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Abstract. Images on the Web encapsulate diverse knowledge about var-
ied abstract concepts. They cannot be sufficiently described with models
learned from image-caption pairs that mention only a small number of
visual object categories. In contrast, large-scale knowledge graphs con-
tain many more concepts that can be detected by image recognition
models. Hence, to assist description generation for those images which
contain visual objects unseen in image-caption pairs, we propose a two-
step process by leveraging large-scale knowledge graphs. In the first step,
a multi-entity recognition model is built to annotate images with con-
cepts not mentioned in any caption. In the second step, those annotations
are leveraged as external semantic attention and constrained inference
in the image description generation model. Evaluations show that our
models outperform most of the prior work on out-of-domain MSCOCO
image description generation and also scales better to broad domains
with more unseen objects.

1 Introduction

Content on the Web is highly heterogeneous and consists mostly of visual and
textual information. In most cases, these different modalities complement each
other, which complicates the capturing of the full meaning by automated knowl-
edge extraction techniques. An approach for making information in all modalities
accessible to automated processing is linking the information represented in the
different modalities (e.g., images and text) into a shared conceptualization, like
entities in a Knowledge Graph (KG). However, obtaining an expressive formal
representation of textual and visual content has remained a research challenge
for many years.

Recently, a different approach has shown impressive results, namely the trans-
formation of one unstructured representation into another. Specifically, the task
of generating natural language descriptions of images or videos [16] has gained
much attention. While such approaches are not relying on formal conceptual-
izations of the domain to cover, the systems that have been proposed so far



are limited by a very small number of objects that they can describe (less than
100). Obviously, such methods — as they need to be trained on manually crafted
image-caption parallel data — do not scale to real-world applications, and can’t
be applied to cross-domain web-scale content.

In contrast, visual object classification techniques have improved consider-
ably and they are now scaling to thousands of objects more than the ones covered
by caption training data [3]. Also, KGs have grown to cover all of those objects
plus millions more accompanied by billions of facts describing relations between
those objects. Thus, it appears that those information sources are the missing
link to make existing image captioning models scale to a larger number of ob-
jects without having to create additional image-caption training pairs with those
missing objects. In this paper, we investigate the hypothesis, that conceptual re-
lations of entities — as represented in KGs — can provide information to enable
caption generation models to generalize to objects that they haven’t seen during
training in the image-caption parallel data. While there are existing methods
that are tackling this task, none of them has exploited any form of conceptual
knowledge so far. In our model, we use KG entity embeddings to guide the at-
tention of the caption generator to the correct (unseen) object that is depicted
in the image. Our main contributions presented in this paper are summarized as
follows:

— We designed a novel approach, called Knowledge Guided Attention (KGA),
to improve the task of generating captions for images which contain objects
that are not in the training data.

— To achieve it, we created a multi-entity-label image classifier for linking the
depicted visual objects to KG entities. Based on that, we introduce the
first mechanism that exploits the relational structure of entities in KGs for
guiding the attention of a caption generator towards picking the correct KG
entity to mention in its descriptions.

— We conducted an extensive experimental evaluation showing the effectiveness
of our KGA method. Both, in terms of generating effectual captions and also
scaling it to more than 600 visual objects.

The contribution of this work on a broader scope is its progress towards the
integration of the visual and textual information available on the Web with KGs.

2 Previous Work on Describing Images with Unseen
Objects

Existing methods such as Deep Compositional Captioning (DCC) [4], Novel
object Captioner (NOC) [15], Constrained Beam Search (CBS) [2] and LSTM-
C [17] address the challenge by transferring information between seen and unseen
objects either before inference (i.e. before testing) or by keeping constraints on
the generation of caption words during inference (i.e. during testing). Figure 1
provides a broad overview of those approaches.
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Fig. 1. KGA goal is to describe images containing unseen objects by building on the
existing methods i.e. DCC [4], NOC [15], CBS [2] and LSTM-C [17] and going beyond
them by adding semantic knowledge assistance. Base refers to our base description
generation model built with CNN [13] - LSTM [5].

In DCC, an approach which performs information transfer only before infer-
ence, the training of the caption generation model is solely dependent on the
corpus constituting words which may appear in the similar context as of un-
seen objects. Hence, explicit transfer of learned parameters is required between
seen and unseen object categories before inference which limits DCC from scal-
ing to a wide variety of unseen objects. NOC tries to overcame such issues by
adopting a end-to-end trainable framework which incorporates auxiliary training
objectives during training and detaching the need for explicit transfer of param-
eters between seen and unseen objects before inference. However, NOC training
can result in sub-optimal solutions as the additional training attempts to opti-
mize three different loss functions simultaneously. CBS, leverages an approximate
search algorithm to guarantee the inclusion of selected words during inference
of a caption generation model. These words are however only constrained on
the image tags produced by a image classifier. And the vocabulary used to find
similar words as candidates for replacement during inference is usually kept very
large, hence adding extra computational complexity. LSTM-C avoids the limi-
tation of finding similar words during inference by adding a copying mechanism
into caption training. This assists the model during inference to decide whether
a word is to be generated or copied from a dictionary. However, LSTM-C suffers
from confusion problems since probabilities during word generation tend to get
very low.

In general, aforementioned approaches also have the following limitations:
(1) The image classifiers used cannot predict abstract meaning, like “hope”, as
observed in many web images. (2) Visual features extracted from images are
confined to the probability of occurrence of a fixed set of labels (i.e. nouns, verbs
and adjectives) observed in a restricted dataset and cannot be easily extended to
varied categories for large-scale experiments. (3) Since an attention mechanism is
missing, important regions in an image are never attended. While, the attention
mechanism in our model helps to scale down all possible identified concepts to



the relevant concepts during caption generation. For large-scale applications,
this plays a crucial role.

We introduce a new model called Knowledge Guided Assistance (KGA) that
exploits conceptual knowledge provided by a knowledge graph (KG) [6] as ex-
ternal semantic attention throughout training and also to aid as a dynamic
constraint before and during inference. Hence, it augments an auxiliary view
as done in multi-view learning scenarios. Usage of KGs has already shown im-
provements in other tasks, such as in question answering over structured data,
language modeling [1], and generation of factoid questions [12].

3 Describing Images with Unseen Objects Using
Knowledge Guided Assistance (KGA)

In this section, we present our caption generation model to generate captions
for unseen visual object categories with knowledge assistance. KGAs core goal is
to introduce external semantic attention (ESA) into the learning and also work
as a constraint before and during inference for transferring information between
seen words and unseen visual object categories.

3.1 Caption Generation Model

Our image caption generation model (henceforth, KGA-CGM) combines three
important components: a language model pre-trained on unpaired textual cor-
pora, external semantic attention (ESA) and image features with a textual (T),
semantic (S) and visual (V) layer (i.e. TSV layer) for predicting the next word
in the sequence when learned using image-caption pairs. In the following, we

present each of these components separately while Figure 2 presents the overall
architecture of KGA-CGM.

Language Model This component is crucial to transfer the sentence struc-
ture for unseen visual object categories. Language model is implemented with
two long short-term memory (LSTM) [5] layers to predict the next word given
previous words in a sentence. If w1/, represent the input to the forward LSTM
of layer-1 for capturing forward input sequences into hidden sequence vectors

(hi., € RY), where L is the final time step. Then encoding of input word se-

quences into hidden layer-1 and then into layer-2 at each time step t is achieved
as follows:

B! = LLF(@);0) M)
B = L2-F(hl:6) 2
where © represent hidden layer parameters. The encoded final hidden sequence

(h; € R™) at time step t is then used for predicting the probability distribution
of the next word given by p;,, = so ftmam(hf). The softmax layer is only used
while training with unpaired textual corpora and not used when learned with
image captions.
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Fig. 2. KGA-CGM is built with three components. A language model built with two-
layer forward LSTM (L1-F and L2-F), a multi-word-label classifier to generate image
visual features and a multi-entity-label classifier that generates entity-labels linked to a
KG serving as a partial image specific scene graph. This information is further leveraged
to acquire entity vectors for supporting ESA. w; represents the input caption word, c;
the semantic attention, p; the output of probability distribution over all words and y.
the predicted word at each time step t. BOS and EOS represent the special tokens.

External Semantic Attention (ESA) Our objective in ESA is to extract
semantic attention from an image by leveraging semantic knowledge in KG as
entity-labels obtained using a multi-entity-label image classifier (discussed in
the Section 4.2). Here, entity-labels are analogous to patches or attributes of an
image. In formal terms, if ea; is an entity-label and e; € R¥ the entity-label
vector among set of entity-label vectors (i = 1, .., L) and 3, the attention weight
of e; then §; is calculated at each time step t using Equation 3.

exp(Oy;)

L
Zj:l exp(Oy;)
where Oy; = f(e;, h}) represent scoring function which conditions on the layer-2
hidden state (h?) of a caption language model. It can be observed that the scoring

function f(e;, ht2 ) is crucial for deciding attention weights. Also, relevance of the
hidden state with each entity-label is calculated using Equation 4.

flei hi) = tanh((hi)" Whee;) (4)

Bii = (3)

where Wy, € RE*F is a bilinear parameter matrix. Once the attention weights
are calculated, the soft attention weighted vector of the context ¢, which is a
dynamic representation of the caption at time step ¢ is given by Equation 5

L
e =Y Bue (5)
i=1



Here, ¢; € R and L represent the cardinality of entity-labels per image-caption
pair instance.

Image Features & TSV Layer & Next Word Prediction Visual features
for an image are extracted using multi-word-label image classifier (discussed in
the Section 4.2). To be consistent with other approaches [4,15] and for a fair
comparison, our visual features (I) also have objects that we aim to describe
outside of the caption datasets besides having word-labels observed in paired
image-caption data.

Once the output from all components is acquired, the TSV layer is employed
to integrate their features i.e. textual (T), semantic (S) and visual (V') yielded
by language model, ESA and images respectively. Thus, TSV acts as a trans-
formation layer for molding three different feature spaces into a single common
space for prediction of next word in the sequence.

If hf € RY, ¢; € RF and I, € R! represent vectors acquired at each time
step t from language model, ESA and images respectively. Then the integration
at TSV layer of KGA-CGM is provided by Equation 6.

TSV, = Wy2hi + We,cr + Wi, I, (6)

where W2 € Rvs>*H W, € Rv*E and Wy, € RY*! are linear conversion
matrices and vs is the image-caption pair training dataset vocabulary size.
The output from the TSV layer at each time step t is further used for

predicting the next word in the sequence using a softmax layer given by
D1 = softmax(TSVy).

3.2 KGA-CGM Training

To learn parameters of KGA-CGM, first we freeze the parameters of the lan-
guage model trained using unpaired textual corpora. Thus, enabling only those
parameters to be learned with image-caption pairs emerging from ESA and TSV
layer such as Whe,Whg,Wct and Wr,. KGA-CGM is now trained to optimize
the cost function that minimizes the sum of the negative log likelihood of the
appropriate word at each time step given by Equation 7.

N L™
min — Z:l ; log(p(y;")) (7)
Where L™ represent the length of sentence (i.e. caption) with beginning of
sentence (BOS), end of sentence (EOS) tokens at n-th training sample and N
as a number of samples used for training.

3.3 KGA-CGM Constrained Inference

Inference in KGA-CGM refer to the generation of descriptions for test images.
Here, inference is not straightforward as in the standard image caption gener-
ation approaches [16] because unseen visual object categories have no parallel



captions throughout training. Hence they will never be generated in a caption.
Thus, unseen visual object categories require guidance either before or during in-
ference from similar seen words that appear in the paired image-caption dataset
and likely also from image labels. In our case, we achieve the guidance both
before and during inference with varied techniques.

Guidance before Inference We first identify the seen words in the paired
image-caption dataset similar to the visual object categories unseen in image-
caption dataset by estimating the semantic similarity using their Glove embed-
dings [9] learned using unpaired textual corpora (more details in Section 4.1).
Furthermore, we utilize this information to perform dynamic transfer between
seen words visual features (Wr), language model (Wp2) and external seman-
tic attention (We,) weights and unseen visual object categories. To illustrate, if
(Vunseens tunseen) and (Uciosest, teiosest) denote the indexes of unseen visual ob-
ject category “zebra” and its semantically similar known word “giraffe” in a vo-
cabulary (vs) and visual features (is) respectively. Then to describe images with
“zebra” in the similar manner as of “giraffe”, the transfer of weights is performed
between them by assigning We, [Vunseen,:], Whe [Vunseens:] and W, [Vunseens:] t0
Wct [Uclosest7:]7 th [Uclosesta:] and WIt [vclosestvz] respectively.

Furthermore, Wi, [iunsecen,iclosest])s W, [Ecioseststunseen] 1S set to zero for re-
moving mutual dependencies of seen and unseen words presence in an image.
Hence, aforementioned procedure will update the KGA-CGM trained model be-
fore inference to assist the generation of unseen visual object categories during
inference as given by Algorithm 1.

Input: M={Wpe, Whz, We,, Wi, }
Output: Meq
1 Initialize List(closest) = cosine_distance(List(unseen),vocabulary) ;
2 Initialize Wc,, [Uunsegn7:]7 th? [’Uunseena:]a WIt [Uunseeny:] =0 5
3 Function Before Inference
4 forall items T in closest and Z in unseen do
5 if T and Z is vocabulary then
6 We,vz,:] = We,[vr,] ;
7 Whzlvz,] = Wyelvr,] ;
8 WIt [Uz,:] = WIt [’UT,:] N
9 end
10 if 7 and iz in visual features then
11 Wr, [iz,’iT}ZO ;
12 Wlt, [iT,iz}:O ;
13 end
14 end
15 Mpew = M
16 return Meq, ;
17 end

Algorithm 1: Constrained Inference Overview (Before)



Guidance during Inference The updated KGA-CGM model is used for
generating descriptions of unseen visual object categories. However, in the before-
inference procedure, the closest words to unseen visual object categories are
identified using embeddings that are learned only using textual corpora and are
never constrained on images. This obstructs the view from an image leading to
spurious results. We resolve such nuances during inference by constraining the
beam search used for description generation with image entity-labels (ea). In
general, beam search is used to consider the best k sentences at time ¢ to identify
the sentence at the next time step. Our modification to beam search is achieved
by adding a extra constraint to check if a generated unseen visual object category
is part of the entity-labels. If it’s not, unseen visual object categories are never
replaced with their closest seen words. Algorithm 2 presents the overview of
KGA-CGM guidance during inference.

Input: Myew, IMigbers, beam-size k, word w
QOutput: best k successors
Initialize Imyqbers = Top-5 (ea) ;
Initialize beam-size k ;
Initialize word w=null ;
Function During Inference
forall State st of k words do
w=st ;
if closestjw] in ea then
| st = closest|w];
end
else
‘ st =w ;
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end
14 return best k successors ;
15 end

[y
w

Algorithm 2: Constrained Inference Overview (During)

4 Experimental Setup

4.1 Resources and Datasets

Our approach is dependent on several resources and datasets.

Knowledge Graphs (KGs) and Unpaired Textual Corpora There are
several openly available KGs such as DBpedia, Wikidata, and YAGO which
provide semantic knowledge encapsulated in entities and their relationships. We



choose DBpedia as our KG for entity annotation, as it is one of the extensively
used resource for semantic annotation and disambiguation [6].

For learning weights of the language model and also Glove word embeddings,
we have explored different unpaired textual corpora from out-of-domain sources
(i.e. out of image-caption parallel corpora) such as the British National Corpus
(BNC)3, Wikipedia (Wiki) and subset of SBUIM%caption text containing 947
categories of ILSVRC12 dataset [11]. NLTK® sentence tokenizer is used to ex-
tract tokenizations and around 70k+ words vocabulary is extracted with Glove
embeddings.

Unseen Objects Description (Out-of-Domain MSCOCO & ImageNet)
To evaluate KGA-CGM, we use the subset of MSCOCO dataset [7] proposed
by Hendricks et al. [4]. The dataset is obtained by clustering 80 image object
category labels into 8 clusters and then selecting one object from each cluster
to be held out from the training set. Now the training set does not contain the
images and sentences of those 8 objects represented by bottle, bus, couch, mi-
crowave, pizza, racket, suitcase and zebra. Thus making the MSCOCO training
dataset to constitute 70,194 image-caption pairs. While validation set of 40504
image-caption pairs are again divided into 20252 each for testing and validation.
Now, the goal of KGA-CGM is to generate caption for those test images which
contain these 8 unseen object categories. Henceforth, we refer this dataset as
“out-of-domain MSCOCO”.

To evaluate KGA-CGM on more challenging task, we attempt to describe
images that contain wide variety of objects as observed on the web. To imitate
such a scenario, we collected images from collections containing images with wide
variety of objects. First, we used same set of images as earlier approaches [15,
17] which are subset of ImageNet [3] constituting 642 object categories used in
Hendricks et al. [4] who do not occur in MSCOCO. However, 120 out of those
642 object categories are part of ILSVRC12.

4.2 Multi-Label Image Classifiers

The important constituents that influence KGA-CGM are the image entity-labels
and visual features. Identified objects/actions etc. in an image are embodied in
visual features, while entity-labels capture the semantic knowledge in an image
grounded in KG. In this section, we present the approach to extract both visual
features and entity-labels.

Multi-Word-label Image Classifier To extract visual features of out-of-
domain MSCOCO images, emulating Hendricks et al. [4] a multi-word-label
classifier is built using the captions aligned to an image by extracting part-
of-speech (POS) tags such as nouns, verbs and adjectives attained for each word

3 http://www.natcorp.ox.ac.uk/
4 http://vision.cs.stonybrook.edu/~vicente/sbucaptions/
® http://www.nltk.org/



in the entire MSCOCO dataset. For example, the caption “A young child brushes
his teeth at the sink” contains word-labels such as “young (JJ)”, “child (NN)”,
“teeth (NN)” etc., that represent concepts in an image. An image classifier is
trained now with 471 word-labels using a sigmoid cross-entropy loss by fine-
tuning VGG-16 [13] pre-trained on the training part of the ILSVRC12. The
visual features extracted for a new image represent the probabilities of 471 im-
age labels observed in that image. For extracting visual features from ImageNet
images, we replace the multi-word-label classifier with the lexical classifier [4]
learned with 642 ImageNet object categories.

Multi-Entity-label Image Classifier To extract semantic knowledge for out-
of-domain MSCOCO images analogous to the word-labels, a multi-entity-label
classifier is build with entity-labels attained from a knowledge graph annotation
tool such as DBpedia spotlight® on training set of MSCOCO constituting 82,783
training image-caption pairs. In total around 812 unique labels are extracted
with an average of 3.2 labels annotated per image. To illustrate, considering
the caption presented in the aforementioned section, entity labels extracted are
“Brush” and “Tooth®”. An image classifier is now trained with multiple entity-
labels using sigmoid cross-entropy loss by fine-tuning VGG-16 [13] pre-trained on
the training part of the ILSVRC12. For extracting entity-labels from ImageNet
images, we again leveraged lexical classifier [4] learned with 642 ImageNet object
categories. However, as all 642 categories denote WordNet synsets, we build a
connection between these categories and DBpedia by leveraging BabelNet [8]
for multi-entity-label classifier. To illustrate, for visual object category “wom-
bat” (wordnetid: n1883070) in ImageNet can be linked to DBpedia Wombat?.
Hence, this makes our method very modular for building new image classifiers
to incorporate semantic knowledge.

4.3 Entity-Label Embeddings

We presented earlier that the acquisition of entity-labels for training multi-entity-
label classifiers were obtained using DBpedia spotlight entity annotation and
disambiguation tool. Hence, entity-labels are expected to encapsulate seman-
tic knowledge grounded in KG. Further, entities in a KG can be represented
with embeddings by capturing their relational information. In our work, we
see the efficacy of these embeddings for caption generation. Thus, we leverage
entity-label embeddings for computing semantic attention observed in an image
with respect to the caption as observed from KG. To obtain entity-label embed-
dings, we adopted the RDF2Vec [10] approach and generated 500 dimensional
vector representations for 812 and 642 entity-labels to describe out-of-domain
MSCOCO and ImageNet images respectively.

S https://github.com/dbpedia-spotlight/
" http://dbpedia.org/resource/Brush

8 http://dbpedia.org/resource/Tooth

9 http://dbpedia.org/page/Wombat
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4.4 Evaluation Measures

To evaluate generated descriptions for the unseen MSCOCO visual object cate-
gories, we use similar evaluation metrics as earlier approaches [4,15,17] such as
METEOR and also SPICE [2]. However, CIDEr [14] metric is not used as it is
required to calculate the inverse document frequency used by this metric across
the entire test set and not just unseen object subsets. F1 score is also calcu-
lated to measure the presence of unseen objects in the generated captions when
compared against reference captions. Furthermore, to evaluate ImageNet object
categories description generation: we leveraged F1 and also other metrics such as
Unseen and Accuracy scores [15,17]. The Unseen score measures the percentage
of all novel objects mentioned in generated descriptions, while accuracy measure
percentage of image descriptions correctly addressed the unseen objects.

5 Experiments

The experiments are conducted to evaluate the efficacy of KGA-CGM model for
describing out-of-domain MSCOCO and ImageNet images.

5.1 Implementation

KGA-CGM model constitutes three important components i.e. language model,
visual features and entity-labels. Before learning KGA-CGM model with image-
caption pairs, we first learn the weights of language model and keep it fixed
during the training of KGA-CGM model. To learn language model, we leverage
unpaired textual corpora (e.g. entire MSCOCO set, Wiki, BNC etc.) and provide
input word embeddings representing 256 dimensions pre-trained with Glove [9]
default settings on the same unpaired textual corpora. Hidden layer dimensions
of language model are set to 512. KGM-CGM model is then trained using image-
caption pairs with Adam optimizer with gradient clipping having maximum
norm of 1.0 for about 15~50 epochs. Validation data is used for model selection
and experiments are implemented with Keras+Theano backend!?.

5.2 Describing Out-of-Domain MSCOCO Images

In this section, we evaluate KGA-CGM using out-of-domain MSCOCO dataset.

Quantitative Analysis We compared our complete KGA-CGM model with
the other existing models that generate image descriptions on out-of-domain
MSCOCO. To have a fair comparison, only those results are compared which
used VGG-16 to generate image features. Table 1 shows the comparison of in-
dividual and average scores based on METEOR, SPICE and F1 on all 8 unseen
visual object categories with beam size 1. It can be noticed that KGA-CGM

10 https://github.com/adityamogadala/KGA
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F1

Model Beam microwave racket bottle zebra pizza couch bus suitcase Average
DCC [4] 1 28.1 52.2 4.6 79.9 64.6 45.9 29.8 13.2 39.7
NOC [15] >1  24.7 55.3 17.7 89.0 69.3 25.5 68.7 39.8 48.8
CBS(T4) [2] >1  29.7 57.1 16.3 85.7 77.2 48.2 67.8 49.9  54.0
LSTM-C [17] >1  27.8 70.2 29.6 91.4 68.1 38.7 74.444.7 55.6
KGA-CGM 1 50.0 75.3 29.9 92.1 70.6 42.1 54.2 25.6 55.0
METEOR
DCC [4] 1 22.1 20.3 18.1 22.3 22.2 23.1 21.6 18.3 21.0
NOC [15] >1 215 24.6 21.2 21.8 21.8 21.4 20.4 18.0 21.3
LSTM-C [17] >1 - - - - - - - 23.0
CBS(T4) [2] >1 - - - - - - - 23.3
KGA-CGM 1 22.6 25.1 21.5 22.8 21.4 23.0 20.3 18.7 22.0
SPICE
DCC [4] >1 - - - - - - - - 134
CBS(T4) [2] >1 - - - - - - - 15.9
KGA-CGM 1 13.3 16.8 13.1 19.6 13.2 14.9 12.6 10.6 14.3

Table 1. Measures for all 8 unseen objects. Underline shows the second best.

with beam size 1 was comparable to other approaches even though it used fixed
vocabulary from image-caption pairs. For example, CBS [2] used expanded vo-
cabulary of 21,689 when compared to 8802 by us. Also, our word-labels per
image are fixed, while CBS uses a varying size of predicted image tags (T1-4).
This makes it non-deterministic and can increase uncertainty, as varying tags
will either increase or decrease the performance. Furthermore, we also evalu-
ated KGA-CGM for the rest of seen visual object categories in the Table 2. It
can be observed that our KGA-CGM outperforms existing approaches as it did
not undermine the in-domain description generation, although it was tuned for
out-of-domain description generation.

Seen Objects

Model Beam METEOR SPICE F1-score
DCC [4] 1 23.0 159 -
CBS(T4) [2] >1 245 18.0 -
KGA-CGM 1 24.1 172 -
KGA-CGM >1 25.1 18.2 -

Table 2. Average measures of MSCOCO seen objects.
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Qualitative Analysis In Figure 3, sample predictions of our best KGA-CGM
model is presented. It can be observed that entity-labels has shown an influence
for caption generation. Since, entities as image labels are already disambiguated,
it attained high similarity in the prediction of a word thus adding useful seman-
tics. Figure 3 presents the example unseen visual objects descriptions.

Unseen Object: Bottle Unseen Object: Bus
Predicted Entity-Labels (Top-3): Wine_glass, Wine_bottle,
Bottle

Base: A vase with a flower in it sitting on a table

NOC: A wine bottle sitting on a table next to a wine bottle
KGA-CGM : A bottle of wine sitting on top of a table

Predicted Entity-Labels (Top-3): Bus, Public_Transport, Transit_Bus
Base: A car is parked on the side of the street

NOC: Bus driving down a street next o a bus stop.

KGA-CGM: A white bus is parked on the street

Unseen Object: Couch Unseen Object: Microwave
Predicted Entity-Labels (Top-3): Cake,Couch,Glass

Base: A person is laying down on a bed

NOC: A woman sitting on a chair with a large piece of cake on
her arm

KGA-CGM : A woman sitting on a couch with a remote

Predicted Entity-Labels (Top-3):Refrigerator,Oven,Microwave_Oven
Base: A wooden table with a refrigerator and a brown cabinet

B NOC: A kitchen with a refrigerator, refrigerator, and refrigerator.

.| KGA-CGM: A kitchen with a microwave, oven and a refrigerator

Unseen Object: Pizza Unseen Object: Racket

Predicted Entity-Labels (Top-3):Tennis, Racket_(sports_equipment), Court
Base: A tennis player getting ready to serve the ball

NOC: A woman court holding a tennis racket on a court

KGA-CGM: A woman playing tennis on a tennis court with a racket.

Predicted Entity-Labels (Top-3): Pizza,Restaurant,Hat

Base: A man is making a sandwich in a restaurant

NOC: A man standing next to a table with a pizza in front of it
KGA-CGM: A man is holding a pizza in his hands

Unseen Object: Suitcase Unseen Object: Zebra
Predicted Entity-Labels (Top-3): Cat,Baggage,Black_Cat
Base: A cat laying on top of a pile of books

NOC: A cat laying on a suitcase on a bed

KGA-CGM: A cat laying inside of a suitcase on a bed

ll, Predicted Entity-Labels (Top-3):Zebra,Enclosure Zoo
Base: A couple of animals that are standing in a field
NOC: Zebras standing together in a field with zebras
KGA-CGM: A group of zebras standing in a line

Fig. 3. Sample predictions of KGA-CGM on out-of-domain MSCOCO Images with
Beam Size 1 when compared against base model and NOC [15]

5.3 Describing ImageNet Images

ImageNet images do not contain any ground-truth captions and contain exactly
one unseen visual object category per image. Initially, we first retrain different
language models using unpaired textual data (Section 4.1) and also the entire
MSCOCO training set. Furthermore, the KGA-CGM model is rebuilt for each
one of them separately. To describe ImageNet images, image classifiers presented
in the Section 4.2 are leveraged. Table 3 summarizes the experimental results
attained on 634 categories (i.e. not all 642) to have fair comparison with other
approaches. By adopting only MSCOCO training data for language model, our
KGA-CGM makes the relative improvement over NOC and LSTM-C in all cat-
egories i.e. unseen, F1 and accuracy. Figure 4 shows few sample descriptions.

6 Key Findings

The key observations of our research are: (1) The ablation study conducted
to understand the influence of different components in KGA-CGM has shown
that using external semantic attention and constrained inference has superior
performance when compared to using only either of them. Also, increasing the
beam size during inference has shown a drop in all measures. This is basically
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Model Unpaired-Text Unseen F1  Accuracy

NOC [15]  MSCOCO 69.1  15.6 10.0
BNC& Wiki 87.7  31.2 22.0
LSTM-C [17] MSCOCO 721 164 11.8
BNC&Wiki 89.1 336 31.1
KGA-CGM MSCOCO 741 174 122
BNC& Wiki 90.2 344 33.1

BNC&Wiki&SBU1IM 90.8  35.8 34.2

Table 3. Describing ImageNet Images with Beam size 1. Results of NOC and LSTM-C
(with Glove) are adopted from Yao et al. [17]

S nEare
“ Unseen Object: Truffle .h L —= § Unseen Object: Papaya
kﬁ' Guidance Before Inference: food — truffle e - Guidance Before Inference: banana — papaya
¥ Base: A person holding a piece of paper. 4 Base: A woman standing in a garden.
2 KGA-CGM: Aclose up of  person hding e 3 ~ " KGA-CGM: These are ripe papaya hanging on a tree

Unseen Object: Blackbird

Guidance Before Inference: bird — blackbird
Base: A bird standing in a field of green grass

# KGA-CGM: A blackbird standing in the grass

., Unseen Object: Mammoth -
Guidance Before Inference: elephant — mammoth
Base: A baby elephant standing in water
KGA-CGM: A herd of mammoth standing on top of a
green field
Fig. 4. ImageNet images with best KGA-CGM model from Table 3. Guided before
inference shows which words are used for transfer between seen and unseen.

adhered to the influence of multiple words on unseen objects. (2) The perfor-
mance advantage becomes clearer if the domain of unseen objects is broadened.
In other words: KGA-CGM specifically improves over the state-of-the-art in set-
tings that are larger and less controlled. Hereby, KGA-CGM scales to one order
of magnitude more unseen objects with moderate performance decreases. (3) The
influence of the closest seen words (i.e. observed in image-caption pairs) and the
unseen visual object categories played a prominent role for generating descrip-
tions. For example in out-of-domain MSCOCO, words such as “suitcase” / “bag”,
“bottle” /“glass” and “bus/truck” are semantically similar and are also used in
the similar manner in a sentence added excellent value. However, some words
usually cooccur such as “racket”/“court” and “pizza” /“plate” played different
roles in sentences and lead to few grammatical errors. (4) The decrease in perfor-
mance have a high correlation with the discrepancy between the domain where
seen and unseen objects come from.

7 Conclusion and Future Work

In this paper, we presented an approach to generate captions for images that lack
parallel captions during training with the assistance from semantic knowledge
encapsulated in KGs. In the future, we plan to expand our models to build
multimedia knowledge graphs along with image descriptions which can be used
for finding related images or can be searched with long textual queries.
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