

EnMAP Research, Mission Synergies & Future Perspectives

Luis Guanter

German Research Centre for Geosciences (GFZ) Helmholtz Centre Potsdam Section 1.4: Remote Sensing

Imaging Spectroscopy (aka Hyperspectral Remote Sensing)

- Spectroscopy → study of the interaction between matter and radiated energy specifically looking at what wavelengths of light are emitted or absorbed by an object in order to characterize materials.
- Remote sensing & imaging spectroscopy: airborne or spaceborne imaging spectrometers measuring the spectrum of solar radiation reflected by Earth materials.

Image Formation in Hyperspectral Remote Sensing

I maging Spectroscopy & Science

→Quantitative mapping for a wide range of research fields

→Great potential for new (and unexpected!) applications

International Scenario of Spaceborne Imaging Spectroscopy

The not-so-happy story of spaceborne imaging spectroscopy for Earth observation:

- Current missions → So-called "technology demonstrators"
 - Low data quality and limited acquisition capability
 - Examples: EO-1 Hyperion (USA NASA, 2000) & CHRIS/PROBA (UK/ESA, 2001), designed for a 1-year lifetime!

Space-based imaging spectroscopy – CHRIS-PROBA

The CHRIS/PROBA system (UK/ESA):

- Launched in 2001, still operating
- Conceived as a Technology Demonstrator
- Hyperspectral/multiangular system
 - VNIR: 412-1050 nm, up to 62 bands
 - 5 Observation angles (0° , $\pm 36^\circ$, $\pm 55^\circ$) per acquisition

ASSOCIATION

• 13 km swath, up to 17 m per pixel

EO-1 Hyperion

- Technology demonstration project operated by NASA-GSFC and USGS.
- Launched in 2000, still operating. Operations are likely to be stopped in 2016.

Specifications:

- Swath = 7.5 km
- Ground sampling distance = 30m
- Spectral sampling ~10nm
- Spectral coverage 220 bands
 - 70 VNIR 356 1058 nm
 - 172 SWIR 852 2577 nm
- Nominal SNR: 160 VNIR, 40 SWIR

→ Only spaceborne imaging spectrometer ever providing VNIR-SWIR data!!

EO-1 Hyperion, Acquisitions

Helmholtz Centre

POTSDAM

Hyperion Imagery in the USGS EDC Archive Jan 1, 2001 through April 21, 2005 Since June 2009 \rightarrow Open data policy, acquisitions on-demand at no-cost

ASSOCIATION

International Scenario of Spaceborne Imaging Spectroscopy

- The not-so-happy story of spaceborne imaging spectroscopy for Earth observation:
 - Most of imaging spectroscopy applications rely on airborne spectrometers → heritage from AVIRIS (NASA-JPL, since 1987)
 - There are more imaging spectrometers for planetary observation than for Earth observation!

EnMAP (launch 2018) expected to fill this gap in "operational" spaceborne imaging spectroscopy

- EnMAP: Environmental Mapping and Analysis Program
- Spaceborne mission aimed at reducing current limitations in global imaging spectroscopy data
- Open data policy

- Core funding from the German Federal Ministry of Economics and Technology
- Currently under construction phase, launch end 2018

GFZ

EnMAP – Main Mission Parameters

- Push-broom imaging spectrometer
- Sun-synchronous orbit, 11h LTDN
- Spectral range
 - VNIR: 420 nm to 1000 nm
 - SWIR: 900 nm to 2450 nm
- Spectral sampling distance
 - VNIR ~6.5 nm
 - SWIR ~10 nm
- Ground sampling distance 30 m
- Data acquisition
 - Swath width 30 km
 - 1000 km/orbit
 - 5000 km/day
- Revisit time
 - 27 d nadir
 - 4 d with 30° across-track pointing
- ♦ Mission lifetime ≥ 5 years

Key mission characteristics for scientific use of EnMAP

- Up to 4 days revisit time with tilted obs.
- Ground segment distributing geometrically-corrected reflectance data
- Co-existence with Sentinel-2 & Landsat-8
- Open data policy

High-performance imaging spectroscopy system for Earth observation

ASSOCIATION

EnMAP Data Products

- Level 0 data digital number data
- \rightarrow Radiometric correction
- Level 1B data radiometrically calibrated radiance data
- \rightarrow Geometric correction
- Level 1C data radiometrically calibrated radiance data in a map projection
- \rightarrow Atmospheric correction
- Level 2 data Surface reflectance data in a map projection

"Raw data" (digital numbers) → Calibrated Radiance → Geographical projection → Surface reflectance

User products

EnMAP acquisition plan

EnMAP Acquisitions:

- Restricted to 1000 km/orbit and 5000 km/day
- Based on user requests
- Daily acquisition plan driven by priorities and cloud probability

Priority	Request
1	Internal user
2	Support for catastrophic events
3	Registered users (Cat.1) excellent proposals
4	Registered users (Cat.1)
5	Non-registered users (Cat.2)
6	Requests beyond fulfilled contingents
7	Background mission

ASSOCIATION

EnMAP Science Advisory Group (EnSAG) DLR Bonn GFZ Potsdam

LMU München

Luis

Guanter

Hermann

Kaufmann

Uni Trier

Joachim

Hill

Segl

Scientific leadership + Soils and Geology

Henning

Buddenbaum

Forests

Rogass

Förster

Theres

Küster

André Hollstein Godela Roßner Stefanie Schrader Sebastian Fischer **Christoph Straif**

Christian Chlebek

U. Lethb.

Mike Rast

Staenz

Agriculture **HU Berlin**

Wolfram

Mauser

Tobias

Hank

Patrick Hostert

Pedro Leitão v. d. Linden

Natural Ecosystems and Ecosystem Transitions

HZG Geesthacht

Hajo Krasemann

Roland Hong Yan Xi Doerffer

Coastal and inland waters

ESA

Scientific advisory

International members

Robert O. Green (NASA JPL)

Cindy Ong (CSIRO) Jose Moreno (U. Valencia)

DLR Oberpfaffenhofen

Andreas Müller

Storch

Uta Heiden

Sabine

Chabrillat

Tobias

Ground segment + Urban

EnMAP Science Plan

Content

- Research context and significance
- General mission framework
- EnMAP perspectives and impact
- Scientific exploitation strategy

www.enmap.org

Science Plan

of the Environmental Mapping and Analysis Program (EnMAP)

October, 2012

EnMAP preparatory activities

Main research lines (EnSAG):

- Agriculture
- Forest
- Ecosystems
- Soils & Geology
- Coastal and inland waters

Focus on the development of algorithms for the **EnMAP-Box**:

- Software for the pre-processing and scientific exploitation of EnMAP data
- Free, open source and platform independent

Download from www.enmap.org/?q=enmapbox

HELMHOLTZ

ASSOCIATION

EnMAP end-to-end scene simulations

Objectives:

- 1) Optimization of instrument design
 - Refinement of instrument specifications
 - Impact of instrumental effects on Digital Numbers
- 2) Generating a data base for algorithm development, validation and calibration
 - Reflectance and radiance for scientific applications
 - Digital Numbers for Ground Segment

Backward Simulation

ASSOCIATION

EnMAP end-to-end scene simulations

Simulation of (i) EnMAP-like TOA radiance images and (ii) L2 surface reflectance after pre-processing

Many simulated EnMAP data sets already available

EnMAP retrievals and simulations: methane point sources

- Plume detection algorithm based on fitting of CH4 and H2O absorption features around 2300 nm
- AVIRIS-NG airborne spectroscopic measurements from the US Four-Corners campaign used as a test bench for potential satellite-based CH4 retrievals

elmholtz Centre

AVIRIS & EnMAP: CH4 Retrieval

- Spatial and spectral resolution of EnMAP seems to be sufficient for the detection of large anthropogenic plumes
- Spectral resampling from AVIRIS NG to EnMAP was performed through cubic interpolation, which inevitably leads to spectral artifacts
- Simulation of SNR and radiometric accuracy needs to be further investigated

HELMHOLTZ

ASSOCIATION

EnMAP-flight campaigns

Data

EnMAP - Flight campaigns

A 10

earch

Idarwald/Hochwald (DF)

Forest

Home

http://www.enmap.org/?g=flightbeta

Applications

Airborne hyperspectral images and associated in-situ data

provided free of charge to science community under CC BY-SA Licence

Search **metadata portal** at www.enmap.org \rightarrow data

Datasets published as data publications (with DOI)

Technical Report will be provided with each dataset (documentation of data acquisition, processing, quality etc.)

Several hyperspectral airborne flight surveys have been carried out in the frame of the EnMAP preparatory program to support method and application development in the prelaunch phase. The metadata base below provides details about the campaigns, information about recorded airborne hyperspectral data sets and other data associated to the respective campaigns like field and laboratory measurements. Further, it informs about the availability of simulated EnMAP and Sentinel-2 data. Contact details of the data owners are given for interested researchers regarding data exchange. The data listed in this metadata base is freely available for scientific purposes.

All data on this website are provided free of charge and under a Creative Commons Licence CC BY-SA 3.0 Unported Licence and is subject to the following terms and conditions:

HySpex VNIR-1600

11

GFZ Helmholtz Centre POTSDAM

ASSOCIATION

Munich (April 2011)

GFZ Lauenburg (March 2015)

Helmholtz Centre

Schools & Young EnMAP

Trier (September 2010)

LMU HARANS HUNCHER Hyperspectral mager

Berlin (September 2012)

hule 201

Schools & Young EnMAP

	Home	Mission	Science	Applications	EnMAP Box	Data
Projects Community	Young EnMAP published on Thu, 2011-11-03 00:00					
Young EnMAP Publications Events	Young EnMAP is a group of young researchers interested in sharing ideas and experience the field of imaging spectroscopy. The group was founded during the first EnMAP summe school in Trier, Germany in September 2010.The members of YoungEnMAP are PhD students, early PostDocs and undergraduate stude based at various universities and research institutes in Germany. The YoungEnMAP activity					eriences in summer e students activities
Jobs Mailing list	include workshops, summer schools, exchang correspondence. The main objectives of You	e of young researche ngEnMAP are:	ers between insti	tutions, information ex	change via the webs	ite and email
Related Documents > Science Plan	 To enhance the communication between or research groups with similar research focut To exchange methods, experiences, knowl To boost interdisciplinary research approat To support the development of a strong solution 	ifferent research gro s edge and best practi ches ientific offspring in t	oups working in re ices he field of imaging	esearch projects funde g spectroscopy	ed in the EnMAP miss	ion and other

For posting an email to the YoungEnMAP list, use the address enmap_young@gfz-potsdam.de

Potential synergetic use of EnMAP and other EO missions with emphasis on land monitoring:

- 1. Other spaceborne imaging spectroscopy missions
- 2. Optical multispectral missions: Sentinel-2 & Landsat
- 3. ESA's Fluorescence Explorer (FLEX)

Potential synergetic use of EnMAP and other EO missions with emphasis on land monitoring:

- 1. Other spaceborne imaging spectroscopy missions
- 2. Optical multispectral missions: Sentinel-2 & Landsat
- 3. ESA's Fluorescence Explorer (FLEX)

Planned spaceborne imaging spectroscopy missions

DESIS (DLR Germany & Teledyne USA)

- 400-1000 nm, 3.3 nm resolution
- ~30m GSD & ~30 km swath
- Expected launch 2017 (Onboard ISS)

Prisma (Italian Space Agency)

- 400-1010 nm & 920-2500 nm, 10 nm res. + PAN 400-700 nm
- 30 m GSD & 30 km swath (HSI)
- Expected launch 2018 (???)

HISUI (JAXA Japan)

- 440-970 nm & 900-2500 nm, 10 nm & 12.5 nm resolution
- 30 m GSD & 30 km swath
- Expected launch 2018 (Onboard ISS)

SHALOM (Italy / Israel)

- 400-1010 nm & 920-2500 nm, 10 nm res. + PAN 400-700 nm
- 10 m GSD & 10 km swath (HSI)
- Two comercial hyperspectral satellites, no launch date set yet

HyspIRI (NASA JPL / GSFC USA)

- 380-2500 nm, <10 nm resolution + TIR bands
- 185 km swath

elmholtz Centre

- Extremely high uniformity, one single detector array
- Expected launch ???

Potential synergetic use of EnMAP and other EO missions with emphasis on land monitoring:

- 1. Other spaceborne imaging spectroscopy missions
- 2. Optical multispectral missions: Sentinel-2 & Landsat
- 3. ESA's Fluorescence Explorer (FLEX)

Europe's Sentinel-2A multispectral mission launched in June 2015

of better spatio-temporal resolution and spectral coverage than Landsat

Helmholtz Centre

Sentinel-2 Main Applications

- Part of the EU Copernicus programme (6 different "Sentinel" systems)
- S-2 focused on high resolution land monitoring:
 - land cover maps
 - maps of biogeophysical variables such as leaf chlorophyll content
 - acquisition and rapid delivery of images to support disaster relief efforts (flood, volcanoes, earthquakes,...)
- A huge amount of data with high spatial, and temporal resolution and a good spectral coverage (VIS-NIR-SWIR)

ASSOCIATION

Sentinel-2 Flight Segment – Orbit Parameters

- **o** Orbit mean altitude / Type
- Equator crossing time
- Coverage
- o Swath width
- Repeat period
- Mission life time

786 km / sun-synchronous 10.30 LTDN 84° N / 56° S 290 km 5 days based on two satellites 7 years

Sentinel-2 Band setting

Ground sampling distance of 10, 20 or 60 m depending on spectral channel: atmospheric correction, vegetation studies and Landsat/SPOT continuity, resp.

ASSOCIATION

Helmholtz Centre Potsdam

EnMAP & Sentinel-2

Sentinel-2:

- (+) wide spatial coverage, high spatial and temporal resolution
- (-) limited spectral information

EnMAP:

- (+) spectral information
- (-) medium spatial resolution, poor spatial coverage and temporal resolution

\rightarrow Calls for **synergetic use** of both missions:

- Data fusion to produce high spatial resolution hyperspectral data through "sharpening-like" methods
- 2. Hyperspectral data as a "microscope" for enhanced information over overlap areas in the multispectral images

Potential synergies of EnMAP with other EO missions

- Advanced methods for data fusion needed!
- Example: Yokoya et al., RS, 2016: "Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images"
- \rightarrow Sharpening of EnMAP data to 10 m through S-2 for mineral mapping

Color composite images of continuum-removed data using spectral channels potential affected by mineral absorptions (R: 2201 nm, G: 2159 nm, B: 2115 nm)

ASSOCIATION

Potential synergetic use of EnMAP and other EO missions with emphasis on land monitoring:

- 1. Other spaceborne imaging spectroscopy missions
- 2. Optical multispectral missions: Sentinel-2 & Landsat
- 3. ESA's Fluorescence Explorer (FLEX)

FLEX selected as ESA's Earth Explorer 8 in November 2015

Sector Sector	1.120	1	
obser	מחוע	the	earth

ESA **OBSERVING THE EARTH**

UNDERSTANDING OUR PLANET

SECURING OUR ENVIRONMENT

BENEFITING OUR ECONOMY

+ About Observing the Earth

ESA > Our Activities > Observing the Earth

旦▶≣

Earth Explorers

Press release

 FLEX mission to be next ESA Earth Explorer

More information

- FLEX report for mission selection SP-1330
- · Replay: User Consultation Meeting

Related links

- University of Valencia-FLEX
- Forschungszentrum Jülich
 - HELMHOLTZ ASSOCIATION

EO programmes

- The Living Planet
- Copernicus

ESA's Earth Observing missions

- Envisat
- ERS overview
- Earth Explorers
- Sentinels overview
- Proba-V
- Proba-1 overview
- Third Party Missions overview

NEW SATELLITE TO MEASURE PLANT HEALTH

FLEX concept

19 November 2015 ESA plans to track the health of the world's vegetation by detecting and measuring the faint glow that plants give off as they convert sunlight and the atmosphere's carbon dioxide into energy.

Yielding information about the health and stress of the planet's vegetation is important as the growing global population places increasing demands on the production of food and animal feed.

Following a rigorous selection process, the satellite will be ESA's eighth Earth Explorer, planned for launch by 2022.

Sun-induced chlorophyll fluorescence (SIF)

- Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by the photosynthetic machinery of green plants that can be linked to instantaneous photosynthesis.
- +10 year of SIF measurements from insitu and airborne spectrometers; first global measurements from satellites available since 2011.

SIF retrieval: in-filling of solar and atmospheric lines

POTSDAN

HyPlant: a high performance airborne spectrometer for SIF monitoring

Module 1: Imaging spectrometer (380 – 2500 nm) with 3 nm (VIS) and 10nm (SWIR) spectral resolution; 1-3 meters spatial resolution

Module 2: Fluorescence module (670 – 780 nm) with 0.25 nm (FWHM) and 0.11 nm (SSI)

Owned and operated by FZ Jülich

SIF vs Greenness

HELMHOLTZ

"Validation": are we really measuring SIF? HyFLEX airborne campaign – Grassland experiment

F₇₆₀ (W m⁻² sr⁻¹ nm⁻¹)

The application of Duron treatment on 9th Sept. caused an increase of **SIF** at 760nm up to **5** mW m⁻² sr⁻¹ nm⁻¹, **more than** the **double** of "natural" SIF values

Rossini et al., GRL, 2015

Duron blocks energy transfer in photosysnthesis without changing the pigments. Excess energy dissipated as fluorescence

Chlorophyll fluorescence as an indicator of plant biochemistry

- Example: Duron herbicide applied to a grassland carpet \rightarrow blocks energy transfer in * photosynthesis without changing the pigments; excess energy dissipated as fluorescence
 - \rightarrow Fluorescence provides information on plant biochemical processes

1.00

0.20

0.00

"Greenness"

Fluorescence

elmholtz Centr POTSDAN

GF

First global maps of sun-induced fluorescence (SIF) in 2011

Global SIF data sets

Upcoming missions with potential for SIF retrieval

- Bottleneck so far: coarse spatial resolution of global composites; best: MetOp/GOME-2, 0.5°~50km/pixel.
- Promising scenario for fluorescence monitoring in the near future:
 - Sentinel-5 Precursor (ESA/Copernicus/KNMI/SRON), ~end 2016
 - ESA Earth Explorer 8th FLEX, launch > 2022

	GOME-2	S5P/TROPOMI	observing the earth		
Data since/from	Jan 2007	End 2014	observing the earth		
Overpass time	Morning	Midday			
Spectral coverage	650–790 nm	675–775 nm	ESA UDSERVING THE EARTH UNDERSTANDING OUR PLANET SET	CORING OUR ENVIRONMENT BENEFITING OUR	ELUNU
Spatial sampling	Continuous	Continuous	+ About Observing the ESA > Our Activities > Observing the Earth	圖•重	Sea
Spatial resolution of single measurements	$40{ imes}80~{ m km}^2$	$7{ imes}7~{ m km}^2$	EO programmes • The Living Planet	EALTH	é
Spatial resolution of global composites	0.5°	0.1 °	Copernicus	of the world's vegetation by detecting and measuring the faint glow that plants give off as they convert sunlight and the atmosphere's carbon dioxide into energy.	Eart Pres · FLE ESA
Sensitivity of SIF retrieval to cloud contamination	High	Medium	Envisat ERS overview Earth Explorers	Yielding information about the health and stress of the planet's vegetation is important as the growing global population places increasing demands on the production of food and animal	• FLE sele • Rep Cor
Approx. number of clear-sky observations per day	3,500	~400,000	Sentnels overview Proba-V Proba-1 overview Third Party Missions overview FLEX concept	feed. Following a rigorous selection process, the satellite will be ESA's eighth Earth Explorer, planned for Laurch by 2022	Relat • Univ Vale • Fors Jülio

FLEX: ESA's Fluorescence Explorer

- First EO mission designed to measure and exploit fluorescence data.
- Goal: full characterization of terrestrial photosynthetic processes through SIF and ancillary measurements (PRI, pigments, temperature, ...).

Features:

- High spectral resolution spectrometer (FWHM~0.3-3 nm) in 500-800 nm
- 300 m pixel & 100 km swath
- Expected launch ~2022
- (if co-existing!) A fusion of FLEX and EnMAP data could be used for
 - sub-pixel analysis of vegetation biochemical parameters
 - Potential for down-scaling of products from 300 to 30 m.

A look into the future of imaging spectroscopy: Contribution to operational EO programmes and topics of direct societal impact

Potential contribution of imaging spectroscopy to operational EO programmes

Added-value HSI wrt MSI

- Land-cover/Land-use mapping
- Vegetation
 - Productivity & photosynthetic
 - Plant functional types & ecosystem composition
 - Plant biochemistry (pigments, liquid water content)
- Geology and soils
 - Mineral composition and abundance
 - Organic content in soils
- Inland and coastal waters
 - Chlorophyll and secondary pigments
 - Phytoplankton composition
- Hazards
 - Hydrocarbon content (plastic debris, oil spills)
 - Industrial CH4 emissions
 - Pollutants (e.g. acid mine waste)
 - Volcanic lava flow
- Cryosphere snow composition
- Urban materials & energy

Current Copernicus Land & Emergency Management Services

Global Copernicus Monitoring Services				
Vegetation	Biochemical composition, structural parameters			
Water	Water quality parameters			
Energy	Directional albedo, TOC-R			
Pan-European Copernicus Monitoring Services				
CORINE Land Cover	 er Land cover information at fine classification level (down to level of plant compositions, materials) 			
Local Copernicus Monitoring Services				
Urban Atlas	Urban land cover classes (down to material level), imperviousness			
Riparian Zones	Riparian ecosystem composition			
Natura 2000	Ecosystem composition, biodiversity variables			
Copernicus Emergency Management Services				
Natural and man-made disaster response	Mine waste, oil spills, CH4 emission, hydrocarbons			

2016-2025 GEOSS Societal Benefit Areas

GEOSS Societal Benefit Areas	
Biodiversity and Ecosystem Sustainability	Plant functional types and ecosystem composition, biodiversity variables
Energy and Mineral Resources Management	Mineral abundances, biomass as energy resource
Food security and Sustainable Agriculture	Crop biochemical composition, photosynthetic functioning, structural parameters Soil mineralogy, texture, organic carbon, soil moisture
Water Resource Management	Water quality, snow properties
Sustainable urban development	Urban land cover classes (down to material level), imperviousness
Disaster resilience	Mine waste, oil spills, CH4 emission, hydrocarbons

A look into the future of imaging spectroscopy

- Mid-term objective: hyperspectral remote sensing to replace/complement multispectral systems for operational monitoring services.
- Operational monitoring services (e.g. EC Copernicus Earth Observation programme): Earth observation data products providing key information for a number of society-relevant areas.
- ↔ High spatial and temporal resolution measurements required (and hence enormous amount of data): bottleneck for hyperspectral technology → First steps to investigate technical feasibility started in Germany and Europe.

Summary

- Imaging spectroscopy: state-of-the-art technology for the monitoring of the Earth's land surface.
- Enables "mapping" of key bio-geophysical and geochemical parameters in a wide range of disciplines including geology, water, vegetation and hazards.
- **EnMAP** has become the most promising mission for the international community.
- Large potential for synergies with Sentinel-2 and FLEX missions.
- Big expectations for imaging spectroscopy to contribute to operational Copernicus services in the near future.

Summary

- Imaging spectroscopy: state-of-the-art technology for the monitoring of the Earth's land surface.
- Enables "mapping" of key bio-geophysical and geochemical parameters in a wide range of disciplines including geology, water, vegetation and hazards.
- **EnMAP** has become the most promising mission for the international community.
- Large potential for synergies with Sentinel-2 and FLEX missions.
- Big expectations for imaging spectroscopy to contribute to operational Copernicus services in the near future.

Thank you for your attention!!

