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Abstract. Learned latent vector representations are key to the success
of many recommender systems in recent years. However, traditional ap-
proaches like matrix factorization produce vector representations that
capture global distributions of a static recommendation scenario only.
Such latent user or item representations do not capture background
knowledge and are not customized to a concrete situational context and
the sequential history of events leading up to it.
This is a fundamentally limiting restriction for many tasks and appli-
cations, since the latent state can depend on a) abstract background
information, b) the current situational context and c) the history of re-
lated observations. An illustrating example is a restaurant recommenda-
tion scenario, where a user’s assessment of the situation depends a) on
taxonomical information regarding the type of cuisine, b) on situational
factors like time of day, weather or location and c) on the subjective in-
dividual history and experience of this user in preceding situations. This
situation-specific internal state of the user is not captured when using
a traditional collaborative filtering approach, since background knowl-
edge, the situational context and the sequential nature of an individual’s
history cannot easily be represented in the matrix.
In this paper, we investigate how well state-of-the-art approaches do ex-
ploit those different dimensions relevant to POI recommendation tasks.
Naturally, we represent such a scenario as a temporal knowledge graph
and compare plain knowledge graph, a taxonomy and a hypergraph em-
bedding approach, as well as a recurrent neural network architecture to
exploit the different context-dimensions of such rich information. Our
empirical evidence indicates that the situational context is most crucial
to the prediction performance, while the taxonomical and sequential in-
formation are harder to exploit. However, they still have their specific
merits depending on the situation.

1 Introduction

Recommender systems are a mature field in research and engineering. They have
been applied in many diverse applications and the approaches and data sources
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used are equally diverse. Typically, specialized representation formalisms and
methods are devised and optimized to exploit the specific information best.
However, several applications of recommender systems in real world scenarios
are faced with other challenges that should be considered in order to provide
good recommendations. One factor is the consideration of context like location,
time, etc. [1]. Another challenge is to deal with complex environments that are
subject to greater variability and complexity of inputs to recommender systems
rather than simple ratings or reviews. In some cases, the information structure
that serves for recommendations is so complex that it is represented by a se-
mantic model as a knowledge graph [28]. Similarly, some applications require
more complex outputs than prioritized recommendation lists in the direction of
composite or sequential recommendations.

We describe details of a concrete in-use application of a mobile location-based
recommender system that makes use of semantic technologies for representing
the complex information structure as well as for user information obtained from
a social network. In this paper, we investigate three dimensions that provide
additional information: a) symbolic background knowledge, b) situation-specific
information and c) sequential information.

One illustrating example is a POI recommendation scenario, where a user’s
assessment of a situation depends on his preferences for a certain type of cuisines,
situational factors like time of day, weather or location and on the subjective
individual history and experience of this user in previous situations. For instance,
a restaurant shouldn’t be of interest to a user who just had something to eat.

An intuitive way of representing all this heterogeneous types of information
are temporal knowledge hyper graphs that contain time-stamped hyper-edges to
allow the extraction of the sequential history of previous interactions of a user in
similar recommendation settings. Hereby, each concrete setting is accompanied
by a list of contextual factors that are best modelled as an n-ary relation between
the user and the recommendation target. Also, each entity is accompanied by
symbolic background knowledge like taxonomical relations.

Knowledge Graph Embeddings (KGE) are a recent technique to transform
such symbolic knowledge into predictive models, which operate on latent vector
spaces. However, most current KGE methods produce exactly one embedding
for each entity instance and relation type specified in a static Knowledge Graph
(KG). Each embedding captures the global distributional semantic of the graph
from the perspective of this entity or relation. This does not fit well to context-
aware recommender systems.

In this paper, we test the hypothesis that a global KGE per entity and relation
is not adequate for many recommendation tasks. Consequently, there is a need
to customize static KGEs to situational and subjective contexts. More precisely
we argue that most KGE models cannot generate embeddings that capture the
current relational context and that contain the abstract conceptual background
information as well as the subject’s history of related observations.

Thus, we test different techniques to incorporate three dimensions of ad-
ditional information: a) An ontology describing POIs for symbolic background
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knowledge, b) n-ary relations for capturing situation-specific information and c)
sequential information about an individual’s previous history.

Given such a formalization of contextualized observations over time, our goal
is to learn embeddings that go beyond binary pre-trained KGEs by taking into
account an ontology and the sequential history of contextualizing factors. We
attempt that by a hypergraph- and a taxonomy embedding technique and re-
current neural networks. We make the following contributions:

– We propose a formal ontology for modeling abstract background knowledge
in recommenation scenarios (addressing dimension a) and feed it into Knowl-
edge Graph Embedding (KGE) methods.

– We apply a hypergraph embedding approach to include the situational con-
text (addressing dimension b).

– We model the temporal context of an individual with a recurrent neural
network

– We evaluate these methods on a context aware POI recommendation task
to gain insights for the individual benefits of the dimensions to the recom-
mendation performance.

2 Related Work

In this section we first survey previous work on the task of POI recommendation.
Some more recent approaches rely on knowledge graph embeddings, which we
also do in this work. Consequently, we discuss the fundamentals related to this
area in more detail next.

2.1 Recommender Systems for Location Based Social Networks

Context information is particularly important for location based recommender
systems where context like location, time, weather, or trip purpose has a large
influence on the POI to recommend. Recommender systems based on location
based social networks (LBSN) have been the subject of intensive recent research
activities, see [2, 35] for recent surveys. In-vehicle recommender systems provide
even more context information such as vehicle sensor based information about
occupants and driver, vehicle state, or surrounding traffic [19].

An early approach for POI recommendation based on models for human mo-
bility and their dynamics in social networks is described in [7]. Another early
approach for context-aware recommendation that considers social network infor-
mation, personal preferences and POI popularity is presented in [33]. Nousal et
al. [22] analysed simple measures such as popularity, category preference, tem-
poral preference, social filtering, with supervised learning using linear regression
model or decision trees for next place prediction. Baral et al. [4] propose a hier-
archical contextual POI sequence recommender that formulates user preferences
as hierarchical structure and exploits contextual trend to generate personalized
POI sequences. Those works are method-wise not directly related to our ap-
proach, which is focused on knowledge graph embedding methods.
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An approach presented by Baral et al. [3] describes a contextualized loca-
tion sequence recommender that generates contextually coherent POI sequences
relevant to user preferences exploiting recurrent neural networks (RNN) and
extended Long-short term memory (LSTM) networks. A method based on ma-
trix factorization to embed personalized Markov chains and localized regions for
successive personalized POI recommendation is used in [6]. Feng et al. [10] pro-
pose a personalized ranking metric embedding method (PRME) which jointly
models the sequential information and individual preferences. A fourth-order
tensor factorization-based ranking methodology that captures long- and short
term preferences simultaneously has been reported in [17]. We also investigate
methods in this directions by using an LSTM-based approach in one of our
experiments.

Even more closely related to methods investigated in this paper is a knowl-
edge graph embedding method that learns semantic representations of both en-
tities and paths between entities for characterizing user preferences described in
[24]. Another knowledge graph embedding based approach [29] jointly captures
the sequential effect, geographical influence, temporal effect and semantic ef-
fect by embedding four corresponding knowledge graphs (POI-POI, POI-Region,
POI-Time and POI-Word) into a shared low-dimensional space. A state-of-the-
art deep learning recommendation model has been reported in [20]. Categorical
features are represented by an embedding vector, generalizing the concept of la-
tent factors used in matrix factorization. A Spatial-Aware Hierarchical Collabo-
rative Deep Learning model (SH-CDL) that jointly performs deep representation
learning for POIs from heterogeneous features and hierarchically additive repre-
sentation learning for spatial-aware personal preferences is presented in [32]. [31]
propose LBSN2Vec, a hyper graph embedding approach designed specifically for
LBSN data which we also use in our experiments.

2.2 Knowledge Graph Embedding

In recent years, Knowledge Graph Embedding (KGE) has been a very vibrant
field in Machine Learning and Semantic Technologies, specifically in the area
of Representation Learning (see [13] for a survey). Numerous methods for em-
bedding knowledge graphs have been proposed and even more adaptations have
been published. KGE methods can be roughly characterized by the representa-
tion space and the scoring function.

The vector representations of entities and relations are traditionally Eu-
clidean Rd, but many different spaces like Complex Cd (e.g., in [26]) or Hy-
percomplex Hd (cmp. [34]) have been used as well.

Standard KGE methods don’t take into account temporal information or
contextual factors that influence the plausibility of a fact. However, there have
been attempts to address each limitation, as outlined next.
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2.3 Contextual Knowledge Graph Embeddings

From the Knowledge Graph perspective, hypergraphs with n-ary relations and
hyper-relational graphs with meta information encoded on the relations are ex-
ploited for modeling the context. Such approaches from Statistical Relational
Learning are based on graphical models and tensor factorization [23]. A more
recent approach extends the current KGE method SimplE [15] to hypergraphs [9]
but does not take into account temporal or sequential information. This approach
was used as the basis for our hypergraph embedding experiments. More details
on our adaptions can be found in section 4.2.

Embedding temporal dynamics of a knowledge graph and thus tackling (Lim2)
has received much attention recently. Knowledge graphs in which facts only hold
within a specific period and where the evolution of facts follows a sequence have
become increasingly available. This also increased the interest in learning em-
beddings that take the temporal information into account.

Basic approaches to temporal KGE model facts as temporal quadruples. They
are optimized for scoring the plausibility of (unkown) facts at a given point in
time [16], [8]. A more sophisticated approach is proposed in [18]. It even checks
the temporal consistency given contextual relations of the subject and object.
Besides the inability of those models to model n-ary sequential context, we are
also taking a different focus by using the temporal dimension to model the history
of experiences of a subject. A more entity-centric perspective is taken in [25],
which attempts to model the temporal evolution of entities, where [14] take a
relation-specific perspective instead. Similar to our approach, [27] proposes an
LSTM-based approach, which exploits relation-specific embedding of entities.

3 Capturing Taxonomical, Contextual and Sequential
Information for Recommendations

The goal of this paper is to investigate the potential of three different types
of information, namely taxonomical, contextual and sequential, for their use in
embedding-based recommender systems. We chose a knowledge graph as the un-
derlying data structure, since it allows to include all those information types in
one representation formalism. We first show how to model taxonomical informa-
tion, before including situational context and the sequential history.

3.1 Modeling Taxonomical Information

This section describes the POI Categories (POICa) ontology used for represent-
ing information about POIs mainly by exploiting their hierarchical relationships.

Conceptualizing and Formalizing The main objective of the POICa ontol-
ogy is focused on representing: 1) taxonomic knowledge, encoding hierarchical
information between different POIs, and 2) auxiliary knowledge, which com-
prises information for a specific check-in of a user in a particular POI including
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geo-spatial and temporal data, i.e. the location of the POI and the timestamp
information about the check-in action. The underlying structure of the POICa
ontology is built on top of Foursquare Categories3 where the core concept is
the POI. Several object and datatype properties describe a particular POI with
respect to its attributes and relationships with other concepts.

As depicted in Figure 1, POICa ontology comprises a number of subcate-
gories distributed in various levels, which for the sake of better readability are
highlighted with different colors. The first level under the POI concept includes
subcategories described in the following:

– Art and Entertainment - is the category for representing places related to
art, culture, music, exhibitions, etc.

– Education - are entities which provide education-related services and learning
environments.

– Professional Places - groups places which are involved or perform business
activities.

– Outdoors and Recreation - are places where the recreation is commonly re-
alized in natural settings.

– Residence - used to group POIs that mainly serves as living places.
– Restaurant - groups all types of restaurants split on various criteria, such as

cuisine.
– Shop and Service - used to group POIs which are dedicated for selling goods

or services.
– Transportation - containing POIs which enable carrying of people and goods

from one place to another.

Each of these subcategories is further specialized utilizing subClassOf axiom
in order to provide a detailed classification based on the shared characteristics,
such as the type of the activity they perform combining with regional infor-
mation. Several additional classes such EthnicRestaurant, SiteBasedRestaurant,
SpecializedFoodRestaurant are introduced with the aim of grouping restaurants
based on ethnicity or cuisine, style and flavour, respectively.

Alignment with and reuse of external ontologies In order to ensure inter-
operability with other information from different sources, we reused a number
of concepts from external ontologies such as Schema.org, FOAF, DBpedia, DC-
Terms and Weather4. For instance, in order to represent geo-spatial information
for a given POI the following concepts from DCTerms, Schema.org and DBpedia:
dct:Location, schema:PostalAddress and dbo:City are reused.

The current version of the POICa ontology contains 953 classes, 8 object
properties, 12 datatype properties and 4 annotation properties. In this paper,
our focus was to describe the core concepts that form the basis to understand
the conducted work from the taxonomic point of view.

3 https://developer.foursquare.com/docs/build-with-foursquare/categories
4 https://schema.org/, http://xmlns.com/foaf/0.1/, http://dbpedia.org/ontology#,

http://purl.org/dc/terms/, https://cutt.ly/QhQrFxv#
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(a) POICa-breadth view. (b) POICa-depth view.

Fig. 1: POICa ontology. Main concepts representing different categories within
the ontology: a) depicts all categories within the first level of the hierarchy
including some important ones from the second level; b) depicts depth of a
particular category i.e. Restaurant.

3.2 Context-aware Hypergraph-Embeddings

In traditional user-item-recommender systems, there is only one binary relation
indicating which user interacted with which item. However, this cannot cap-
ture the multi-relational background knowledge described above and also can-
not include situational context that describes the conditions when and how this
interaction took place.

Thus, representing recommendation scenarios by only using binary relations
can cause an information loss that might lead to poor performance on a recom-
mendation task. To make full use of all the contextual information like day of the
week and current time, that are contained in the dataset, the binary relations
need to be extended to n-ary relations.

We therefore build on HypE [9], a recently introduced hypergraph embed-
ding approach that showed promising results on other tasks and allows for easy
adaption to our recommendation use-case. HypE uses a multilinear scoring func-
tion and additionally uses learnt convolutional filters to model the different im-
portance of entities in different relations. The recommendation itself is made
through computation of a score, given n entities (depending on the arity of the
relation) and the relation. As an example, given a context (i.e. the weather, day,
time, proximity), all potential POIs can be ranked by computing the score for
each and choosing the POI with the highest score as the recommendation. The
scoring function of HypE is defined as φ(r(e1, ...e|r|)), and describes the sum of
the element-wise product of the corresponding embedding vectors (cmp. Fig. 2).

3.3 Sequence-aware Recurrent Neural Nets

Having access to the full information and relying on a system that is constantly
learning from new data is often an unrealistic assumption. Common issues are:
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Fig. 2: HypE architecture with scoring function
.

Cold start: In many situations the system encounters a new user or can’t iden-
tify the current user and thus does not have access to the user’s history and
preferences.

Missing context: Often the full context of the recommendation situation is
not available. The system still has to produce a recommendation without
contextual factors.

Online Machine Learning: Most machine learning methods learn from (mini-
) batches and can’t be re-trained after each new data point arrives.

A more realistic scenario is that a large data set of a LBSN is available for
off-line training, but recommendations still have to be generated for new users
without contextual information. Based on the assumption that a user chooses
a POI not only based on contextual information, but also based on the last
POI he visited, a personalized recommendation might even be possible for short
individual histories. For example, this captures that a user would typically not
visit a restaurant right after returning from lunch and therefore should also not
be recommended doing so.

To capture the sequential nature of such a scenario, we propose to use an
LSTM network [12] that receives a sequence of check-ins without additional con-
textual information as input and predicts the next location in the sequence. We
use the off-line trained HypE-Embeddings of the locations as our POI repre-
sentations and minimize a Cross-Entropy-Loss to learn the next location in the
sequence. As a proof-of-concept, we chose a simple network architecture, us-
ing an LSTM layer for modelling the sequential information followed by a fully
connected layer for the prediction (see Fig. 3).

4 Experimental Setup and Results

The following section describes the experiments on POI recommendation based
on the knowledge graphs described in the previous sections. We use two data
sets that were introduced in a different knowledge graph embedding approach
[31] for a POI recommendation scenario and use the reported hit@10 value from
the same paper as a baseline to compare our results to. The experiments can be
divided into three different sets of runs:

– Prediction based on binary KGE approaches [11]
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Fig. 3: The architecture of the LSTM approach
.

– Prediction based on a hypergraph approach [9]

– Prediction based on sequential modelling

The first type of experiments were run on existing implementations5 that were
adapted for a more convenient usage without altering the core of the implemen-
tations. For the third set of experiments, we used a simple LSTM network that
receives a sequence of visited POIs as input and outputs a prediction of the
next POI in the sequence. The combined approach was built using HypE6. Our
implementation and experimental settings can be found in the repository7 on
GitHub.

The datasets in use consist of 104,997 and 376,077 data points, which repre-
sent the check-ins at locations in New York City and Jakarta over the course of
two years. The larger Jakarta set contains 8,805 distinct POIs and 6,183 distinct
users, while the NYC set contains 3,626 distinct POIs and 3,573 users. Since
the original data represents a hypergraph, it had to be adjusted for usage with
binary relations. The information loss in this procedure led to smaller datasets
for the binary KGE approaches in comparison to the hypergraph approach. To
make sure that the results are still comparable, splitting the data into test, val-
idation and training set was the first step in data preparation, before the data
was prepared for usage in the different settings.

As the results, we report the ’filtered’ values for the binary and ’raw’ values
for the n-ary approaches. The filtered setting counts a “hit” as long as the the
predicted value is an element of the ground truth, whereas the raw setting only
considers the current sample value as a true result. In the third case (LSTM),
we report the raw setting only, because we only want to model the sequential be-
haviour and therefore only consider a “hit” when the exact POI for this sequence
is recommended.

5 https://github.com/thunlp/OpenKE
6 https://github.com/ElementAI/HypE
7 https://github.com/siwer/TaxonomicalKGE
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4.1 Binary knowledge graph-embedding approaches

The first task was limited to represent the data as triples, consisting of subject,
predicate and object. As there is no relation information that we can directly
take from the original data, we introduced two different relations which we con-
sidered to be carrying most information. The first relation is checksIn(user, POI)
and the second one is typeOf(POI, category). For the setting that incorporates
the ontological data, we introduced an additional relation subclassOf(category,
category) which is only present in the training data and is meant to provide
further information for the recommendation task. Based on the available imple-
mentations we conducted a series of experiments using a large variety of binary
KGE approaches, including Complex[26], Distmult[30], Hole[21], Simple[15] and
Transe[5]. As for the parameter settings, we tested across different embedding
dimensions and left the other options to default values. We only report the best
results for each method.

4.2 Knowledge hypergraph embedding

In preparation for the HypE approach, we defined one relation checksIn(user,
hour of day, day of week, type, location) to represent the data. The hour of day
and the day of week are derived from the timestamps in the original data. To
achieve the results presented in table 2, we used a slightly different implemen-
tation of the HypE approach. The scoring function including the convolutions
is still the same, but we made a few adaptions for faster runs on our dataset.
We also slightly altered the training objective; instead of scoring against a fixed
number of negative samples, we always scored against all possible locations. We
only consider the ’raw’ setting for evaluation.

For integration of background knowledge we implemented a model that com-
bines the HypE approach for n-ary relations together with a binary approach
(TransE) to embed the ontological information. The underlying idea is that the
ontological information (in this case the POI categories) will be embedded in
their own ontology space, while the other information (users, locations, etc.)
will be embedded in a separate space. A translation layer (implemented as a
feed-forward layer) learns to project from the ontology space to the general fea-
ture space. Algorithm 1 below shows the training procedure of our approach. We
implemented a hyperparamer λ to control the influence of the ontological infor-
mation during training. The training objectives are now to predict the location
given (user, type, time, day) and to predict the superclass of a type given the
provided ontology. For evaluation we still only consider the location prediction
task. Across all experimental runs in different configurations, the results with
λ > 0 outperformed the ones where λ = 0. Table 1 shows an example of the influ-
ence of λ on the training for both NYC and JAK data. The results shown there
are averaged over runs with varying ontology space dimension (130,75,50,25).
The general entity space dimension is fixed at 130 over those runs. As indicated
by our empirical results, the most beneficial values for λ lie between 0.2 and 0.8.
This behaviour is also consistent across the other observed metrics. In table 2,
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the ’+ Ont’ approaches denote λ > 0 for the HypE approach. As with the binary
approaches, we also present the results from the best runs.

Lambda 0.0 0.2 0.4 0.6 0.8 1.0 Params

MR 23.66 20.67 21.76 20.95 21.06 20.90 NYC, lr = 0.01

MR 21.48 20.25 20.24 20.38 19.98 20.07 NYC, lr = 0.005

MR 21.73 20.52 19.60 20.18 19.55 20.21 JAK, lr = 0.01

MR 17.22 16.43 15.76 15.93 16.05 15.88 JAK, lr = 0.005

Table 1: Influence of Lambda on MR

Algorithm 1: Training of the combined approach

input : batch =
{checkinRelation, subClassRelation, user, time, day, type}, targets =
{location, superType}, weightFactor = λ, Parameters = Θ

typeVector = ontologySpaceΘ(type);
entityVectors = entitySpaceΘ(user, time, day);
relationVectors = relationSpaceΘ(checkinRelation, subClassRelation);
for all i in types do

ontologyScores ← φtransE (type, subClassOf, typesi)
end
translatedType = TranslationLayerΘ(type);
for all i in locations do

locScores ← φhypE (checkin, user, translatedType, day, time,
locationsi);

end
lossOntology = crossEntropy(ontologyScores, superType);
lossLocation = crossEntropy(locScores, location);
combinedLoss = lossLocation+ (λ ∗ lossOntology);
Θ ← update(Θ, backProp(combinedLoss));

4.3 LSTM-based Sequence-aware Recommendations

As the basis for experiments with the LSTM network, we use the location em-
beddings that were acquired in the experiments from the section above. Thus,
some global contextual information is captured in the embeddings, however, the
LSTM is not aware of any situational context, nor of the personalized history of
the user, beyond a few previous check-ins. We chose the best performing HypE
models for both datasets to provide the location representations.

Since sequential information is used, the original data had to be transformed
to represent the check-in sequence(s) of a user. The extreme case would be assum-
ing one sequence per user, i.e. taking all interactions of one user and transform
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Approach Jakarta Jakarta + Ont EmbDim NYC NYC + Ont EmbDim

LBSN2Vec [31] 0.08 - 128 0.11 - 128

Complex 0.041 0.040 100 0.033 0.032 100

Distmult 0.045 0.045 150 0.035 0.039 100

HolE 0.031 0.030 100 0.024 0.023 100

SimplE 0.047 0.046 100 0.035 0.036 100

TransE 0.064 0.064 200 0.044 0.045 150

HypE 0.742 0.771 130/50 0.722 0.738 130/25

LSTM 0.085 - 100 0.080 - 100

Table 2: Best hits@10 results for different approaches with the corresponding
embedding dimensions. For the KGE approaches, also results for adding infor-
mation modeled in the POICa ontology (see Sec. 3.1) are reported.

it into a discrete sequence of check-ins. This, however, is not an assumption that
would reflect real-word behaviour, because it is unlikely that a location which a
user visited a month ago would influence a decision of today. To capture this, we
assumed a new sequence after 6 hours passed between two check-ins. As a result,
there are now 12,781 sequences in the NYC training set and 1,605 sequences in
the NYC test set (For Jakarta: 56,670 and 5,319). Therefore, we consider at least
two check-ins within a 6 hour window as a sequence. The choice of the duration
after which a new sequence is assumed has a large influence on the final training
data. A window of 24 hours would lead to fewer, but longer sequences, while a 4
hour window would yield more very short sequences. To ensure the relatedness
of check-ins in the sequences, a shorter window is favorable, although at the cost
of having shorter sequences. In the end, around 70% of the obtained sequences
had a length of 2. Since we are interested in testing the performance also for
cold start problems this is a suitable setup.

We modelled the neural network architecture as a classification problem,
where the last hidden state of the LSTM is used as the input for the classification
feed-forward layer. Due to the different dataset sizes, the NYC set has 3,626
classes (distinct locations) and the Jakarta set has 8,805 classes.

4.4 Discussion of results

Table 2 provides an overview of the best hits@10 results for each setup described
above. First, the results reported in [31] are shown for comparison. Then, results
of all binary KGE methods are reported and compared to when information
from the POICa ontology is added. Throughout all experiments, the ontological
information didn’t make a significant difference. This is likely due to the naive
way of introducing just the relational information from the ontology into the
graph, without considering their semantics, like that of a taxonomical relation.
Apparently, this adds more complexity than it provides valuable learning signals.
We assume that a more sophisticated approach to exploit the ontology, as done
in the HypE approach, can improve the results considerably.
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All binary KGE approaches clearly show an inferior performance to LBSN2Vec.
This is likely due to their inability to exploit contextual information. This obser-
vation becomes clear when looking at the HypE results. Like LBSN2Vec, HypE
does exploit n-ary relation and thus the full situational context, however, their
embedding techniques are fundamentally different. HypE’s results are a quantum
leap when compared to any other approach we tested. Since HypE is based on
years of KGE research and optimized for use-cases with rich situational context
an improvement was expected, but this extend was still surprising. As opposed
to the naive approach of just adding the taxonomical information to the training
data, the approach of jointly training embeddings for the prediction task and
the ontology yielded a measurable increase in prediction performance.

Finally, the LSTM results based on sequential information show that its
performance is below LBSN2Vec, specifically for the NYC data set. It is still
noteworthy that such a result is obtained after only seeing one previous POI
check-in without additional user-specific or contextual information. On the one
hand, this seems reasonable since the POI embeddings from HypE are used as
input and thus some global context of each POI is provided to the LSTM. On
the other hand, there seems to be a valuable signal in the previously visited POI,
that is not exploited by the other methods.

5 Conclusions and Future Work

In this paper, we obtained empirical evidence for how well state-of-the-art latent
recommendation approaches can exploit ontological, situational and sequential
information in a POI recommendation task. Our empirical evidence indicates
that the situational context is most crucial to the prediction performance, while
the taxonomical and sequential information are harder to exploit. As we have
shown with the experiments based on HypE, a beneficial exploitation of ontolog-
ical information requires a more sophisticated approach than just augmenting
the knowledge graph with relations from the ontology. In our approach, we learn
an additional dedicated ontology embedding space and train a translation layer
to fuse both spaces. Besides of our approach, materializing implicit knowledge
or deducing additional positive and negative training data might be another
step in this direction. The LSTM approach seems to be an interesting option for
cold start scenarios or whenever online learning is computationally not feasible.
Also, this approach only initially requires KGE embeddings trained on the full
information. Then it can be trained on sequence information only, without situ-
ational context, and applied to novel sequences of unknown users, again without
situational context.

Summing up, this work shows that the different dimensions each provide
separate benefits, but exploiting all of them is non-trivial. Thus, promising future
steps with great potential are methods for a tight integration of expressive formal
ontologies with latent machine learning as well as deep learning architectures for
a joined embedding of multi-ary knowledge graphs with sequential information.
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