Isotropy in oxides

two or more substances

- with same crystal structure
- do not form solid solution series
- which form similar crystal shapes

example:

rutile (TiO₂) and cassiterite (SnO₂) corundum (Al₂O₃) and hematite (Fe₂O₃)

XY₂O₄-bonds: spinel group

Spinel MgAl₂O₄

Magnetite (loadstone) Fe₃O₄

Chromite (Chromite iron ore) FeCr₂O₄

Magnetite

- Fe₃O₄
- cubic
- hardness 6
- density 5.2 g cm³
- frequently octahedral
- formed magmatic and metamorphic, or accumulated in placers
- it may include Gold or other heavy metals
- it may posses magnetic properties

Magnetite from Hargreavis, Brazil

Magnetite

Spinel: MgAl₂O₄ (Spinel) and Fe²⁺Al₂O₄ (hercynite)

Ausbildung von Spinellkristallen

- cubic
- hardness 8
- density 3.5 4.1 g cm³
- formed metamorphic and magmatic
- exsolution between magnetite and spinel due to the different ionic radius of Fe und Al
- a variety of colors: white, green, blue, rose, brown, black
- also placer mineral and gemstone

Spinel beside olivine

Orthorhombic (pseudo cubic) hardness 5 ¹/₂ density 4.0-4.8 high pressure phase in the earth mantle (400-10000 km depth) accessory in strong unterkieselten mantle melting

Perovskite

e

ten

seudokubisch)

Ti

CaTiO₃

Ca

Ti

Ca (Na, Fe²⁺, Ce, Sr)

Ca

Limonite Goethite

orthorhombic α -Fe³⁺OOH " γ -Fe³⁺OOH

Lepidocrocite

Limonite occurs during the weathering of Fe-minerals. → Oxidation zone sulfidic mineralization ("iron hat")

Most fine-grained to coarse and occurs as a coating to magnetite, hematite or pyrite, but also fibrous (variety brown iron ore).

Goethite (limonite) from Minas Gerais, Brazil.

hardness $(5 - 5^{1}/_{2})$ intermediary.

V. Group: carbonate, borate, nitrate

- most carbonates are colorless or white.
- hardness 3-4
- they possess a good cleavage after rhombohedral cleavage.
- carbonate are salts of carbonic acid H₂CO₃, analogue applies to the nitrates and borates.

- carbonates with small cations (e.g. Mg²⁺, Zn²⁺, Fe²⁺,Mn²⁺) crystallize in the calcite structure.
- while carbonates with big cations (e.g. Sr²⁺, Pb²⁺, Ba²⁺) crystallize in the aragonite structure.
- the carbonates of the dolomite series are structured analogous to the calcite structure, whit alternated layers of CaCO₃ and MgCO₃.

Chemical and isotopic tracer for paleoenvironment reconstruction:

 δ^{18} O-values (relative ratio of ¹⁸O to ¹⁶O about a standard normalized) δ^{13} C-values (relative ratio of ¹³O to ¹⁶O about a standard normalized) Mg/Ca-ratios in calcite or aragonite U/Ca-ratios in calcite or aragonite

Sr/Ca-ratios in calcite or aragonite

Stalagmite with variations of δ^{18} O, which reflect high-resolution changes of drop rates and precipitations during the last 5000 years (Kilian et al. in prep.) 13

Cations, which to be incorporated in carbonates:

Water-free carbonates

Calcite series

Rhodochrosite MnCO₃

- Calcite CaCO₃
- Siderite FeCO₃
- Smithsonite ZnCO₃
- Magnesite MgCO₃

Calcite (calc-spar)

- CaCO₃
- trigonal
- hardness 3

Calc-spar from St. Andreasberg, Harz

- stark reaction with hydrochloric acid
- can have a variety of arrays
- widespread mineral in sediments and in metamorphic rocks
- occurs also in carbonatites of continental rift zones

Formation of minerals of the calcite group

Ditrigonal scalenohedron

Hexagonal prism combined with rhombohedron

Basis pinacoid

Siderite and sphalerite

Magnesium and iron carbonates (magnesite, siderite and dolomite)

- hardness $3^{1}/_{2} 4$
- crystallize trigonal
- show perfect cleavage after rhombohedric cleavage ;
- sedimentary and metamorphic formed.