
Using Linked Data and Web APIs for
Automating the Pre-processing of Medical

Images

Philipp Gemmeke1, Maria Maleshkova1, Patrick Philipp1, Michael Götz2,
Christian Weber2, Benedikt Kämpgen1, Marco Nolden2, Klaus Maier-Hein2,

and Achim Rettinger1

1 Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
philipp.gemmeke@student.kit.edu, maria.maleshkova@kit.edu,

patrick.philipp@kit.edu, kaempgen@kit.edu, rettinger@kit.edu
2 German Cancer Research Center, Heidelberg, Germany

m.goetz@dkfz.de, ch.weber@dkfz.de, m.nolden@dkfz-heidelberg.de,

k.maier-hein@dkfz-heidelberg.de

Abstract. Current developments in the health care sector are marked
by the increased digitalisation of patient records, the use of electronic
devices as supporting tools in patient care, and the employment of sen-
sors (e.g. monitoring devices and surgery recording devices), which con-
tribute directly to the abundance of medical data. However, before any
significant benefits can be derived based on these growing data volumes
and sources, challenges such as data format heterogeneity, distribution
of the data sets, interoperability issues and basic pre-processing have to
be addressed. In this paper we present an approach and a concrete archi-
tecture that support data consolidation and integration based on Linked
Data principles. Furthermore, our solution enables the flexible compo-
sition and execution of data processing pipelines, based on individual
processing steps, exposed through semantically described Web APIs. We
demonstrate the applicability of our approach by implementing a specific
scenario – Brain Tumour Progression Maps, evaluating the performance
of the distributed Web API-based solution in comparison to a local exe-
cution, and determining the coverage of derived requirements.

1 Introduction

Current developments in industries and areas, which are directly influenced by
IT developments, are marked by the increasing importance of data, both in terms
of the growing data volumes as well as in terms of the potential in the context of
analysis, trend detection, predictions, decisions support, recommendations and
automated processing. Especially in the health care sector the digitalisation of
patient records, the use of electronic devices as supporting tools in patient care,
and the employment of sensors contribute directly to the abundance of medical
data. However, before any approaches or solutions can be develop based on using
the data for the grounding of decisions, it is necessary to collect, integrate and



2

pre-process the individual datasets, which often come from distributed sources
such as MRT scans, laboratory findings or results of diagnostic analysis.

The development of data-based supporting systems is hindered by a number
of existing challenges. First, the used diagnostic devices and medical records
software usually store data in different formats and in different locations. As
a result, building solutions that employ querying data distributed over many
different databases with different data formats and database schemas is very
difficult. Second, the overall increase in the volume of data needs to be taken
into consideration and be addressed by high-performance and scalable solutions.
Furthermore, more and more applications in health care focus on distributed
solutions and provide their functionalities over remotely accessible Web APIs3.
Web APIs are based on a Web-compatible technology stack – relying on URIs for
endpoint and resource identification and HTTP for communication and message
exchange. Therefore, individual functionalities for identification and organisation
of the available patients’ information (perception), for analysing the existing
information (interpretation) and for deriving treatment decisions (actions), are
exposed over individual programmable interfaces. In this context, of particular
interest is the composition of several Web APIs as part of new applications,
which generates an increased value by enabling the composition of data and
hence the extraction of new information and insights.

In order to address the problems described above, we advocate a solution
based on Linked Data principles. In general, semantic technologies and Linked
Data have proven to have a number of advantages in the context of data inte-
gration, interoperability and interpretation, and have already been evaluated in
other medical projects (overview: [1]). Therefore, this papers presents a complete
architecture based on consuming and producing Linked Data and at the same
time, facilitating the direct integration of different semantic and non-semantic
data sources. Furthermore, our approach is based on benefiting from the syn-
ergies of Linked Data and medical applications available through Web APIs,
whose advantages have not been evaluated yet.

To this end, we describe a concrete scenario in a medical setting, depicting
the challenges described above (Section 2). In the following, we present our
cognitive approach based on using Web APIs and Linked Data, making the
following contributions (Section 3):

1. We use Linked Data for describing images and Web APIs, thus en-
abling the automatic composition of pre-processing pipelines based
on distributed data sources.

2. We use Web APIs for remote and distributed execution of pre-
processing pipelines.

3. We provide a prototypical implement of our Linked Data and Web
API-based architecture for the pre-processing of images in brain
surgery.

3 In 2005, the Web API repository programmableweb.com counted less than 100 reg-
istered Web APIs. However, in 2013 there were over 10 000 Web APIs registered.
http://blog.programmableweb.com/wp-content/pw-9k-growth-600x349.png



3

Our evaluation is based on validating against the requirements derived from
the scenario, on an implementation of the scenario and on performance tests
comparing a local execution against a distributed one, based on Web APIs and
Linked Data (Section 4). A short discussion and lessons learned are given in
Section 5. We describe related work in Section 6 and finally conclude in Section 7.

2 Scenario – Brain Tumour Progression Maps

In this Section we present a concrete scenario in the context of the Tran-
sregional Collaborative Research Centre (TCRC) project ”Cognition-Guided-
Surgery”4.The aim of this project is to create a technical system to support
surgeons by the preparation, execution and postprocessing of surgeries, such as
surgeries of brain cancer patients. During the diagnostic analysis and treatment
of brain cancer patients a large number of different types of image data are
produced. For instance Magnetic Resonance Tomography (MRT) or Computed
Tomography (CT) scans are used to monitor the development of a brain tumour
during treatment. In order to be able to handle this information overload effec-
tively, more and more automatic procedures have been developed, targeted at
supporting surgeons in their daily work. However, before the actual data can
be used by the surgeon via automatic or interactive analysis tools, often some
pre-processing steps need to be completed. These steps may take a long time
and should be done automatically and in advance.

Fig. 1. Scenario – Tumour Progressions Maps

In this paper we describe exemplarily the scenario of ”Brain Tumour Progres-
sion Maps” (BTPM). It is a new presentation method, which helps to monitor
and evaluate the treatment progress of cancer patients by presenting images of
head scans from different time intervals. The generation of BTPM consists of
several steps (see Figure 15) – first, the raw input images, coming from MRT and
CT units, stored in a Picture Archiving and Communication Systems (PACS),
are processed individually to transfer them into a common representation for-
mat (“Cast” step). This is necessary in order to eliminate differences in their

4 http://www.cognitionguidedsurgery.de/
5 Pictures used from wikipedia - authors: [img1] KasugaHuang, [img2] TheBrain,

[img3] Marvin 101, [img4] Zackstarr



4

respective data types. Following is the automatic segmentation of the brain
(“StripTs”). This is necessary in order to ensure that all the following steps
are executed only on the brain data and are not influenced by other tissues,
such as for example bones.

The intensities in MRT scans do not represent a physical unit and, therefore,
are relative. To be able to compare different MRT scans over time a normalisation
of the image has to be carried out. This is achieved during the “MeanFree”
step. In order to be able to compare different images they need to overlay in
space. Therefore in the last step of pre-processing, they are registered in relation
to the same image so that a corresponding voxel represents the same area in all
images (“Registration”). Finally, the BTPM are generated and displayed to
the surgeon.

Based on the scenario and the current situation we can derive the following
requirements for the development of a supporting system. The pre-processing of
MRT and CT images should be executable from any workstation (R1). Given
a centralised file storage repository, new images should be processed automati-
cally at regular intervals (R2). Given a register of pre-processing interpretation
algorithms, available images should automatically be pre-processed with new
algorithms (R3).

3 Developing Medical Cognitive Applications via Linked
Data and Web APIs

In this section, after we describe our approach and the architecture of the sys-
tem, we demonstrate how the combination of Linked Data and Web APIs can
generate increased value. Furthermore, we show how the problems pointed out
in the introduction section and the requirements derived from the scenario can
be adequately addressed by this combination.

3.1 Architecture

The basis of our cognitive system is a semantic knowledge base, which contains
all data and information needed for supporting the previously described scenario,
as well as additional practical knowledge generated through its use. In this way,
the information available in the knowledge base is generated by different users or
systems, and by querying this data everybody benefits from the collaboratively
generated knowledge.

The semantic knowledge base consists of the following main components: 1) a
central smart file storage (XNAT); 2) a semantic Wiki (Surgipedia). The inter-
action and the structure of our system for developing composite data-processing
apps and the relationship to the presented scenario are shown in Figure 2. Data
in the knowledge base is published using the Linked Data principles6. In this
way, the interoperability between the components of the system, the integration
of new data into the knowledge base and the ability to interpret this data is
realised and guaranteed.

6 http://www.w3.org/DesignIssues/LinkedData.html



5

Fig. 2. Architecture – Developing Composite Cognitive Apps

XNAT as central file storage plays an important role. It is used in the knowl-
edge base to store data generated by users and other systems, and make this
data accessible within the knowledge base. One of the most important aspects
of XNAT is the possibility to store files and data, which are not only Linked
Data, but can be described with a free text field, which is used to describe the
respective image semantically. Therefore, XNAT acts as the first point of contact
to integrate data into the knowledge base. Furthermore, XNAT provides an API
for getting information about the stored files and uploading new files.

Surgipedia is the data hub in the system and allows modelling metainfor-
mation and linking it to all knowledge base relevant data instances. For example,
Surgipedia contains links to files stored in XNAT or other external data sources.
Furthermore, it provides support for defining and managing taxonomies and in-
stances, which are relevant for the whole scope of the system. Surgipedia supports
the exporting of all the stored data as Linked Data automatically. Therefore, the
interaction with the other components is facilitated.

In addition to the knowledge base, there are further components, which be-
long to our system. These components are called Cognitive Apps and Use
Case Apps. The communication and interaction between the knowledge base
and Cognitive Apps is based on Linked Data. Therefore, a Cognitive App is a
Linked Data consuming and producing web application, which benefit from the
knowledge base and implements a data-processing application, which feeds its
results back into the knowledge base. Use Case Apps are applications designed
for end-user interaction or simple execution without application logic.

3.2 Cognitive Apps

Cognitive Apps are Web APIs, which also have a semantic description based
on Linked Data principles. In general, Web APIs provide a uniform interface



6

for remote access, independently from their underlying software architecture.
By adding a semantic machine-readable service description to each API, it is
possible to discover each API within the knowledge base and to compose the
APIs to complex pipelines or workflows. Furthermore, a semantic description
allows specifying exactly the relationship between inputs and outputs for each
API invocation. Technically Cognitive Apps are mainly wrappers of medical
interpretation algorithms, as part of the technical system within the Cognition-
Guided-Surgery project.

By applying our system to the scenario – creating Cognitive Apps for all
steps of the scenario and using the Pre-Processing Pipeline Composer, we solve
all problems mentioned in the introduction section and fulfil all requirements
derived from the scenario. Furthermore, in order to guarantee the integration
and interoperability with the knowledge base, every step has a Linked Data
description and consumes and produces Linked Data.

3.3 The Image Pre-processing Pipeline
The processing pipeline consists of the following apps: Cast, StripTs, MeanFree,
Registration (Section 2). After Registration, the pre-processed data is used to
generate Brain Tumour Progression Maps. We show how the Cognitive Apps
participate in the execution of the pipeline based on the MeanFree app. For all
other steps/apps, the approaches and results are applicable.

In order to be able to use a cognitive app, it is important to make it discov-
erable and to provide all information needed for its invocation. This is realised
by registering a new Cognitive App in Surgipedia. Each Cognitive App comes
along with a semantic and machine-interpretable Linked Data description based
on the LAPIS/LIDS approach [7, 5, 6]. Every description contains information
about the API – for instance what the service does and how the input and out-
put look like. An excerpt from the description of the MeanFree Cognitive App
is shown in Figure 3.

Fig. 3. Description of MeanFree Cognitive App as RDF graph

Through the specification of resources of the type msm:Precondition and
msm:Postcondition the service contains SPARQL graph patterns, which describe



7

the input and output of the service, based on the input RDF that it expects and
the output RDF that it produces (see pattern in Figure 4). With this information,
it is possible to execute the input SPARQL pattern on given Linked Data and
verify whether the service is runnable on the available data.

Fig. 4. SPARQL Input/Output Pattern for Invocation in Turtle

As visualised in the Input-Pattern in Figure 4, a service request to MeanFree
must contain several parameters. It is required that the request contains as input
a request (sp:Request). Furthermore, a request must contain a random string
called “salt”, used by the requester to identify his/her request and download the
results after the service has finished its processing. Additionally, it is required to
specify the URI of the input image (a head scan image of a patient), on which the
service performs its processing operations. The last required parameter is a URI
of a brain mask used to recognise the shape of the brain. A service request results
in a service response (according to the Output-Pattern). The response contains
all information of the request and further information about the result – either
“Success” or “Failure”. Additionally the response also contains a download link
of the result file, and specifies that the result file has the format “image/nrrd”
and is a normalised tissue colour head scan.

The Pre-Processing Pipeline Composer is also a Web API and uses
the Scenario and general Cognitive Apps to automatically pre-process available
MRT and CT scans of brain cancer patients within the knowledge base by gen-
erating and executing HTTP requests. To realise this, the Composer consists
of three phases and is started by performing a HTTP GET on its base URI7.
In the first phase (Ramp Up), all information needed for identifying matches
are collected. Via the XNAT-Wrapper, all data regarding the available files in
XNAT and their semantic description in the free text field is crawled and stored
in an own triple store. Additionally, the Composers queries the Triple Store Ac-
cess Manager to get a list of Cognitive Apps registered in Surgipedia, and each
retrieved Cognitive App for its respective semantic description – especially the
SPARQL pattern. In the second phase (Test Phase), the Composer tests for each
identified image and Cognitive App, whether the Cognitive App is applicable for

7 http://host:8080/Composer/check/



8

the image. To this end, the Composer generates a SPARQL Construct Query
using the input pattern of a given Cognitive App and executes this on the se-
mantic description of the given image, stored in the triple store. If a semantic
description of a head scan matches a SPARQL input pattern and this match has
not been processed already, the Composer will generate a RDF+XML request
file and a HTTP request for the identified matches automatically. In the last
phase (Execution), the Composer executes automatically all identified matches
by executing the respective HTTP requests. Furthermore in case of a success-
fully executed request, additional commands are executed to upload the result
file(s) to XNAT and describe it semantically, thus enriching the knowledge base.
As a consequence, newly uploaded files will be processed automatically in the
next execution round of the Composer as long as matches are found.

4 Implementation and Evaluation

We successfully implemented the presented knowledge base, the Composer and
all steps of the pre-processing pipeline. The scenario steps are wrapped as
Web APIs, based on the Java API for RESTful Web Services (JAX-RS) im-
plementation Jersey8, extended by a semantic service description and run on
an Apache Tomcat 6 web server. In detail, the wrapping of a step means that
a via HTTP POST submitted RDF+XML request file is processed using the
respective SPARQL input pattern. Afterwards, the underlying MITK command
line tool is executed locally on the web server using the parameters extracted
from the request file. In the end, a RDF+XML response file according to the
respective SPARQL output pattern is generated, and the result file is copied to
the download folder on the web server, which is accessible by using the specified
“salt”. By using the user provided identifier “salt” it is easy to identify the re-
sult file on the web server, given a RDF+XML request file. In all steps, the open
source framework Jena9 is used to process Linked Data and execute SPARQL
pattern.

The Composer Cognitive App is also a Web API based on Jersey. By defin-
ing a cron job for performing a HTTP GET on its base URI as Use Case App,
the Composer is executed automatically and at regular intervals. As mentioned
in the approach section, the composer creates and executes HTTP requests for
identified matches of MRT/CT images and Cognitive Apps.
Performance Evaluation
Now we describe the performance difference between a manually composed local
execution of a pipeline, with the scenario steps as command line tools (exper-
iment 1: LOCAL), a manually composed remote pipeline, with the steps as
Cognitive Apps (experiment 2: REMOTE) and the automatic usage of the
Cognitive Apps by the Composer (experiment 3: COMPOSER). To evaluate
the performance of each experiment, both the respective command line tools
and the realised Cognitive Apps run on the same virtual machine (following:
Cognitive VM) – with QEMU Virtual CPU version 0.9.1 with 2266.796 CPU

8 https://jersey.java.net/
9 http://jena.apache.org/



9

MHz and 4GB memory. The Pre-Processing Pipeline Composer runs on a dif-
ferent machine (following: Composer VM) – Intel Core i7 860 with 2800 Mhz
and 8GB memory – and communicates with all components (knowledge base,
General Cognitive Apps, Scenario Cognitive Apps) over the Web.

For every experiment we used real MRT images of a head of a patient, a
brain atlas mask and a brain atlas image (needed for stripping the brain). As
mentioned before, we only implemented the pre-processing steps of the scenario.
So the final result of this four step pipeline are stripped and normalised MRT
head scans. At the beginning of each experiment, the test images are stored
on the client’s local disc. This is also the end criteria for each experiment, the
overall result images have to be stored on the client’s local disc, too. To verify
that the results of each test case are the same, we checked for each result file the
size and additionally opened it with MITK to check it visually.
Experiment 1: All steps were performed by a hard-coded java script of their
respective command line calls and executed on the Cognitive VM. All files are
loaded and stored from local disk of the Cognitive VM.
Experiment 2: At first, a hard-coded java script uploaded the test images from
a client’s local disc to XNAT and afterwards the same script executed requests
of the Cognitive Apps remotely on the client. All temporay generated files were
loaded directly from the web server of a Cognitive App, since the result files are
identificable via “salt” without parsing. Finally, the result files were downloaded
from the web server of the Cognitive VM to the client’s local disc.
Experiment 3: Again, at first the test images were uploaded to XNAT from
a client by a java script. Afterwards the script performs a HTTP get on the
Composer’s base URI to start processing the test images. The test images were
processed automatically step by step in each execution round by the Composer.
At the end of execution, the client downloaded the final results from XNAT to
the local disc.

Experiment Duration of Pipeline
Execution (mean) in s

Difference of Duration
in %

Valid result

LOCAL 585.3 - Yes

REMOTE 689.5 +17.8 Yes

COMPOSER 900.06 +53.78 Yes
Table 1. Evaluation results of each experiment.

As it can be seen (Table 1), all experiments and their respective execution
style, produce the same output files. However, the motivation of the scenario was
also to perform the pre-processing of files in advance (not on demand), because
the pre-processing of files is time-consuming. By looking at the durations, the
combination of Cognitive Apps and knowledge base for pre-processing the files
takes much longer than the old execution style with just command line tools.
The main difference is caused by uploading and downloading the needed files
to XNAT. Therefore, Table 2 shows the recalculated durations, considering the
uploading and downloading of files with an average upload speed of 255 KB/s
and download speed of 1891 KB/s10.
10 Duration of file transfer = File size [MB] / Average Speed [KB/s]



10

Experiment Duration of
Pipeline

Execution
(mean) in s

Duration of
file Upload in

s

Duration of
File

Download
in s

Recalcu-
lated

Duration in
s

Difference of
Duration in

%

LOCAL 585.3 - - 585.3 -

REMOTE 689.5 71.08 2.49 615.93 +5.23

COMPOSER 900.06 192.35 18.84 688.87 +17.70
Table 2. Evaluation results of each test case considering file upload and download.

5 Discussion and Lessons Learned

In this section, we discuss whether or not all derived requirements of the scenario
have been fulfilled. As shown before, by comparing the respective result files of
each of the experiments, providing the command line tools of each scenario
step as Cognitive App allows for pre-processing MRT and CT images from any
workstation (R1). In addition to that R2 is fulfilled by defining a Cron entry,
which executes the Composer regularly and automatically for images stored in
the central file storage XNAT. After equipping a new Cognitive App with a
semantic service description (especially with SPARQL graph pattern for input
and output) and registering it in Surgipedia, the Composer will automatically
notice this new Cognitive App and use the service description to check whether
or not images in XNAT match, therefore the R3 is also fulfilled.

As a consequence, wrapping the command line tools as Web APIs allows for
providing their functionality remotely and causes only a small additional perfor-
mance overhead. Furthermore, by using the Composer in combination with the
knowledge base and the Cognitive Apps for every step of the scenario, we imple-
mented a system that solves all mentioned problems and fulfils all requirements,
with only a slight time delay.

As a result of implementing each scenario step as loosely coupled Web API,
we provide Cognitive Apps, which have a lightweight and uniform interface, and
are scalable to handle the continuously growing data volumes. By using Linked
Data in our approach, it is guaranteed that data is accessible in a standardised
way. Furthermore, it allows that new data within the knowledge base can be
easily integrated by using a Linked Data-based crawler. By using Surgipedia as
a data hub and core of the knowledge base, we are able to combine all components
and their respective information and query those over the Triple Store Access
Manager.

6 Related Work

There are already some approaches for realising medical image processing com-
mand line tools as Web APIs/Web services and combining them to workflows or
pipelines: the Taverna11 plugin for GIMIAS12. GIMIAS is a software framework

11 http://www.taverna.org.uk/
12 http://www.gimias.org



11

for building applications in a medical setting, i.e. applications for image process-
ing, analysis of images or simulations. Thereby, GIMIAS is kind of a workflow-
oriented environment, which allows composing applications to workflows and
extending the functionality of a given GIMIAS installation by adding GIMIAS
command line tools [3]. In addition, there is a Web service plugin for GIMIAS,
which allows providing these command line tools as SOAP/WSDL (WS-*)13 Web
services or RESTful Web services. Moreover, the Taverna plugin14 for GIMIAS
allows building and executing workflows for distributed runtime environments by
composing available web services using drag and drop. Consequently, a user can
combine local GIMIAS applications and remote command line tools, which are
provided as Web services [3]. In general, the Taverna Workbench allows to create,
execute, monitor and share workflows that use local and remote third-party ap-
plications. It uses several techniques for service discovery, such as registries and
shallow semantic description based on OWL for selecting appropriate web ser-
vices [4]. In contrast to our approach, Taverna (respectively the Taverna Plugin
for GIMIAS) enables the manual creation or modification of existing workflows of
medical image processing applications, supported by a graphical user interface.
Using our approach with a semantic knowledge base and Linked Data prosuming
Web APIs according to SPARQL pattern, pre-processing pipelines of wrapped
MITK command line tools are created and executed automatically and step-
wise. In addition to these two different creation styles of workflows/pipelines,
there are other approaches such as using templates as in the Semantic Workflow
Approach [2].

In general, realising applications as loosely coupled Web services allows to
build powerful applications, which can use Web services that are not explicitly
specified at design time. Thereby, the semantic description of each Web service
and a possibility to register and query already registered Web services, are the
keys to realising scalable and flexible systems.

7 Conclusions

Current developments in the medical and health care domains are characterised
by the increased use and importance of digitalised patient records, monitoring
devices and medical decision supporting systems, which lead to an increase in
the volumes of available data. However, before any significant benefits can be
derived based on this data abundance, challenges such as data format heterogene-
ity, distribution of the data sets, interoperability issues and basic pre-processing
have to be addressed. In this paper, we presented an approach and a concrete
architecture that supports data consolidation and integration based on Linked
Data and semantic technologies. Furthermore, our solution enables the flexible
composition and execution of data processing pipelines, based on individual pro-
cessing steps in the form of Cognitive Apps exposed through Web APIs, with
semantically described interfaces. We demonstrate the applicability of our ap-
proach by implementing a specific scenario, evaluating the performance of the

13 http://www.w3.org/TR/ws-arch/#technology
14 https://code.google.com/p/taverna-plugin-for-gimias/



12

distributed components in comparison to a local execution, and determining the
coverage of the derived requirements. As part of future work, we will focus on
handling command line tools, which hold state changes during their execution.
Realising those as Web APIs requires a kind of enclosure and initialisation in
a first step and, therefore, additional application logic and approaches. Finally,
there is a challenge regarding how to handle data, which matches only partially
a given SPARQL graph pattern. This would require using approaches employing
some fuzzy logic.

References

1. Cheung, K.H., Prud’hommeaux, E., Wang, Y., Stephens, S.: Semantic web for health
care and life sciences: a review of the state of the art. Briefings in Bioinformatics
10(2), 111–113 (2009)

2. Gil, Y., Gonzlez-Calero, P.A., Kim, J., Moody, J., Ratnakar, V.: A semantic frame-
work for automatic generation of computational workflows using distributed data
and component catalogues. J. Exp. Theor. Artif. Intell. 23(4), 389–467 (2011),
http://dblp.uni-trier.de/db/journals/jetai/jetai23.html#GilGKMR11

3. Hunter, P., Bradley, C., Britten(et al.), R.: The vph-physiome project: Standards,
tools and databases for multi-scale physiological modelling. In: Ambrosi, D., Quar-
teroni, A., Rozza, G. (eds.) Modeling of Physiological Flows, MS&A Modeling,
Simulation and Applications, vol. 5, pp. 205–250. Springer Milan (2012)

4. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble,
C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M.,
Stevens, R., Wipat, A., Wroe, C.: Taverna: Lessons in creating a workflow envi-
ronment for the life sciences: Research articles. Concurr. Comput. : Pract. Exper.
18(10), 1067–1100 (Aug 2006), http://dx.doi.org/10.1002/cpe.v18:10

5. Speiser, S., Harth, A.: Taking the lids off data silos. In: Proceedings of the 6th Inter-
national Conference on Semantic Systems. pp. 44:1–44:4. I-SEMANTICS ’10, ACM,
New York, NY, USA (2010), http://doi.acm.org/10.1145/1839707.1839761

6. Speiser, S., Harth, A.: Integrating linked data and services with linked data ser-
vices. In: ESWC 2011. Lecture Notes in Computer Science, vol. 6643, pp. 170–184.
Springer (2011)

7. Stadtmüller, S., Norton, B.: Scalable discovery of linked apis. Int. J. of Metadata,
Semantics and Ontologies 8(2), 95–105 (2013)


