DGPF Tagungsband 16 / 2007 — Dreilandertagung SGPBF, DGPF und OVG

From HyMap Imagery to Spatially Distributed Vegetation Wa-
ter Contents — A Comparison of Different Estimation Ap-
proaches Based on Canopy Reflectance Modelling

MICHAEL VOHLAND' & SEBASTIAN MADER?

Summary: In this study, a small portion of a HyMap image was used to compare the per-
formance of different strategies to invert a canopy reflectance model (PROSPECT + SAIL)
for the retrieval of vegetation water contents. For the classical strategy of iterative optimisa-
tion, the Nelder Mead Simplex method was applied. With reference to some ground valida-
tion data, this approach provided very reliable estimates, but it also suffered from its low
computation rate. As an alternative, model inversion was accomplished by means of a feed
Jforward Artificial Neural Network (ANN). The network was trained by a backpropagation
algorithm using thousands of spectra simulated by PROSPECT + SAIL in the direct mode.
Simulated spectra were also used to calibrate a Partial Least Squares regression model.
When applied to the HyMap image, the ANN approach provided results with a clear shift
towards higher estimates, but also highly correlated with the results obtained by numerical
minimisation. Furthermore, the spatial distribution of the retrieved data fields showed a
clear matching in terms of identical spatial patterns that were characterised by fractal di-
mensions. Clearly different from this, the PLS approach did not provide consistent results
especially for high water content values. The shortcomings can be traced back to the purely
linear modelling approach, which provides a less efficient generalisation capacity compared
to a properly trained neural network.

1 Introduction

Hyperspectral reflective data enable a detailed quantitative assessment of vegetation parameters
such as leaf area index, canopy chlorophyll or canopy water content. In case of image data, this
analysis benefits from the spatial coverage of the data and can provide spatially distributed vege-
tation data fields. This information is potentially appropriate to calibrate or validate spatially
distributed process models that make use of or provide plant canopy variables by means of crop
growth modelling or hydrologic and metabolic balancing.

In this study, hyperspectral image data of the HyMap sensor (Integrated Spectronics, Baulkham
Hills, Australia) with a ground resolution of 5 m were used to derive the canopy water content of
summer barley by means of a canopy reflectance model (PROSPECT + SAIL). For this purpose,
different techniques of model inversion were applied (numerical minimisation, Artificial Neural
Networks, Partial Least Squares Regression; see section 2), and the retrieved data were com-
pared quantitatively by statistical measures. For a selective validation, ground data of a total of
12 sub-plots were collected during the overflight. Furthermore, the spatial distributions of the
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stand variables resulting from the different approaches were studied in detail for their matching,
as this allows an assessment of the applied approaches’ consistency.

2 Retrieval of stand variables by canopy reflectance model inversion

Different techniques can be applied to extract canopy characteristics from measured remote sen-
sing data by inverting a canopy reflectance model. In the classical approach of numerical mini-
misation, measured reflectances are iteratively compared to model simulations until the best
match (global minimum) is found. Care must be taken (e.g. by using a range of initial solutions)
to get a reasonable approximation and not to get trapped by local minima. This may be — depen-
ding on the performance of the respective numerical algorithm — very time consuming and there-
fore computationally not feasible for the inversion of e.g. large image portions. As an alternative,
lookup tables (LUT) can be used to increase the rate of model inversion. In this approach, a data
base is generated containing sets of input variables and corresponding reflectance values simu-
lated in the direct modelling mode. In the inversion, reflectance measurements are compared to
the stored data to identify the closest cases and to extract the appropriate canopy variables.

Conceptually different approaches are provided by estimation models which first are calibrated
(to fit the response surface between reflectance values and canopy variables) and afterwards ap-
plied to retrieve estimates for the complete set of reflectance measurements of interest. For this
calibration, the use of synthetic databases simulated by physically based reflectance models is
recommendable as they can cover a wide range of parameter combinations (BARET et al., 2000).
For hyperspectral data, Partial least Squares (PLS) regression may be used. As the PLS factoring
is based on the variance of both the spectral information and the target variable, PLS regressions
usually exploit the information that is inherent in the data efficiently for a powerful prediction.
Even more sophisticated is the capacity of artificial neural networks (ANN) to provide estimates
of the complex response surfaces when being trained on hyperspectral data. Once a network is
trained, the network approach is computationally fast and therefore applicable to large spectral
datasets.

3 Materials

The study site is located near Newel in the Bitburger Gutland (Rhineland-Palatinate, Germany),
where one field (4.7 hectares) cropped with summer barley in 2005 was selected for further in-
vestigation. For the Bitburger Gutland, a data set of the HyMap airborne imaging sensor was
acquired on the 28th of May (acquisition time: 9:01:20 UTC) during the HyEurope 2005 cam-
paign. The HyMap data provide 126 bands with bandwidths ranging from 12.9 to 21.3 nm that
cover a spectral range from 434 to 2486.5 nm (central wavelengths of the first and last band); the
ground resolution was approximately 5 m.

In the preprocessing, an across-track illumination correction was performed for a spatial subset
excluding forested areas. The FLAASH (Fast Line of-sight Atmospheric Analysis of Spectral
Hypercubes) module of ENVI™, based on the MODTRAN4 radiation code (MATTHEW et al.,
2000), was used for the atmospheric correction. A parametric geometric correction was per-
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formed by integrating a high resolution digital elevation model, GPS ground control points and
flight navigation data provided with the HyMap data using the PARGE™ software (SCHLAPFER
& RICHTER, 2002). Some noisy bands (e.g. those near the water vapour absorption features) were
eliminated; thus, a total of 114 spectral bands were finally used for the image inversion.

On the 27th and 28th of May, spectroradiometer measurements using an ASD Field Spec II in-
strument (Analytical Spectral Devices, Boulder, CO) were performed for a total of 12 sub-plots
with a size of 50 cm x 50 cm. The spectral readings were taken integratively over the sub-plots’
area with nadir view in the principal plane. Afterwards, the exact position of each sub-plot was
located using a differential GPS (GPS Pathfinder Pro XRS; Trimble, Sunnyvale, CA). The sub-
plots’ above ground plant material was harvested, the fractions of leaves and stalks were sepa-
rated from each other and weighed separately in the laboratory. After dehydrating the material at
105°C for 24 hours, the total water contents of both fractions were calculated by subtracting the
dry weights from the previously measured fresh weights.

4 Methodology — PROSPECT + SAIL modelling approach and applied
inversion techniques

For this investigation, the PROSPECT model describing the optical properties of plant leaves
(BARET & FOURTY, 1997) has been coupled with the SAIL model (VERHOEF, 1984), a 1 D turbid
medium radiative transfer model that is suited for homogeneous vegetation canopies. Leaf reflec-
tance and transmittance from 400 to 2500 nm is described by PROSPECT as a function of the
leaf mesophyll structure parameter N, the chlorophyll a+b concentration (Cyp), the leaf equiva-
lent water thickness (Cy) and the leaf dry matter content (Cy,). For a given illumination and
viewing geometry, SAIL calculates the canopy bidirectional reflectance using the leaf optical
properties, canopy structure (leaf area index LAI, mean leaf inclination angle 0, hot spot size
parameter s) and the reflectance of the underlying soil (ps). The parameter skyl refers to the at-
mospheric conditions and describes the fraction of diffuse illumination.

However, several sets of model parameters may produce very similar or even fully identical
spectral signatures. This parameter equifinality is one main reason for the ill-conditioned nature
of model inversion and may be reduced by reasonable constraints in the inversion procedure
(CoMBAL et al., 2002). For this purpose, we fixed some parameters (N to 1.3, s to 0, and skyl to
0.1) and coupled the equivalent water thickness and the leaf dry mass at a ratio of 4:1; this ratio
equals a foliage moisture content (FMC) of 400 % and can be assumed to be a typical value for
fresh plant material (for a detailed discussion refer to VOHLAND & JARMER, 2007). To define ps,
soil samples were taken in the field to identify a typical mean background soil reflectance that
was afterwards used in the inversion.

For the retrieval of the five parameters Ca, Cw, C, LAI and 6, we started with the classical
strategy to minimise the merit function numerically (Figure 1) using the Nelder-Mead Simplex
method (NELDER & MEAD, 1965). To increase the probability of identifying the merit function‘s
global minimum, we restarted the algorithm several times with a repeated recovery of the initial
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values with previous results. In the last minimisation loop, the coupling of C,, and C, was re-
moved to allow a comprehensible and moderate variation of the foliage moisture content.
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Figure 1: Numerical minimisation to invert PROSPECT + SAIL on the HyMap image.

In total, the numerical optimisation was performed for each pixel of the selected barley plot (n =
1899). A validation of these results was accomplished with the plant samples collected in the
field. For each sub-plot, the GPS measured positions were used to centre a window of 3 x 3 pi-
xels in the HyMap data. Within this window, we extracted the best-fitting pixel with the smallest
spectral deviations from the ground-measured spectra (see VOHLAND et al. 2006 for a detailed
description). For the 12 pixels finally selected, the inverted values of C,, x LAI were compared
to the measured water contents of the leaf fraction.

As an alternative approach, a three-layer feed forward ANN was trained on a number of sample
spectra simulated by PROSPECT + SAIL in the direct mode. For the data of this study, the num-
ber of input and output neurons was given by the number of spectral bands (114) and the model
parameters that were neither fixed nor known (LAI, 6;, Cyp, Cy, Cn). One critical point in this
approach is to select an appropriate number of hidden neurons, as it decides about the net’s ca-
pability to represent the reflectance model’s complexity as well as the net’s generalization
power. We followed the rough guide line of the geometric pyramid rule (MASTERS, 1993), by
which the number of hidden neurons is computed as the square root of the product of the number
of input and output neurons (n = 24 in this case). As activation function, the hyperbolic tangent
was used according to the study of KALMAN & KWASNY 1992.

The network was trained with an improved version of the RPROP algorithm (RIEDMILLER &
BRAUN, 1993; IGEL & HUSKEN, 2000). To prepare the training samples, PROSPECT + SAIL
were parametrised as described above; again, Cy, and C,, were coupled and their ratio was al-
lowed to vary between 3.8:1 and 4.2:1. In total, 152,000 parameter combinations were generated
by random to simulate canopy reflectances. From these data, 76,000 samples were selected ran-
domly for the training procedure, and the remaining samples were used as independent data to
test the network’s performance. Since the errors obtained with the test data did not differ signifi-
cantly from the errors that remained after the training, the ANN, now trained and validated, was
then applied to the image data.
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Different from ANN, PLS regression provides a purely linear model for estimating canopy vari-
ables. Similar to the principal component analysis (PCA), it produces non-correlated factor
scores from the original and highly correlated predictor variables (X, HyMap reflectance values)
to estimate Y (total water content of the leaf fraction). But it differs from PCA in that this extrac-
tion also reflects the covariance structure between X an Y. Thus, the selected components (latent
variables) are supposed to provide an optimum for explaining both X and Y. This step is fol-
lowed by a regression where the decomposition of X is actually used to predict Y (ABDI, 2003).
One critical point might be the lack of generalization power due to an over-fitting in the calibra-
tion. This can be avoided by model validation performed internally (cross-validation) or exter-
nally with an independent dataset. In our study, we randomly extracted 5,000 samples from the
ANN training data (PROSPECT + SAIL simulations) for the PLS model calibration, and another
5,000 samples were used for an external validation. After a successful validation (see section 5),
the PLS approach was also applied to the HyMap image.

The data fields retrieved for the summer barley plot applying the ANN and PLS approaches to
the HyMap image were then compared to the results of numerical minimization in terms of abso-
lute values and spatial patterns (see Figure 2 with an overall view of the selected procedure).
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Figure 2: Workflow to compare the different inversion techniques in this study.

5 Results & Discussion

In the numerical minimization that was performed for each pixel, we retrieved the water content
in g per cm? leaf area, which can be scaled up to the canopy (g x cm™ ground area) by multipli-
cation with the LAI. For a pointwise validation, the ground measured water contents of the leaf
fraction were utilised as described above. This validation proved reliable estimates in terms of
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the coefficient of determination (r?), the root mean squared error (RMSE) and the percentage
RMSE (RMSE x measured mean™") (Figure 3).

The retrieved values for the selected summer barley plot (n = 1899) were afterwards compared to
the statistics of the ANN- and PLS-approach. For the neural network, we found results for C,, x
LAI to be significantly higher than for the Nelder Mead inversion (Table 1). For a detailed com-
parison, the other canopy variables obtained by the neural network have also to be analysed.
Here, estimates for the LAI and the canopy dry mass were also clearly higher, whereas the re-
sults for 6; were very low and showed only little variation.
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Figure 3: Scatterplot of pixel-based numerical inversion results for LAl x C,, against measured field data
(50 x 50 cm? sub-plots, n = 12).

Table 1: Statistics of inversion results (n = 1899) obtained by numerical optimisation and ANN.

Numerical Minimisation (Nelder Artificial Neural Network
Mead)
mean stav® varcoeff’ | mean stdv® varcoeff’
LAI xC,, (g cm™) 0.1154 0.0168 14.55 0.1823 | 0.0177 9.69
LAI 5.93 0.53 8.67 6.71 0.43 6.40
LAI x Cp, (ug cm™®) 263.6 33.7 12.88 258.9 26.3 10.17
LAl xCp, (9 cm'z) 0.0278 0.0041 15.36 0.0425 0.0043 10.12
6 (°) 341 3.86 11.32 257 0.63 245
Cy X C,,.'1 4.15 0.09 212 4.29 0.09 2.07
mean RMSE (reflectance)® 0.0158 0.0264

# standard deviation

® coefficient of variation (%)

¢ inverted variables are used for spectra reconstruction in the direct mode of PROSPECT + SAIL; reconstructed

spectra are afterwards pixel-wise compared to the HyMap spectra, RMSE: mean for all wavelengths and pixels

Both approaches did not differ very much with respect to the quality of reproducing the HyMap
spectra (Table 2); thus, the differences in the obtained values of the canopy variables seem to
have evolved from the ill-posed problem of model inversion, and could have been partly trig-
gered by the slightly different coupling of C,, and C,, in both approaches.
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In the PLS approach, we first identified a model based on 8 latent variables to predict LAI x C,,.
For the 5,000 calibration samples covering a range from 0.01 to 0.24 g H,O per cm? canopy area,
this model provided a value for 12 of 0.981, and the RMSE (g cm™) amounted to 0.006; these
terms kept stable in the validation with another 5,000 test samples (1‘2 =0.977; RMSE = 0.007
g cm’z). Nevertheless, when applied to the HyMap image, results were not consistent, as LAI x
Cy was estimated with negative values for 211 pixels. Thus, we decided to apply a model with
only 3 latent variables that were still sufficient to explain more than 95 % of the LAI x C,, varia-
tion in the calibration. For the summer barley plot, this model provided a mean leaf water content
(canopy level) of 0.1367 g cm™, the standard deviation was 0.0138 g cm™. Although these values
seem to fit quite well to the results of Nelder Mead and ANN, the scatterplots reveal significant
differences (Figure 4).
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Figure 4: Scatterplots of pixel by pixel-results for LAl x C,, (n = 1899).

For the ANN results, there is a clear bias in the scatterplot, but the correlation with the Nelder
Mead estimates is rather high. The retrievals of the PLS regression seem to be unconfident for
the range beyond 0.12 g H,O x cm, as results do not match neither to the Nelder Mead nor to
the ANN-based estimates. However, for the pixels with medium to low water contents (PLS-
values <0.12 g em?, n= 168) correlation with Nelder Mead is satisfactory (r> = 0.69). The limi-
tation of the PLS approach for high values is probably due to its linearity, which restricts its ge-
neralization power in case of gradually saturating spectra paralleled by canopy variables still
changing distinctly.

Beyond a purely pixel-based quantitative analysis, the inversion results were compared for their
spatial distribution and the spatial details recognisable in the analysed image portion. This issue
is highly relevant, as one benefit from remote sensing data is the spatial coverage they provide,
so they can be used for calibrating or validating spatially distributed modelling approaches in
hydrology or landscape ecology, for example. First, the data fields retrieved by the different ap-
proaches were interpreted visually, which reveals clear similarities between the Nelder Mead and
ANN data, but also an obviously different spatial distribution provided by the PLS approach
(Figure 5).
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Figure 5: Spatially distributed results for LAl x C,, as retrieved by numerical minimisation, ANN and PLS
regression for the selected summer barley plot (bright pixels indicate high values; images were scaled
identically).

A more quantitative and normalized method to analyse the spatial variation is provided by the
calculation of fractal dimensions (D), that were derived from the variograms of our data fields. In
detail, the incremental slope (s) of the log-log plot of semivariance against sample interval (lag)
was used to calculate D as (3 —s/2) (XIA & CLARKE, 1997).
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Figure 6: Piece-wise fractal dimensions of the retrieved data fields (all approaches) for LAI x C,,.

For the results of Nelder Mead and ANN, the fractal dimensions show a nearly perfect match in
course (Figure 6), which verifies the analogy also found in the visual comparison. For the PLS
regression results, differences of D are more pronounced, and the value patterns are less congru-
ent. Beyond a distance of 60 m (12 pixels), all approaches show a clear scattering of D that can
be traced back to the sills of the variograms that are reached at this lag.

6 Conclusions

The following conclusions can be drawn from this study:

e The validation by the data of 12 ground sub-plots proved the retrieval of the canopy water
content (leaf fraction, LAI x C,,) by the Nelder Mead algorithm to be reliable and relatively
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precise. The neural network approach provided results with a clear shift to higher values.
Nevertheless, the estimates of both approaches were highly correlated and showed a good
match concerning their spatial distributions.

e A fast computation is feasible by using ANN (after being trained) and PLS regression. How-
ever, the latter did not provide dependable results when applied to the canopy reflectances
contained in the image data. Shortcomings might result from the linearity of this approach,
which cannot keep up with the more complex and — in our study — more efficient fitting ca-
pacities of properly trained neural networks.

e A larger image portion could be inverted rapidly by the neural network approach. As the
ANN results were consistent in terms of the spatial distribution obtained, the resulting data
field is most likely qualified to validate the output of e.g. spatially distributed process mo-
dels that make use of the canopy water content (plant growth or SVAT models, for exam-
ple).
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