

In principle, the predicted MR LSP for pixel (x,y) and LSP parameter p, i.e. Mxy,p is obtained by 

computing the weighted mean of the neighboring CR LSP pixels (j,i), i.e. Cji,p with a moving kernel of size 

k: 

 

𝑀𝑥𝑦,𝑝 = ∑ ∑ (𝑊′𝑗𝑖,𝑝𝐶𝑗𝑖,𝑝)
𝑘
𝑖=1

𝑘
𝑗=1 ∑ ∑ 𝑊′𝑗𝑖,𝑝

𝑘
𝑖=1

𝑘
𝑗=1⁄ , (1) 

 

where 

(x,y), (j,i), k: Central pixel, neighbor pixel, kernel size. 

p: Index for LSP parameter. 

Mxy,p: Predicted medium-resolution LSP of central pixel. 

Cji,p: Coarse-resolution LSP of neighbor pixels. 

W’ji,p neighbor pixel weight. 

 

Note that the rejection criteria are not accounted for in Eq. (1) for simplicity, e.g. the use of circular 

kernels. 

In order to solve Eq. (1), we need to set up a weight W’ji,p for each neighboring pixel (j,i) in order to 

calculate the MR pixel value at (x,y). As outlined before, we weight the neighboring pixels according to 

several prediction proxies (A-C): 

 

A. Spectral distance 

As the CR LSP is assumed to be related to the evolution of MR reflectance, a neighboring pixel (j,i) 

should contribute more to the weighted mean if it is spectrally similar to (x,y). The spectral similarity is a 

proxy for the probability that the adjacent pixel is characterized by similar surface conditions, which 

increases the probability of phenological similarity. We measure the spectral distance Sji by calculating the 

Mean Absolute Error (MAE) between the spectra at (x,y) and (j,i): 

 

𝑆𝑗𝑖 =
1

𝑛𝑏
∑ |𝜌𝑥𝑦,𝑏 − 𝜌𝑗𝑖,𝑏|
𝑛𝑏
𝑏=1 , (2) 

 

where b is the MR spectral band and nb is the number of bands (see IV.E for details). 

High values of Sji indicate a large spectral distance and should not be used, as (x,y) and (j,i) do not belong 

to the same land cover class. Similar to STARFM [21], the prediction is of higher quality if only within-

class pixels are used. Nevertheless, there must also be enough pixels to make a good prediction. We use a 

dynamic cutoff threshold for Sji: Smax. We start with an Smax of 0.05 MAE, which is a very strict cutoff 

threshold. If not enough pixels contribute to the prediction, we iteratively increase Smax by a factor of 2 until 

more than nmin neighboring pixels are available. Nevertheless, we only allow four iterations to avoid the 

prediction strength of the weighted mean being weakened too much. We dynamically determine nmin based 

on k, where nmin is 0.5% of nk (the number of pixels in the kernel): 



 

 

𝑛𝑘 = 𝑘2𝜋 4⁄  (3) 

 

𝑛𝑚𝑖𝑛 = 0.5 ∙ 𝑛𝑘 100⁄  (4) 

 

Fig. 4 schematically illustrates the prediction process with arbitrary data. The MR reflectance (only one 

MR band) and the CR LSP are shown in (a-b). The spectral distance proxy is displayed in Fig. 4c and 

assumes low values for spectrally similar pixels. 

 

Please place Fig. 4 approximately here. 

 

B. Medium resolution heterogeneity 

We propose that CR LSP is more representative at the MR scale if the CR sub-pixel heterogeneity is low. 

Therefore, we compute the spatial heterogeneity for every band in the MR spectral data. The overall 

heterogeneity score Tji is the heterogeneity metric of the band with the greatest heterogeneity. We use a 

focal standard deviation filter to infer the heterogeneity with a kernel size of 11 px; the full width at half 

maximum (FWHM) of the line spread function in the scan direction is approximately 10 MR pixels for the 

red MODIS band [42], which we rounded to the next odd number. The kernel size is adjustable in order to 

permit the usage of other combinations of MR/CR data. 

The higher Tji is, the more heterogeneous is the CR sub-pixel surface. Fig. 4d displays Tji for the arbitrary 

MR data in (a) and Tji is highest where two cover types in the MR data adjoin. 

C. Coarse resolution heterogeneity 

We propose that CR LSP is also more representative at the MR scale if the CR LSP itself is spatially 

homogeneous. This is because it is more likely that the CR sub-pixel heterogeneity is low when the pixels 

are also homogeneous at their inherent resolution. Moreover, if the CR LSP is strongly heterogeneous, 

there are two adjacent CR pixels that have a substantially different phenology. As the real surface elements 

(as they would be sensed from an MR instrument) most likely do not match the CR pixel boundaries, the 

CR pixel boundary area cannot be used to estimate MR LSP reliably. Thus, we also compute the textural 

heterogeneity of the CR LSP for each parameter p. We use the same focal standard deviation filter as in the 

derivation of the MR texture. This filter accentuates the CR pixel boundaries if they are heterogeneous. 

The CR heterogeneity weight Uji,p is the estimated CR texture of p at (j,i). The higher Uji,p is, the more 

heterogeneous is CR LSP. Fig. 4e displays Uji for the arbitrary CR data in (b) and assumes the highest 

values in the pixel boundaries where the phenology differs substantially from CR pixel to CR pixel. 

D. Neighbor weight 

In the next step, the retrieved weights Sji, Tji and Uji,p are rescaled in order to avoid unit scale factors when 

calculating the total weight and to increase the flexibility of the presented methods when used with 

different continuous fields. In addition, rescaling increases the contrast between the best and the worst 

weights through a sigmoidal transfer function for emphasized usage of the best pixels in each kernel. 

Therefore we apply a range adjustment (the fractional term in Eq. (5)) to the individual weights Rji (Sji, Tji 

and Uji,p) such that all weights range from 0–1, where 0 is the best pixel in the kernel and 1 is the worst. 

The logistic S-shaped transfer function with range adjustment of the general form 

 

𝑅′𝑗𝑖 = 1 [1 + exp⁡(25 ∙
𝑅𝑗𝑖−𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛
− 7.5)]⁄  (5) 

 

is applied to all the weights Rji, where R’ji is the rescaled weight, i.e. S’ji, T’ji and U’ji,p. After transforming 

the weights, R’ji = 1 indicates a pixel that should contribute greatly to the prediction; R’ji = 0 does not 

contribute at all. 



 

The final neighbor pixel weight W’ji,p for the phenology descriptor p is then simply the product of the 

rescaled weights S’ji, T’ji and U’ji,p: 
 

𝑊′𝑗𝑖,𝑝 = 𝑆′𝑗𝑖 ∙ 𝑇′𝑗𝑖 ∙ 𝑈′𝑗𝑖,𝑝. (6) 

 

Fig. 4f displays W’ji,p, which assumes the highest values in areas where the three proxies Sji, Tji and Uji,p 

are small. The CR LSP Cji,p in (b) is finally averaged with Eq. (1) to predict the LSP of the central pixel, i.e. 

Mxy,p. The prediction is indicated by the highlighted MR pixel in (b) and is more similar to the pure CR LSP 

pixels that belong to the same MR land cover class in the bottom-right corner. 

E. Aggregation of MR data 

We feed the prediction code with MR reflectance from several seasonal windows within the year under 

consideration y. The parameterization of the window lengths and numbers is in control of the user and 

needs to be adjusted for different study areas. Based on an analysis of the CR LSP and on MR data 

availability, we defined four windows as they are documented in Table I. They approximate the main 

climatic seasons and their unequal duration compensates for the uneven MR data availability throughout 

the year. 

Each window is filled with the pixel-mean of all available clear-sky MR images. In a first attempt, only 

Landsat images that were captured with working Scan Line Corrector (SLC-on) are considered. If SLC-on 

data are insufficient, SLC-off data are also considered. Occasionally, a window is partly or completely 

unfilled after this procedure, because there was no valid observation at all. Due to the following statistical 

procedures, we cannot permit no-data observations, and fill those pixels with the pixel mean of the other 

windows. 

The MR data volume is reduced with a principal component analysis (PCA) of the windowed MR data. 

All components that explain at least 97.5% of the overall variance are retained. This step is not strictly 

necessary to produce good results, but it was merely introduced because of performance considerations. 

Fewer bands decrease the computational cost of obtaining Sji and the PCA retains the information that 

matters most for the discrimination of spectrally similar pixels. Afterwards, the components are normalized 

in order to avoid that Sji be merely driven by the 1st component (i.e. the overall contrast) as key information 

for the discrimination of phenological types is also inherent in other components. 

 

Please place Table I approximately here. 

 

V. Implementation 

The code is entirely based on open-source software and is written in C. The application programming 

interface (API) of the Geospatial Data Abstraction Library (GDAL) is used to reproject the MODIS data to 

match the Landsat tiles. The PCA was computed using the GNU Scientific Library (GSL) with matrix 

support provided by the Basic Linear Algebra Subprograms (BLAS) library. Shared memory parallelization 

was implemented by utilizing the Open Multi-Processing (OpenMP) API. The processing runs on a tile 

basis. In order to produce a seamless product, we append data of the neighboring 8 tiles to the tile under 

consideration. The number of appended lines/columns depends on the chosen kernel size k. 

VI. Algorithm test with simulated data 

In order to ensure that the presented approach performs as wanted - within the limits of its assumptions – 

we performed a simulation study. As such, (i) we generated an artificial simulated landscape that reflects 

observed landscape characteristics. We (ii) simulated corresponding MR reflectance and (iii) MR LSP 

based on a statistical analysis of recent Landsat data. CR LSP (iv) was inferred by degrading the MR LSP. 

We propose our method to be functional if the (v) MR LSP can be reasonably well restored by predicting it 

from degraded CR LSP and simulated MR reflectance inputs. 



 

(i) Southern African environments are generally composed of large wood-, shrub- and grassland patches 

with smaller agricultural and urban elements. A random multifractal map (Fig. 5a) was generated with 

QRULE [43], and we manually placed streets and defined six urban seeds. Built-up structures were 

randomly placed around the streets following a lognormal distribution with a penalty on the distance to the 

next seed. The structure orientation was inferred from street bearing and the width and height were varied 

by random numbers for the normal distribution. Constrained by knowledge about the occurrence of 

agriculture in different land covers as a function of distance to streets and preferably around settlements 

[44], fields with random sizes and orientations were also randomly placed in the landscape. 

(ii) Based on an existing MR classification [44], we extracted class-wise statistics (mean and standard 

deviation) within the left green, cool dry and hot dry season windows (Table I) from the 2013/14 Landsat-

7/8 time series to simulate MR reflectance images (Fig. 5b). This was achieved by assigning the class-

specific reflectance (+ noise) to the simulated landscape (using normally distributed random numbers while 

ensuring autocorrelation between the bands). The images were filtered (3 x 3 px lowpass) in order to add 

spatial autocorrelation and to avoid sharp transitions between land covers to approximate real satellite 

acquisitions better. 

(iii) Class-specific MR LSP statistics were inferred from the 2013/14 Landsat time series (mean and 

standard deviation). Analogous to (ii), normally distributed random numbers were generated and spatial 

autocorrelation was added. We exemplarily show results for the EVI amplitude (AMP, Fig. 6a) - as this 

parameter can be inferred from the densified Landsat-7/8 time series with sufficient precision. 

(iv) The MR AMP was degraded to 250 m (i.e. CR AMP, Fig. 6b) using a MODIS point spread function 

[42]. 

(v) Using the degraded CR LSP (iv) and simulated MR reflectance (ii) as input, we predict MR LSP 

(Fig. 6c) and assess if the presented approach is able to restore the simulated MR LSP (iii) reasonably well. 

The kernel size k was set to 200 px. The difference between simulated and predicted MR LSP is shown in 

Fig. 6d, and the statistical correlation as well as histograms are shown in Fig. 7. 

 

Please place Fig. 5 approximately here. 

Please place Fig. 6 approximately here. 

 

The predicted landscape patches are characterized by clearly defined boundaries (Fig. 6c) that are even 

slightly sharper than in the simulated AMP (Fig. 6a). AMP values were also predicted with high precision 

(see Fig. 7, R² = 0.84). It is very striking that the predicted AMP is less noisy than the inputs (homogeneous 

appeal in Fig. 6c) and the distinct LSP of different land cover classes can be better separated than in the 

simulated dataset (see the 1D-histograms in Fig. 7). This is caused by the average-based prediction process 

that strictly uses only the spectrally nearest neighbors. Fig. 6d depicts the difference between simulated and 

predicted AMP; 82.7% of all pixels differ by less than 0.025, which is approximately the error that can be 

expected from a radiometric pre-processing chain [45]. Nevertheless, there are also many pixels with 

higher differences, mostly as a result of the difference in noise between simulated and predicted AMP. The 

differences are highest in the dwarf shrub-/grasslands, which is also the land cover with highest variability 

in AMP and reflectance inputs; whereas the settlements and dense woodlands have low differences due to 

their low AMP and reflectance variability. There is also some remaining noise in the predicted AMP (Fig. 

6c), which occurs because of the noise-induced inseparability of similar land covers (partially overlapping 

normal distributions in simulated MR reflectance and AMP; see 1D-histogram in Fig. 7). In addition, there 

are also object size- and distance-related effects that clearly demonstrate the strengths and limitations of the 

presented approach. It is apparent that the prediction strength of the built-up class (street) rapidly decreases 

once the distance to the outskirts of the settlement exceeds the radius r (as indicated by the three circles). 

There were no neighboring pure built-up CR pixels and the street itself was too small (i.e. not even visible 

in the CR image). Analogously, any object that is smaller than the Field-of-View of the CR instrument (the 

FWHM of the line spread function in scan direction is approximately 10 MR pixels for the red MODIS 

band [42]) cannot be precisely predicted if there are no pure CR pixels within r, see e.g. the objects marked 



 

by ‘A’ and ‘B’ in Fig. 6. On the contrary, even very small objects can be predicted with sufficient precision 

if pure pixels exist nearby (see e.g. ‘C’ in Fig. 6). 

 

Please place Fig. 7 approximately here. 

 

VII. Application to real data 

We predicted the POS, EOS, MOS and SOS parameters for the 12 year period from 2001–2012 at 

Landsat spatial resolution for the entire study area. The kernel size k was set to 200 pixels. 

Fig. 8 displays prediction results (b) as well as the input CR LSP (a) for a phenologically diverse area in 

Southern Zambia (15.83°S, 27.93°E; R/G/B: POS/EOS/MOS for 2005). The location of the area is 

indicated by the “+” in Fig. 1. The sugar production in Mazabuka is Zambia’s biggest agricultural site and 

largest freshwater consumer [46]. Widespread irrigation causes a broad mix of phenology that contrasts 

against both the naturally occurring woodlands and the riverine vegetation of the Kafue River. The images 

reveal that the general composition of LSP is adequately preserved in the predicted image, which is also 

supported by the nearly identical histograms of CR and MR LSP (Fig. 8c). The prediction accounts for the 

mixed pixels in the CR image and has clearly defined object boundaries. This is especially pronounced in 

the very heterogeneous agricultural areas where e.g. the circular shape of the center pivots or the parcel 

boundaries were successfully reconstructed (see the enlarged subsets ‘A’ and ‘B’ in the right panel of Fig. 

8). Fig. 9 a-d and Fig. 10a-d depict the MR reflectance input for the four seasonal windows for the subsets 

‘A’ and ‘B’, respectively. The data availability was 1-2, 1-2, 4 and 1 SLC-on observations per pixel for the 

left wet, cool dry, hot dry and right wet season, respectively. The data availability was rather low in most 

windows, but the approach produces reliable results if at least one high-quality image per phenological key 

stage is available (as approximated by the seasonal windows). The windowed reflectance images allow for 

a qualitative separation of image regions with similar phenology. In addition, the MR heterogeneity Tji and 

the CR heterogeneity Uji,p of the POS, EOS and MOS parameters are also shown in Fig. 9 e-f and Fig. 10e-

f, and indicate pixels that are preferred for predicting the MR LSP (dark colors). The successful restoration 

of clearly defined MR patches like the agricultural parcels in Fig. 8 supports the validity of the presented 

procedure and the prediction is characterized by great spatial detail. 

Nevertheless, some features that are present in CR LSP are not preserved in the prediction, e.g. the cyan 

pixels marked by “?”. The temporal resolution of the few input windows might be too low, which would 

imply that this specific phenological process could not be properly disentangled. The three implemented 

prediction proxies might also be insufficient in this case, and further inclusion of other proxies might 

potentially mitigate the mismatch - provided that a further generally valid assumption can be developed. 

The prediction failed to match the CR LSP with well-defined MR objects that clearly contrast against the 

surroundings. The mismatch could also be caused by uncertainties in the processing chain of any input data 

source. The radiometric processing quality of the input Landsat data is generally sound (98.8% of all data 

was assessed [35] to be within the expected 2.5% algorithm accuracy [45]) – though it cannot be ruled out 

that single images are not perfectly corrected, which could e.g. be caused by using modeled AOD fallback 

values in areas where dark targets do not exist [47]. The observed artifacts could also be caused by 

compositing-related noise in MODIS VI data, which is known to affect the precise determination of LSP 

[48]. Though the effect of noise is reduced by applying a smoothing spline, remnant artifacts still occur. 

MODIS VI noise is especially pronounced in arid areas during the rainy season due to the substantially 

decreased high-quality observation frequency, remaining sensor view angle effects and residual cloud and 

aerosol contamination [48]. As the simulation (section VI) demonstrated the de-noising capabilities of the 

presented approach, it is likely that this noise was effectively flattened in the process. Nevertheless, we 

cannot address the source of this discrepancy with certainty. 

 

Please place Fig. 8 approximately here. 



 

Please place Fig. 9 approximately here. 

Please place Fig. 10 approximately here. 

 

VIII. Conclusions 

We developed a prediction approach that fuses coarse resolution LSP with medium resolution reflectance 

imagery. The required medium resolution data density is rather low. Nevertheless, the prediction quality 

severely decreases if images are not available at several phenological key stages throughout the year. If 

sufficient temporal sampling is not given any more, the main assumption of the method is violated and 

areas with similar LSP properties cannot be delineated due to the lack of temporal contrast. This is also the 

case if the temporal-spectral separability within the pre-defined windows is not sufficient. LSP is directly 

predicted at the finer scale, and thus the costly need for generating a dense image series at the target 

resolution is circumvented. The general landscape composition of LSP is well preserved in the prediction, 

and medium resolution objects are spatially well-defined and have very clear boundaries. LSP values are 

reliably transferred to the spatial structure at medium resolution. The method implicitly de-noises LSP, yet 

it preserves sharp edges. The size of the smallest reliably predicted object coincides with the effective size 

of the coarse resolution pixels (determined by FOV). Nevertheless, even significantly smaller elements can 

be successfully predicted if there are pure coarse resolution pixels within the search kernel – if not, the 

prediction strength decreases. The size of the kernel is the most important determinant regarding prediction 

quality, but also with respect to processing time. The results indicate that the generated medium resolution 

LSP is well-suited for its further usage. The method was presented to be used with southern African 

MODIS LSP and Landsat reflectance data, but the method is general enough to be also applied to other 

study areas, sensor pairs and continuous fields, e.g. SPOT, RapidEye or Sentinel-2 data and above-ground 

biomass [49]. 
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Figures 

 

 
Fig. 1 (a): Study area and coarse resolution LSP. KAZA TFCA: Kavango-Zambezi Transfrontier 

Conservation Area. The RGB-composite depicts the peak of season (POS, red), end of season (EOS, green) 

and minimum of season (MOS, blue) for 2005. The “+” indicates the subset in Fig. 8. (b): Histograms of 

the depicted data. 

 

 

 

 
Fig. 2.  Temporal density of the available Landsat images per month from 2001–2012. Statistics were 

calculated per tile and then averaged for the complete study area. (a): Temporal density in all tiles; (b): 

Temporal density in tiles that do not have orbital overlaps. The alternating bars in the background indicate 

intervals of 16 days (nominal nadir repeat coverage of a single Landsat system). 



 

 
Fig. 3.  Workflow of the presented methodology with references to the sections and subsections. 

 

 

 

 

 
Fig. 4.  Schematic illustration of the prediction process. In this example, 1 CR pixel equals 9 MR pixels. 



 

 
Fig. 5.  Simulated random landscape (a) and corresponding true color MR reflectance images (b) in three 

seasonal windows (left wet, cool dry and hot dry season). The marked regions in (a) are discussed in the 

text. The same stretch was applied to all images in (b). The size of the simulated landscape is 

1024 x 1024 px; the prediction radius r is 100 px. 



 

 
Fig. 6.  Algorithm test with simulated data. (a) simulated MR amplitude; (b) simulated CR amplitude; (c) 

predicted MR amplitude; (d) absolute difference between simulated and predicted MR amplitude. The 

marked regions in (d) are discussed in the text and are also shown in Fig. 5a. The monochromatic color bar 

refers to the amplitude values (a-c) and the right color bar refers to the absolute amplitude difference (d). 

The size of the simulated landscape is 1024 x 1024 px; the prediction radius r is 100 px. 



 

 
Fig. 7.  2D-histogram of simulated and predicted MR amplitude, bordered by the corresponding 1D-

histograms. The letters indicate the simulated land-cover clusters and the legend colors match Fig. 5a. 



 

 
Fig. 8.  Comparison of coarse-resolution LSP (a) and predicted medium-resolution LSP (b). The RGB-

composite depicts the peak of season (POS, red), end of season (EOS, green) and minimum of season 

(MOS, blue) for 2005. Selected areas are enlarged in the right panel (4x zoom). (c) Histograms of the 

depicted data; the lines refer to MR LSP and the polygons to CR LSP. 



 

 
Fig. 9.  MR reflectance input data (a-d), MR 

heterogeneity Tji (e) and CR heterogeneity Uji,p (f) 

for subset ‘A’ in Fig. 8. (a-d): Average reflectance 

for the four seasonal windows (Table I) with RGB = 

near infrared, shortwave infrared, red. The same 

stretch is applied to all images. (f): RGB composite 

of Uji,p for p = POS, EOS and MOS. 

 
Fig. 10.  MR reflectance input data (a-d), MR 

heterogeneity Tji (e) and CR heterogeneity Uji,p (f) 

for subset ‘B’ in Fig. 8. (a-d): Average reflectance 

for the four seasonal windows (Table I) with RGB = 

near infrared, shortwave infrared, red. The same 

stretch is applied to all images. (f): RGB composite 

of Uji,p for p = POS, EOS and MOS. 

 

  



 

Tables 

 

TABLE I 

DEFINITION OF THE SEASONAL WINDOWS 

seasonal window window start window end 

left wet season 312 (-1) 130 (0) 

cool dry season 131 (0) 218 (0) 

hot dry season 219 (0) 330 (0) 

right wet season 331 (0) 130 (+1) 

Definition of the seasonal windows used for selecting MR input. Values are day-of-year; the values in the 

brackets represent the year relative to the year under consideration y, which means that the ‘left wet season’ 

window starts in the previous year and the ‘right wet season’ extends to the next year. 
 


