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Abstract 14 

Fire spread information on a large scale is still a missing key layer for a complete description of fire regimes. 15 

We developed a novel multi-level object-based methodology that extracts valuable information about fire 16 

dynamics from Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data. Besides the 17 

large area capabilities, this approach also derives very detailed information for every single fire regarding 18 

timing and location of its ignition, as well as detailed directional multi-temporal spread information. The 19 

approach is a top-down approach and a multi-level segmentation strategy is used to gradually refine the 20 

individual object-membership. The multi-temporal segmentation alternates between recursive seed point 21 

identification and queue-based fire tracking. The algorithm relies on only a few input parameters that control 22 

the segmentation with spatial and temporal distance thresholds. We present exemplary results that indicate 23 

the potential for further usage of the derived parameters. 24 

 25 

Brief summary for the non-specialist reader 26 

A new strategy to derive detailed fire spread information from satellite imagery across large areas is proposed. 27 

Single fires are identified and described with respect to the timing and location of their ignition. The daily 28 

directional spread information of the fire events is also recorded during this process. 29 

  30 
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Introduction 31 

The assessment and evaluation of fire-prone ecosystems need a full understanding of the status, variability 32 

and change of land cover and land use systems (Stellmes et al. 2013). Wildfires are an important component 33 

in African landscape ecology for millennia (Clark and Bakker 1964) and are even vital for the maintenance, 34 

distribution and function of the savanna state (Bond and Keeley 2005; Staver et al. 2011). Therefore, it is of 35 

major importance to understand and describe all components of the prevailing fire regime (Van Langevelde 36 

et al. 2003), including the short-term fire behavior as well as the long term fire dynamics (Li 2000). Important 37 

long-term parameters include the fire type, frequency, seasonality, and intensity whereby fire intensity is 38 

largely determined by fuel load, its heat yield and fire spread (le Roux 2011). Areal information about the 39 

frequency, seasonality, and intensity can be readily obtained from standard fire products (Stellmes et al. 40 

2013). The fuel load can be obtained from biomass predictions (Lu 2006) and reasonable heat yield values 41 

can be approximated from literature; e.g. Trollope et al. (2004) tabulated values for African grass fuels. 42 

Whilst the short-term fire behavior is well understood for single mega fires (Cruz et al. 2012), detailed 43 

information for all fire events on the regional scale is scarce and not sufficiently explored. Region-wide 44 

information about fire behavior, such as per-fire spread rate and propagation direction, fire size, fire duration, 45 

and ignition source as well as areal aggregation into fire size distribution or ignition density, will allow for a 46 

deeper understanding of different fire regimes and ecological processes. Fire spread is dependent on a large 47 

variety of factors, including fuel arrangement (e.g. vertical structure and horizontal continuity), fuel condition 48 

(e.g. moisture, aeration, and compaction), fuel type (e.g. grass or canopy), fuel load, topography and local 49 

weather (le Roux 2011; Trollope et al. 2004), and as such, the complex interaction between fire spread and 50 

its determinants can be explored in more detail for large areas. Detailed information of fire sizes and pattern 51 

will allow for a more comprehensive assessment of ecological effects (Turner et al. 1997), and exploring 52 

ignition points and density can provide valuable insight about the anthropogenic influence on human-driven 53 

fire regimes (Archibald et al. 2009). Assimilating fire size distribution, as e.g. derived by Hantson et al. 54 

(2015) and fire propagation measurements into dynamic vegetation models improve simulations of global 55 
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carbon fluxes (Kantzas et al. 2015). Similarly, learned knowledge will also be beneficial for the enhancement, 56 

calibration and validation of fire propagation simulations, e.g. ignition points may serve as more realistic 57 

seeds for the propagation, which in combination with fire risk simulation assessments might support adjusted 58 

fire management strategies (Finney 2004; Mbow et al. 2004). Up to now, no readily available standard 59 

product about continuous fire spread exists, although algorithms like the flooding approach of Archibald and 60 

Roy (2009) already approached parts of the problem by deriving individual fire sizes. 61 

Loboda and Csiszar (2007) developed a fire spread reconstruction approach for boreal forests though their 62 

usage of active fire input data somewhat limits the widespread applicability. The Moderate Resolution 63 

Imaging Spectroradiometer (MODIS) Active Fire product (Giglio et al. 2003) can be regarded as a spatially 64 

fragmented, snapshot-like data product that has limitations on providing the continuously burned area 65 

(Pereira 2003), needed for precise per-fire size estimations and improved object separability (as spatially 66 

disconnected fire fronts can either be two separately ignited fires or one progressing fire). On the contrary, 67 

the MODIS Burned Area product (Roy et al. 2005b; Roy et al. 2002) is specifically tailored for providing 68 

the continuous areal burned extent.  69 

As such, we propose a novel multi-level object-based methodology that extracts valuable information about 70 

fire dynamics over large areas from burned area data. Besides the large area capabilities, this approach also 71 

derives very detailed information for every single fire regarding timing and location of its ignition and 72 

detailed directional multi-temporal spread information. 73 

Data and study area 74 

We use MODIS Burned Area data (Roy et al. 2005b; Roy et al. 2002) as input to our algorithm. The burned 75 

area product (MCD45A1) gives information about the areal extent and the approximate day of burning of 76 

each pixel at 500 m spatial resolution. It is a frequently used global data product that is updated on a regular 77 

basis, and as such it was chosen as input data source. However, other similar data sources may also be used 78 

as input to our proposed methodology. The smallest reliably detectable burned areas are approximately 1 km² 79 
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(Roy et al. 2005a). Burned areas are derived by applying a bi-directional reflectance function (BRDF) model-80 

based change detection algorithm (Roy et al. 2002), resulting in a nominal daily temporal resolution. The 81 

‘approximate’ day of burning is inferred with a nominal uncertainty of fewer than 8 days (Roy et al. 2005b), 82 

and the observed precision compared to active fire detections is better in most parts of the world (Boschetti 83 

et al. 2010): 50% and 75% of the detections are detected within 1 day and within 4 days, respectively. The 84 

precision is worse in areas with persistent cloud coverage at MODIS overpass time; e.g. in South-East Asia, 85 

only 75% of the detections are within the nominal accuracy of ±8 days. However, the non-perfect temporal 86 

accuracy results in some degree of spatio-temporal scatter which was needed to be reflected in the following 87 

algorithm design.  88 

The monthly burn date information is extracted from the hierarchical data format (HDF), and an image stack 89 

for the complete time series is compiled. Several MODIS tiles may be mosaicked to one single input file. 90 

The data need to be projected to a locally adapted coordinate system, as the generic MODIS sinusoidal 91 

projection is non-conformal. However, it needs to be stated that the requirement of conformality and equality 92 

of area cannot be satisfied with a single projection, and thus, small inaccuracies in either the directional or 93 

areal estimates are unavoidable. For our Southern African study area, we chose a Lambert Azimuthal Equal 94 

Area projection, centered in the middle of the study area at 18°S / 26°E. The reported fire sizes will be 95 

accurate, and the directional spread information might be distorted to a small degree as scale decreases 96 

radially as the distance increases from the center (Snyder 1987). The maximum directional distortion is 7.5° 97 

in azimuth, and for the majority of the study area it is well below this value; given that we gather directional 98 

information in coarse 45° intervals, we consider this acceptable. 99 

We developed the method in continental sub-equatorial Africa, as being one of the most fire-prone regions 100 

in the world (Dwyer et al. 2000) with little information about the spatial and temporal fire size distribution 101 

(Roy et al. 2005a). The study area ranges from the tropics to South Africa, where fires primarily occur in the 102 

savanna ecosystems (Scholes et al. 1996), due to a fire feedback mechanism that led to alternative stable 103 
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states of forest and savanna. Frequent burning suppresses recruitment of saplings to trees, while tree cover 104 

suppresses the amount of flammable grass fuel (Staver et al. 2011). The continental fire season coincides 105 

with the cloud-free dry season lasting from May to October (Scholes et al. 1996). However, the area is also 106 

home to a variety of different fire regimes, characterized by differences in the overall burned area, fire 107 

seasonality, frequency, and intensity (Stellmes et al. 2013). Therefore, the study area is an ideal testbed for 108 

fire-related algorithm development. 109 

Fire definition 110 

For the purpose of algorithm design, we formally define “fire” in the following. Fire is characterized by 111 

spatially continuous fuel consumption along an active fire front in any direction (head fire, back fire or flank 112 

fire), i.e. burned areas need to be spatially connected. The fire front is assumed to be active for a limited 113 

temporal window, and a fire might continue after a short smouldering / resting period within this window. 114 

Any ignition starts an individual fire; this also applies to secondary ignition due to spotting. As a compromise 115 

between real-world behavior and algorithmic considerations, individual fires remain separate after 116 

coalescence, and the fire propagation thereafter is partitioned into the original fires in order to generate a 117 

reasonable fire size distribution. Each fire contains exactly one ignition point. 118 

Methods 119 

We developed an approach that identifies the fire ignition points and tracks the growth of every single fire in 120 

MODIS burned area data. Highly valuable information about fire dynamics is recorded during this process. 121 

The workflow of the approach is outlined in Fig. 1 with references to the sections and sub-sections. The 122 

approach relies on a few tweakable input parameters that are summarized in table 1. The presented results 123 

were obtained with the default parametrization. 124 

 125 

Please place Table 1 approximately here (column-wide). 126 
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Please place Fig. 1 approximately here (column-wide). 127 

 128 

Derivation of the fire season 129 

Our algorithm processes each burning season individually, although the complete time series of the monthly 130 

burn dates is input at once; the seasons are processed in parallel using the OpenMP API. A main assumption 131 

is that a fire season lasts for one year and that there is only one fire per season and pixel. We are aware that 132 

this is not always the case but previously presented datasets for Southern Africa (Stellmes et al. 2013) 133 

indicated that multiple burns are rare, e.g. less than 0.59‰ of all burned pixels in the 2010 burning season. 134 

The start of the burning season is derived from the data and is defined as the month with minimum burning 135 

activity; in our study area the seasons start in January. Therefore, a single-layer input is compiled from the 136 

first recorded fire for each pixel (x,y) in a given season; see Fig. 2 (a) for an example. The burn date is 137 

encoded as the Day-of-Season (DOS) the land surface burned, i.e. days are measured relative to the start of 138 

the burning season. To lessen the impact of temporal detection inaccuracy in the MODIS burned area product, 139 

the seasonal input layers are smoothed using a spatially-adaptive lowpass filter with kernel radius Dl. 140 

Step one: fire tracking 141 

The basic idea is to identify the fire ignition points (ch. 1) and to track the growing fires (ch. 2) while 142 

proceeding continuously through time. New ignition seeds may be generated at each time step (ch. 3). 143 

Assuming that fires do not leap over larger distances, we segment the input fire layer in order to generate 144 

connected patches. These are referred to as Level-0 (L0) objects; see Fig. 2 (b) for an example. Each L0-145 

object may contain several individual fires which are attempted to be separated in the next steps. As such, 146 

our approach can be considered a multi-temporal top-down approach where a multi-level segmentation 147 

strategy is employed to gradually refine the individual object-membership. Optionally, L0-objects that are 148 
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smaller than nmin pixels may be deleted; nmin is a tweakable input parameter that allows the rigorous rejection 149 

of small and isolated fires (which might be false positive detections). If nmin is set to 0, all patches pass. 150 

1) Seed clump identification 151 

All pixels that were burned at DOS d = 1 are identified as fire seed point. As a consequence of the MODIS 152 

burned area processing strategy (Roy et al. 2002), the MCD45A1 product only provides the ‘approximate’ 153 

day of burning. As such, there are several seed points that actually belong to the same fire but are scattered 154 

and do not form one connected patch. This spatio-temporal noise necessitates a relatively complex rule-set 155 

of pixel-to-object membership. As such, the seed points sxy (with k being the number of seed pixels) are 156 

merged into seed clumps using a recursive approach; see Fig. 2 (c) for an example. We start with the first 157 

potential seed point sxy,0 and test if there is any sxy,k around it - within the seed search distance Ds. As a further 158 

constraint, sxy,k must also be a member of the same L0-object - if not, the seeds remain separate, i.e. two seed 159 

clumps. If a match is found, the procedure is recursively repeated until there is no matching sxy,k left. All sxy,k 160 

are then added to a new segmentation layer (Level 1) and are labeled with a unique patch identifier (ID) for 161 

each seed clump. This procedure is repeated until each sxy,k was transferred to the L1-segmentation, which 162 

holds the seed points of all L1-objects (starting at d = 1) with an ascending and unique patch ID. In addition, 163 

we record the centroid cxy of the seed clumps (≙ ignition point) in an associated array. In the case, that an 164 

ignition point is not within its L0-object, cxy is moved using a spiral search, i.e. it is snapped to the L0-object. 165 

In the following, fires may propagate from each seed point within a seed clump. 166 

2) Object tracking 167 

We proceed stepwise trough time with d = [2,366] and track the growth of each previously generated L1-168 

object with a queue strategy. Only pixels that (i) are at the edge of L1-objects (≙ fire front) and (ii) are 169 

temporally close enough to the current d (≙ active fire) are considered as potential growing points gxy. The 170 

temporal distance is controlled by an input parameter Dt. As such, each gxy is pushed into a first-in-first-out 171 

(FIFO) queue. After enqueuing the last gxy, the pixels (gxy) are dequeued one after another and it is tested if 172 
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there is a newly (time = d) burned pixel bxy within a search radius Dr, which belongs to the same L0-object 173 

as gxy. If so, this pixel belongs to the same patch and is labeled accordingly in the L1-segmentation. 174 

Afterward, this pixel is also enqueued (gxy) and new pixels bxy in its neighborhood may be appended. This 175 

process terminates once the FIFO is completely emptied; see Fig. 2 (d) and (f) for an example. The FIFO 176 

strategy was chosen to avoid a spatial bias as it would be present in a traditional recursive approach. 177 

Furthermore, variety in the image looping direction was implemented to prevent a local spatial bias in the 178 

case of fire coalescence and to fulfill the theoretical assumption that the fire propagation after coalescence is 179 

equally partitioned into the original fires. The looping direction is changed in every iteration as follows: (i) 180 

upper-left to lower-right, (ii) lower-right to upper-left, (iii) upper-right to lower-left and (iv) lower-left to 181 

upper-right. The same principle is also applied to the looping direction of the local search after dequeuing a 182 

burned pixel. 183 

3) Identification of new seed points 184 

All remaining pixels bxy which were burned at time d are assumed to be newly ignited fires (i.e. pixels that 185 

were too far away from existing L1-objects or are members of other L0-objects). Thus, new seed-points are 186 

obtained by using the previously described method (1) and the new objects are added to the L1-segmentation 187 

see Fig. 2 (e) for an example. Afterward, d is incremented and the alternating procedure between tracking of 188 

fires and adding new fires continues until the end of the season (see Fig. 1). 189 

 190 

Please place Fig. 2 approximately here (page-wide). 191 

 192 

Step two: re-assignment of non-seed patches 193 

On one hand, the involvement of the search distances enables the tracking of individual fires at all (due to 194 

the temporal noise within the MCD45A1 product). On the other hand, the use of the search distances also 195 
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produces some non-meaningful object assignments if the distribution of the burn dates and/or the patch 196 

shapes are unfavorable: multipart L1-objects within the same L0-object might occur. As we do not permit 197 

multipart-objects, a second step that enforces the detection of single-part fires was implemented. A real-data 198 

example is given in Fig. 7. 199 

We start by sub-segmenting the L1-segmentation (Level-2), such that each L1-multi-object part is assigned 200 

a unique patch ID. Each L2-object that does not contain a seed point, is assumed to be invalid and should be 201 

either merged with an adjacent L1-object or should become a self-contained L1-object with a new seed point. 202 

1) Re-assignment of invalid sub-patches 203 

Each invalid L2-object is investigated in detail in an iterative procedure. If there is, at least, one neighboring 204 

valid L2-object, the invalid patch might be reassigned to the valid one. A reassignment is realized if the mean 205 

temporal distance between the boundary pixels is less than 2∙Dt: the invalid object is labeled accordingly in 206 

the L1-segmentation and the L2-object is set to a valid state. In the case of multiple valid neighbors, the 207 

temporally closest object is selected. Parts of the boundary may not coincide with the location of fire 208 

progression, and as such, Dt was doubled for this purpose. This step is repeated until the number of invalid 209 

patches does not change anymore between the iterations. 210 

2) Conversion of invalid sub-patches to new objects 211 

If the latter iteration stopped before all objects are valid, the oldest invalid L2-objects (containing the oldest 212 

burn date pixels) are identified, new seed points and new L1-objects are created. The corresponding L2-213 

objects are set to the valid state. Afterward, the re-assignment procedure is resumed (1). This alternating 214 

procedure between re-assignments and converting invalid objects proceeds until all patches are eventually 215 

valid (see Fig. 1). 216 

Summary of obtained fire dynamics descriptors 217 

The presented method enables the retrieval of several highly valuable fire dynamics descriptors: 218 
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As we track and segment every single fire, we obtain information about the total number of fires, individual 219 

fire sizes, fire lifetimes, ignition times and locations. In addition, we also gather detailed spread rate 220 

information. We not only record the total spread rate (i.e. the growth of the burned area between every time 221 

step), we also record directional data: the spread rate is monitored in 8 directions. The directional spread is 222 

measured relative to the ignition points. We present the potential of the resulting data in the results section. 223 

Sensitivity analysis and model performance on simulated data 224 

A simulation study was performed to demonstrate the functionality of the approach with respects to the 225 

temporally inaccurate input data and to obtain an informed guess about the parameterization. For this purpose, 226 

a synthetic input image was generated; see Fig. 3 (a). Low DOS values were initialized in the four corners 227 

and the DOS values were increased towards the center, simulating four fires emerging from the corners and 228 

clashing at horizontal and vertical lines in the center. Noise was added to the simulated data using random 229 

numbers for the normal distribution with sigma = 3.5. The noise model overestimates the uncertainty 230 

observed in the MODIS data; 50% and 75% of the random numbers alter the values by less than 2.5 days and 231 

4 days, respectively. Only 22% of the random numbers are within 1 day. The fire tracking algorithm was 232 

applied to the simulated map using a multitude of parameter combinations (Ds = [2,15], Dr = [2,15], 233 

Dt = [1,3,5], Dl = [1,3,5]), and the resulting number of detected fires was visualized in Fig. 4. A bad 234 

parameterization results in a very large fire number, e.g. low Dr, whereas several parameterizations resulted 235 

in a correct segmentation. The correct fire number (4) is visualized with the black point signature. Although 236 

even very high thresholds result in correct segmentations, such a parameterization is not feasible in practice 237 

as it would have adverse effects on the delineation of small and densely packed fires. Based on this sensitivity 238 

study, which reflects the data uncertainty, and practical tests with the MODIS data, we found following 239 

parameterization instrumental: Ds = 10, Dr = 10, Dt = 5 and Dl = 3 (see table 1). If only isolated and large 240 

fires exist, larger distances (especially Dt) might be feasible. In areas where the date uncertainty is higher, 241 
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e.g. in cloud-dominated South-Eastern Asia, higher thresholds for Dt and Dl might be necessary. The resulting 242 

segmentation is displayed in Fig. 3 (b); the detected ignition points are plotted as point signatures. 243 

A similar simulation was performed to demonstrate the algorithm behavior in the case of fire coalescence; 244 

see Fig. 3 (c). Low DOS values were initialized in the upper and lower left corners and the DOS values were 245 

increased on the diagonals to the center, and from the center to the right margin, thus simulating a fire which 246 

progresses after coalescence. Noise was added to the simulation and the fire tracking algorithm was applied. 247 

The segmentation is shown in Fig. 3 (d); the detected ignition points are plotted as point signatures. The 248 

algorithm identified 2 fires and the fire progress after coalescence is shared equally by both fires. 249 

Please place Fig. 3 approximately here (column-wide). 250 

Please place Fig. 4 approximately here (page-wide). 251 

 252 

Results and discussion 253 

We applied the fire tracking algorithm to each season of MODIS operation, which in Southern Africa 254 

coincides with the calendar years. We parameterized the code with Ds = 10, Dr = 10, Dt = 5 , Dl = 3 and 255 

nmin = 2 (Table 1). A selected overview of obtained data is shown in Table 2. There are plenty fires in each 256 

season and the inter-annual number of fires is quite constant. The results of 2000 and 2001 should be 257 

interpreted with care though: Aqua was commissioned in 2001 and as such, the quality of the MCD45A1 258 

product is assumed to be worse till then. In addition, there were no data for June 2001 due to sensor outages, 259 

which could explain the lower numbers in 2001. Terra was commissioned in April 2000, therefore, there was 260 

no complete coverage for 2000. Nevertheless, the results should not be affected too much by this because the 261 

main fire season starts not until June (Stellmes et al. 2013). The remaining seasons have full coverage and as 262 

such they can be regarded as reliable. 263 

 264 
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Please place Table 2 approximately here. 265 

 266 

Fig. 5 (a-e) exemplarily displays some of the derived parameters for season 6 in a gridded representation 267 

(average values per 1-degree cell). Large differences in the fire regimes are apparent, where e.g. northern 268 

Angola is characterized by a large amount of fires (a) with relatively low size (b) and intermediate duration 269 

(c). The fire spread rate (d) is low to intermediate and the fires are ignited early in the dry season (e). Opposed 270 

to that, the fire regime in the Angolan / Namibian border region is very different. There are few fires (a), but 271 

they are large (b) and burn fast (c), resulting in large spread rates (d). Potentially, the late date of ignition (e) 272 

causes the prevailing grass fuel to be hard-dry, which might result in fast and hot, uncontrollable wildfires. 273 

For the majority of the study area, the results are expected to be reliable as the fire season coincides with the 274 

nearly cloud-free dry season, whereas there might be a higher inaccuracy in the tropics as persistent cloud 275 

coverage decreases the input data quality (Boschetti et al. 2010). 276 

Fig. 5 (f) is a detailed representation of the data in (b) and (e) for the subset indicated by the blue box (Angolan 277 

/ Namibian border region). Each individual fire is visualized, emphasizing the potential to derive per-fire 278 

parameters. The point centroids indicate the location the fire was ignited (cxy), the symbol size represents the 279 

fire size and the colors indicate the ignition time. 280 

As there are large differences between different fire regime descriptors, we propose to investigate a fire 281 

regime and its impact on the environment with a multitude of fire-related parameters due to the complex and 282 

partially contradicting information of single parameters. 283 

 284 

Please place Fig. 5 approximately here (page-wide). 285 

 286 
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A subset of the input data (smoothed burn dates) for season 6 and the L1-segmentation (black boundaries) of 287 

a large L0-fire  is shown in Fig. 6. We visualized the approximate burning trajectories (manually drawn) with 288 

arrows that originate in the detected ignition points. The L0-fire was burned between DOS 202 and 292,  and 289 

affected 5577.25 km² of land. Our algorithm was able to track the fire spread and segmented the objects 290 

reasonably. There are a number of clashing fires that cease after convergence, e.g. the fire marked by the 291 

green ignition point converges both with the blue and upper yellow one. Other fires are affected by 292 

coalescence, e.g. the fires marked by the yellow ignition point. They remain separate after coalescence and 293 

advance until they run into another fire (upper yellow fire) or cease otherwise (lower yellow fire). The L1-294 

segmentation of a subset (black box) is shown in Fig. 7, before (a) and after the re-assignment of invalid 295 

patches (b). As a consequence of the implemented tracking distance in combination with the FIFO strategy 296 

and the temporally inaccurate input data, the L1-segmentation is partly erroneous. This mainly applies to 297 

clashing or coalescing objects which are mixed up to a certain degree. The re-assignment step largely corrects 298 

for this problem and the resulting L1-objects are better defined after this procedure. Only smaller mixing 299 

artifacts remain along the object boundary. The re-assignment step enforces that each L1-object is spatially 300 

connected and has one ignition point. 301 

 302 

Please place Fig. 6 approximately here (page-wide). 303 

Please place Fig. 7 approximately here (column-wide). 304 

 305 

Fig. 8 (a) displays the total directional spread of the object marked by the blue ignition point in Fig. 6; the 306 

fire mainly moved westward. Fig. 6 clearly supports this. More detailed information on the directional spread 307 

of this fire is shown in Fig. 8 (c). The stacked spread rates per DOS are shown. The fire advanced in two 308 

main pushes to the West and then slowly progressed to North-West. The first push was also accompanied by 309 
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back and flank fires progressing in all directions, whereas the second push was merely in West direction, 310 

accompanied by progression towards North-West and South-West.  311 

Such detailed data exist for every single fire that was delineated with our algorithm. Fig. 8 (b) and (d) again 312 

display the total directional spread and the directional spread rates but cumulated for all fires in season 6. 313 

Fig. 8 (b) indicates that there is no predominant direction as the directional spread is dependent on a complex 314 

set of variables, among them fuel arrangement (e.g. vertical structure and horizontal continuity), fuel 315 

condition (e.g. moisture, aeration, and compaction), fuel type (e.g. grass or canopy), fuel load, topography 316 

and local weather (le Roux 2011; Trollope et al. 2004). This is underpinned by Fig. 6, as different fires 317 

advance in entirely different directions. The timing of the fire season is clearly visible in Fig. 8 (d) and it is 318 

also evident that burning is not continuous, but there are fire waves. 319 

 320 

Please place Fig. 8 approximately here (column-wide). 321 

 322 

Conclusions and outlook 323 

We developed a multi-level object-based fire-tracking algorithm for use with MCD45A1 data. We were able 324 

to extract numerous valuable parameters during the tracking process. The resulting dataset contains very 325 

detailed and in part novel information on the movement of fires regarding 326 

• the location and time of the ignition, 327 

• the duration of burning, 328 

• the total size,  329 

• the directional sizes, 330 

• the total daily spread rates and 331 

• the directional spread information. 332 
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Such data is inferred for every single fire and paves the way for several future analyses, enabling the 333 

derivation of still missing fire regime descriptors at larger scales that provide additional knowledge of fire 334 

dynamics. The derived parameters might thus help to improve the discrimination of different fire regimes in 335 

a spatially explicit manner and hence, provide new insights about ecological impacts and effects of differing 336 

fire management practices (Turner et al. 1997), and thus support the development of adjusted fire 337 

management strategies (Mbow et al. 2004). Vegetation dynamics can be more precisely described and 338 

modelled using measured fire size distribution over larger regions (Hantson et al. 2015), and can thus improve 339 

the accuracy of global carbon simulations (Kantzas et al. 2015). The anthropogenic influence of ignition and 340 

fire propagation might be better understood (Archibald et al. 2009) and fire propagation simulations may be 341 

enhanced, calibrated and validated (Finney 2004). 342 

The algorithm is based on only a few tweakable input parameters and can be easily applied. The input 343 

parameters control the segmentation, where the spatial and temporal distance thresholds dictate how the 344 

multi-scale objects are assembled. We developed the method in Southern Africa, but it can easily be applied 345 

to other parts of the world. It would also be possible to input other burned area products – or non-fire data, 346 

provided their structure is similar; e.g. multi-temporal clearing or flooding datasets.  347 

Acknowledgment 348 

The MODIS MCD45A1 data product is courtesy of the online Data Pool at the NASA Land Processes 349 

Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) 350 

Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov/data_access). This work was funded by the 351 

Federal Ministry of Education and Research under contract number FKZ-01LG1201C as part of the Southern 352 

African Science Service Centre for Climate Change and Adaptive Land Management project. We thank the 353 

reviewers and editors for their very helpful and constructive comments that significantly improved the quality 354 

of the manuscript. 355 



 

17 

 

Conflict of Interest 356 

The authors declare no conflict of interest 357 

  358 



 

18 

 

References 359 

Archibald S, Roy DP, Van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology 360 
15(3), 613-630.  361 

 362 

Archibald S, Roy DP (2009) Identifying individual fires from satellite-derived burned area data. 2009 IEEE International Geoscience and Remote Sensing 363 
Symposium Proceedings, pp. 160-163. 364 

 365 
Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20(7), 387-394.  366 

 367 
Boschetti L, Roy DP, Justice CO, Giglio L (2010) Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. 368 
International Journal of Wildland Fire 19(6), 705-709.  369 

 370 
Clark JD, Bakker EMVZ (1964) Prehistoric Culture and Pleistocene Vegetation at the Kalambo Falls, Northern Rhodesia. Nature 201(4923), 971-975.  371 

 372 
Cruz MG, Sullivan AL, Gould JS, Sims NC, Bannister AJ, Hollis JJ, Hurley RJ (2012) Anatomy of a catastrophic wildfire: The Black Saturday Kilmore East fire 373 
in Victoria, Australia. Forest Ecology and Management 284(0), 269-285.  374 

 375 
Dwyer E, Pinnock S, Gregoire JM, Pereira JMC (2000) Global spatial and temporal distribution of vegetation fire as determined from satellite observations. 376 
International Journal of Remote Sensing 21(6-7), 1289-1302.  377 

 378 
Finney MA (2004) FARSITE: Fire area simulator: model development and evaluation.  379 

 380 
Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment 87(2–3), 381 
273-282.  382 

 383 

Hantson S, Pueyo S, Chuvieco E (2015) Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography 24(1), 77-86.  384 

 385 
Kantzas EP, Quegan S, Lomas M (2015) Improving the representation of fire disturbance in dynamic vegetation models by assimilating satellite data: a case study 386 
over the Arctic. Geosci. Model Dev. 8(8), 2597-2609.  387 

 388 
le Roux J (2011) The effect of land use practices on the spatial and temporal characteristics of savanna fires in Namibia. Ph.D. dissertation Thesis, Friedrich-389 
Alexander-Universität, Erlangen-Nürnberg,  390 

 391 
Li C (2000) Fire regimes and their simulation with reference to Ontario. In 'Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes 392 
in Ontario.' (Eds AH Perera, DL Euler and ID Thompson) pp. 115-140. (UBC Press: Vancouver, Canada)  393 

 394 
Loboda TV, Csiszar IA (2007) Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product. Global and 395 
Planetary Change 56(3–4), 258-273.  396 

 397 
Lu D (2006) The potential and challenge of remote sensing‐based biomass estimation. International Journal of Remote Sensing 27(7), 1297-1328.  398 

 399 
Mbow C, Goı̈ta K, Bénié GB (2004) Spectral indices and fire behavior simulation for fire risk assessment in savanna ecosystems. Remote Sensing of Environment 400 
91(1), 1-13.  401 

 402 
Pereira JMC (2003) Remote sensing of burned areas in tropical savannas. International Journal of Wildland Fire 12(4), 259-270.  403 

 404 
Roy DP, Frost PGH, et al. (2005a) The Southern Africa Fire Network (SAFNet) regional burned‐area product‐validation protocol. International Journal of Remote 405 
Sensing 26(19), 4265-4292.  406 

 407 
Roy DP, Jin Y, Lewis PE, Justice CO (2005b) Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote 408 
Sensing of Environment 97(2), 137-162.  409 

 410 



 

19 

 

Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based 411 
expectation approach. Remote Sensing of Environment 83(1–2), 263-286.  412 

 413 
Scholes R, Kendall J, Justice C (1996) The quantity of biomass burned in southern Africa. Journal of Geophysical Research: Atmospheres (1984–2012) 101(D19), 414 
23667-23676.  415 

 416 
Snyder JP (1987) 'Map projections--A working manual.' (USGPO)  417 

 418 
Staver AC, Archibald S, Levin S (2011) Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92(5), 419 
1063-1072.  420 

 421 
Stellmes M, Frantz D, Finckh M, Revermann R (2013) Fire frequency, fire seasonality and fire intensity within the Okavango region derived from MODIS fire 422 
products. In 'Biodiversity & Ecology 5 - Special Volume: Environmental Assessments in the Okavango Region.' (Eds J Oldeland, C Erb, M Finckh and N Jürgens) 423 
pp. 351-362. (University of Hamburg)  424 

 425 
Trollope WSW, de Ronde C, Geldenhuys CJ (2004) Fire Behaviour. In 'Wildland Fire Management Handbook for Sub-Sahara Africa.' (Eds JG Goldammer and C 426 
De Ronde) pp. 199-217. (Global Fire Monitoring Center)  427 

 428 
Turner MG, Romme WH, Gardner RH, Hargrove WW (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecological 429 
Monographs 67(4), 411-433.  430 

 431 
Van Langevelde F, Van De Vijver CADM, et al. (2003) Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84(2), 337-350.  432 

  433 



 

20 

 

 434 

Fig. 1. Workflow of the implemented fire tracking algorithm with references to the sections and sub-435 

sections. 436 

 437 
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 438 

Fig. 2. Step-by-step visualization of the fire tracking algorithm with arbitrary data in a simplified form. The 439 

numbers indicate the burning date (DOS) or the L0-segmentation, respectively. Different colors denote 440 

different L1-objects. Red numbers indicate pixels that match the current d (DOS) and are selected for seed 441 

points sxy or fire growth pixels bxy; black numbers indicate pixels that are potential growing points gxy. Red 442 

arrows visualize the recursive seed point aggregation; black arrows visualize the first-in-first-out-based fire 443 

growth tracking. For demonstration purposes only, we set Ds = 2, Dr = 1, Dt = 1, Dl = 0 and nmin = 2, as 444 

such, complex skipping behavior is not demonstrated. The change of looping direction was also not taken 445 

into account for simplicity. 446 

 447 
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 448 

Fig. 3. Simulated burned area maps (a,c) and resulting segmentation (b,d). The detected ignition points are 449 

superimposed as point signature and the L1-objects are labeled. (a–b): four clashing fires were simulated. 450 

(c–d): two coalescing fires were simulated. 451 

 452 
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 453 

Fig. 4. Sensitivity study for the simulated burned area map in Fig. 3 (a), depicting the number of delineated 454 

fires. The z-axis is drawn logarithmic; the correct number of fires (4) is plotted as black point signature. 455 

The fire tracking algorithm was applied to the simulated map using a multitude of parameter combinations 456 

with seed search distance Ds = [2,15], tracking distance Dr = [2,15], temporal distance Dt = [1,3,5], and 457 

lowpass kernel size Dl = [1,3,5]. The surfaces are drawn with dependence on Ds and Dr for different Dt and 458 

Dl values in (a–i). 459 

 460 
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 461 

Fig. 5. Spatial visualization of various fire descriptors for fire season 6. (a-e): Aggregated parameters; 1-462 

degree cells were used for averaging. (a): Fire density, i.e. number of fires per grid cell. (b): Fire size in 463 

km². (c): Fire lifetime in days. (d): Fire spread rate in km²/day, i.e. fire size / lifetime. (e): Ignition date as 464 

Day-of-Season. (f): Fire size (indicated by symbol size), ignition time (colors) and location of ignition 465 

(symbol centroid) for all individual fires in the marked subset, i.e. the blue box in (a-e); please note that the 466 

symbol sizes are drawn with a root-based transfer function. The blue grid matches the 1-degree cells in (a–467 

e). 468 

 469 
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 470 

Fig. 6. Ignition points, L1-segmentation and burn dates for a large L0-fire in season 6. Other L0-fires are 471 

drawn in grey. The approximate burning trajectories are visualized with arrows that have their origin in the 472 

detected ignition points; trajectories are drawn manually for illustration purposes only. The area in the box 473 

is shown in Fig. 7. 474 

 475 
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 476 

Fig. 7. Ignition points and L1-segmentation for a large L0-fire in season 6. Other L0-fires are drawn in 477 

grey. The area corresponds to the box in Fig. 6. The L1-segmentation is shown before (a) and after the re-478 

assignment of non-seed patches (b). The colors indicate different L1-objects. 479 

 480 
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 481 

Fig. 8. (a): Total directional spread of a large fire in season 6 (Fig. 6, blue signature). (b): Total directional 482 

spread of all fires in season 6. (c): Stacked directional spread rates of a large fire in season 6 (Fig. 6, blue 483 

signature). (d): Stacked directional spread rates of all fires in season 6. The directions are computed relative 484 

to the ignition point. The specified burned area was calculated under the assumption that each pixel was 485 

completely burned. The analysis was performed in a locally adapted Lambert Azimuthal Equal Area 486 

projection, as such directional information might be distorted to a small degree. 487 
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Table 1. Summary of the tweakable algorithm parameters. 489 

Symbol Meaning Unit Default 

Ds search distance for seed aggregation pixel 10 

Dr search distance for fire tracking pixel 10 

Dt temporal distance for active fire detection days 5 

Dl kernel radius for smoothing the burn dates pixel 3 

nmin minimum size of burned area pixel 2 

 490 

Table 2. Number of fires, total size, average/maximum size and average/maximum lifetime of all fires 491 

in continental southern Africa per season. 492 

Sizes are reported in km², lifetimes in days. The sizes were calculated under the assumption that each pixel 493 

was completely burned. 494 

Season 
Number of 

fires 
Total size 

Average 

size 
Max. size 

Average 

lifetime 

Max. 

lifetime 

1: Jan.–Dec. 2000 129,137 1,021,884.2 7.91 2237.00 5.97 108 

2: Jan.–Dec. 2001 117,588 843,537.2 7.17 3527.75 4.99 92 

3: Jan.–Dec. 2002 158,635 1,060,113.2 6.68 2107.50 5.93 127 

4: Jan.–Dec. 2003 146,026 1,195,291.8 8.19 2046.50 6.69 147 

5: Jan.–Dec. 2004 142,287 1,276,033.2 8.97 1842.00 6.96 126 

6: Jan.–Dec. 2005 154,378 1,241,147.5 8.04 1666.75 6.61 131 

7: Jan.–Dec. 2006 144,724 1,254,867.8 8.67 3924.75 6.81 133 

8: Jan.–Dec. 2007 141,742 1,139,115 8.04 2771.25 6.40 148 

9: Jan.–Dec. 2008 141,898 1,223,572.5 8.62 4572.75 6.68 132 

10: Jan.–Dec. 2009 137,141 1,125,402.2 8.21 2018.75 6.52 120 

11: Jan.–Dec. 2010 148,310 1,332,798.8 8.99 2443.75 6.77 165 

12: Jan.–Dec. 2011 144,501 1,300,076 9 3413.25 6.62 117 

13: Jan.–Dec. 2012 143,025 1,188,823.8 8.31 4409.50 6.47 126 

14: Jan.–Dec. 2013 146,920 1,182,310 8.05 1882.00 6.74 146 

15: Jan.–Dec. 2014 141,245 1,120,408.8 7.93 1925.25 6.57 134 

 495 


