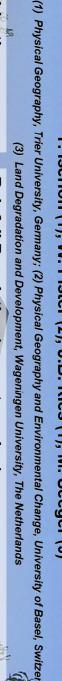
■ Universität Trie


Introduction and Main Objective

Design and calibration of the small portable rainfall simulator of Trier University

WAGENINGEN UNIVERSITEIT

WAGENINGENUR

T. Iserloh (1), W. Fister (2), J.B. Ries (1), M. Seeger (3)

Rainfall Regulation (current version)

1) Average spatial rainfall distribution a) and spatial rainfall variability b)

Concentric Pattern

→ Lowest intensities in the centre highest intensities at the rim

Because of better spraying characteristics, the previously used hollow cone nozzle (Hardi Syntal 1553-89 10) has been exchanged by a full cone by a flow meter and needle valve. water flow and pressure with a conventional valve to an exact regulation nozzle (Lechler 460.608). The rainfall regulation changed from regulating rainfall distribution, better drop spectrum and reproducibility of both was methodically improved in 2008/09 aiming on homogeneous spatial been used in Germany, Spain, Morocco and Burkina Faso since 1995. The small portable nozzle-type rainfall simulator of Trier University has

Calibration Methods

から できる

3) Rain Gauges 2) Calibration Plate Rainfall intensity

1) Laser Disdrometer (Thies)

Drop sizes/-fall velocities

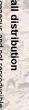
Spatial rainfall distribution

Main Parts of the Rainfall Simulator

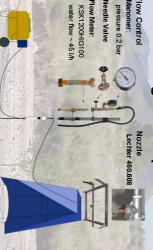
Nozzle-type Rainfall Simulator based on design by Calvo Cases et al. (1988) and Lasanta et al. (1994) ntensity 40 mm h

Nater Tank (max. 100 Pump max. 20 bar

flotor (97 cm³) otor Pump

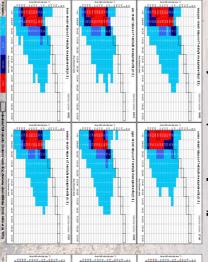

Rainfall Regulation (former version)

Hardi Syntal 1553-89 10 Conventional Valve



1) Spatial rainfall distribution

- Drop size distribution and fall velocity → Clearly heterogeneous and not reproducible rainfal
- → Low similarities with natural rainfall (velocity of small
- drops is too high, velocity of large drops is too low)


Contact: Dipl.-Umweltwiss. Thomas

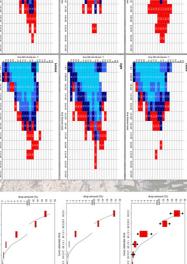
2a) Average drop size distribution and fall velocity on five positions [see 1)]

Average deviation from mean (%)

- 2a) → Complete naturally occurring drop spectrum is covered → The velocities of smaller drops often are similar to that of
- → Due to low fall heights, larger drops are too slow compared to natural rainfall droplets, maximum velocities: 3.4 to 5 m s-

natural ones.

- → Good reproducibility → Very low deviations where most drops are measured


2b) Drop size distribution and fall velocity: 2c) Drop size distribution variability 5.1 % -10.0 % maximum variability of 6.4 % 15 %

Very good reproducibility → Christiansen Uniformity 91 %

Deviation Class

0%-5.0%

85 %

- 2 b) → Highest deviations where the least drops are measured
- → Variability on total plot is caused by concentric rainfall distribution pattern
- and Marshall Palmer Distribution
- 2 c) → Drop distribution corresponds approximately to Marshall & Palmer Distribution (Marshall & Pa
- → Good reproducibility: Max. variability of drop amount is 28% in drop diameter class 0-0.49

Conclusions

- → Modifications clearly improved reproducibility as well as drop characteristic of artificial rainfall
- → Due to general physical limitations a still better simulation of natural rainfall is not possible with this device
- → The new setup proved worthwhile in laboratory tests and in field campaign

54286 Trier, Gennary, Phone: +49/(0)651 201-3390, E-ma