Hyperspectral cameras

In our lab, we have a HySpexVNIR 1600 and a HySpex SWIR 320m-e Hyperspectral Camera with a translation stage, a rotation stage, a lab frame and a light source. 

The cameras record images line by line in up to 160 spectral channels at 400 - 1000 nm (VNIR) and 1000 - 2500 nm (SWIR) wavelength. One line is made up of 1600 (VNIR) or 320 (SWIR) pixels. An image is created by scanning either by moving the object under the fixed camera (translation stage) or by moving the camera (rotation stage or airborne mode).

Some of our dataset are available for download at www.enmap.org/?q=flights (see also here).

HySpex zum Jungfernflug in einer Cessna eingebaut
Hyperspektralkamera im Aufnahmerahmen mit Lichtquelle und Objekten auf der Translationsbühne.
Ein mit der Hyperspektralkamera aufgenommenes Blatt in Echtfarbdarstellung mit Spektren von gesunden und geschädigten Stellen.
Scan einer inhomogenen Bodenprobe
Kleine Steine, links in Echtfarben, rechts nach einer MNF-Transformation
HySpex on Rotation Stage
Einsatz des Hyperspektralscanners im Gelände
Hyperspectral scan from a platform
Echtfarbdarstellung und unterschiedliche MNF-Kombinationen eines Hyperspektralmosaiks des Trierer Doms

Publikationen

H. Buddenbaum & J. Hill (2015): PROSPECT Inversions of Leaf Laboratory Imaging Spectroscopy – A Comparison of Spectral Range and Inversion Technique Influences. Photogrammetrie – Fernerkundung – Geoinformatik, 2015 (3): 231-240. DOI

H. Buddenbaum, G. Rock, J. Hill & W. Werner (2015): Measuring Stress Reactions of Beech Seedlings with PRI, Fluorescence, Temperatures and Emissivity from VNIR and Thermal Field Imaging Spectroscopy. European Journal of Remote Sensing, 48: 263-282. DOI

S. Dotzler, J. Hill, H. Buddenbaum & J. Stoffels (2015): The potential of EnMAP and Sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sensing, 7 (10): 14227-14258. DOI

S. Schreiner, H. Buddenbaum, C. Emmerling & M. Steffens (2015): VNIR/SWIR Laboratory Imaging Spectroscopy for Wall-to-Wall Mapping of Elemental Concentrations in Soil Cores. Photogrammetrie – Fernerkundung – Geoinformatik, 2015 (6): 423-435. DOI

M. Steffens, M. Kohlpaintner & H. Buddenbaum (2014): Fine spatial resolution mapping of soil organic matter quality in a Histosol profile. European Journal of Soil Science, 65 (6): 827-839. DOI

O. Stern, B. Paschmionka, J. Stoffels, H. Buddenbaum & J. Hill (2014): Abbildende und nichtabbildende Geländespektrometrie zur Untersuchung von Stressphänomenen an Buchenpflanzen. Photogrammetrie - Fernerkundung - Geoinformation, 2014 (1): 17-26. DOI

M. Steffens & H. Buddenbaum (2013): Laboratory imaging spectroscopy of a stagnic Luvisol profile - high resolution soil characterisation, classification and mapping of elemental concentrations. Geoderma, 195-196: 122-132. DOI

H. Buddenbaum, O. Stern, M. Stellmes, J. Stoffels, P. Pueschel, J. Hill & W. Werner (2012): Field Imaging Spectroscopy of Beech Seedlings under Dryness Stress. Remote Sensing, 4: 3721-3740. DOI

H. Buddenbaum & M. Steffens (2012): The effects of spectral pre-treatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Applied and Environmental Soil Science, Article ID 274903, 12 pages. DOI

H. Buddenbaum & M. Steffens (2012): Mapping the distribution of chemical properties in soil profiles using laboratory imaging spectroscopy, SVM and PLS regression. EARSeL eProceedings, 11 (1): 25-32. 

H. Buddenbaum & M. Steffens (2011): Laboratory imaging spectroscopy of soil profiles. Journal of Spectral Imaging, 2(a2): 1-5. DOI