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ABSTRACT
Complex tasks for heterogeneous data sources, such as find-
ing and linking named entities in text documents or detect-
ing objects in images, often require multiple steps to be
solved in a processing pipeline. In most of the cases, there
exist numerous, exchangeable software components for a sin-
gle step, each an ”expert” for data with certain characteris-
tics. Which expert to apply to which observed data instance
in which step becomes a challenge that is even hard for hu-
mans to decide. In this work, we treat the problem as Single-
Agent System (SAS) where a centralized agent learns how to
best exploit experts. We therefore define locality-sensitive
relational measures for experts and data points, so-called
”meta-dependencies”, to assess expert performances, and use
them for decision-making via Online Model-Free- and Batch
Reinforcement Learning (RL) approaches, building on tech-
niques from Contextual Bandits (CBs) and Statistical Rela-
tional Learning (SRL). The resulting system automatically
learns to pick the best pipeline of experts for a given set of
data points. We evaluate our approach for Entity Linking
on text corpora with heterogeneous characteristics (such as
news articles or tweets). Our empirical results improve the
estimation of expert accuracies as well as the out-of-the-box
performance of the original experts without manual tuning.

Keywords
Decision-Making with Multi-Step Expert Advice, Expert
Processes, Reinforcement Learning, Collective Learning, En-
tity Linking

1. INTRODUCTION
Complex tasks for heterogeneous data sources often re-

quire multiple steps to be solved in a processing pipeline.
Entity linking, for example, is a two-step problem where text
is tokenized to (i) find named entities and (ii) link them to a
knowledge base. In most of the cases, there exist numerous,
exchangeable software components for a single step, each
an ”expert” for data with certain characteristics. We, thus,
call such problems Decision Making with Multi-Step Expert
Advice.

Combining the outputs of exchangeable experts, e.g. by
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Figure 1: Multi-Step Expert Advice in an Expert
Process with a) the formal process and b) an Entity
Linking example with two arbitrary experts.

majority voting, can improve the overall performance, but
might fail if experts correlate or display high degrees of vari-
ance in their performances. Moreover, two experts solv-
ing two subsequent steps might be syntactically compatible
while producing bad results when plugged together.

To account for uncertainty, a number of promising can-
didates might be kept and passed to suitable experts for
the subsequent step, instead of using a single output. How-
ever, for unstructured data with high dimensionality, such
as text or images, the number of potential candidates might
grow quickly, rendering brute-force approaches impractical
for finding optimal configurations. Learning weights for ex-
perts is, thus, crucial to query promising experts and keep
”good” candidates throughout multiple steps. This entails
learning about impacts of the current decision on future out-
comes.

Well-established decision-theoretic frameworks partially
deal with these problems, including Decision Making with
Expert Advice (EA) [11] where exchangeable experts are se-
quentially weighted for single-step problems, Budgeted EA
[1] where additional budgets are set on expert queries, Con-
textual Bandits (CBs) [3] where all experts might be queried
but only the subset with the chosen action get feedback and,
finally, Contextual Markov Decision Processes (CMDPs) [21]



which consider a multi-step CB problem setting, where one
outcome is rewarded per step.

Still, none of the frameworks cover Decision Making with
Multi-Step Expert Advice at once, leading us to define so-
called Expert Processes (EPs). EPs enable learning fine-
grained expert weights by considering the impact of current
decisions on future experts and not being overly restrictive
in rewarding outcomes. To this end, we construct relational
measures – so-called ”meta-dependencies” – for experts as
well as expert pairs, quantifying their predicted performance
for specific decision candidates.

EPs with meta-dependencies enable the application of
techniques from both Reinforcement Learning (RL) as well
as Statistical Relational Learning (SRL) to continuously
improve decision-making. Here, relational measures are
promising to overcome generalization problems for hetero-
geneous data distributions, for example available in text or
images. These problems occur from assuming data to be in-
dependent and identically distributed (i.i.d.), limiting gen-
eralization for individual data points. We, therefore, exploit
meta-dependencies in two different RL scenarios, where we
use the Multiplicative Weights / Hedge (MWH) algorithm
[11, 2] for online updates and Probabilistic Soft Logic (PSL)
[19, 10] for collective inference.

Our main contributions are:

(i) We provide a formalization for EPs, aligning them with
prominent decision-theoretic frameworks.

(ii) We define and use so-called meta-dependencies, en-
abling the assessment of experts.

(iii) We present two Model-Free RL approaches – Online
RL based on the MWH algorithm and Batch RL[23]
based on PSL.

(iv) We instantiate our approaches for Entity Linking and
empirically evaluate it against Entity Linking experts
as well as other expert combination approaches.

The results clearly show that both our approaches out-
perform all competitors, but more importantly, are the first
to consider meta-dependencies between experts and single
data points for learning which expert to pick in a pipeline.

The paper proceeds as follows: We, first, formalize EPs
(Sec. 2) and introduce meta-dependencies between experts
and data (Sec. 3). We, then, present an Online RL- as well
as a Batch RL approach to solve EPs in Sec. 4 and Sec. 5.
After describing our experimental scenario and setup, we
present and elaborate on our results in Sec. 6. We finally
integrate our work into prior research (Sec. 7), summarize it
(Sec. 8) and point out possible directions (Sec. 9).

2. EXPERT PROCESSES
An expert process EP is a 7-tuple (S,E,A,R, T,H,M)

based on Markov Decision Processes (MDPs) [31] with S
the set of all states, E the set of all experts, A the set
of all possible actions, T : Sh × Ah → Sh+1 the deter-

ministic transition function, R : Sh × Ah → [0, 1]D
h

the
reward function, H the number of steps and M the bud-
get per step. The state set S = S1, . . . , SH+1 consists of
H + 1 disjunct, heterogeneous state spaces. Hence, a state
sh is uniquely assigned to a step and can be represented
in any form, e.g., as a set, sequence, vector, graph or other-
wise. Each state sh also has a set of Dh decision components

1sh, . . . ,D
h

sh, i.e. Dh decisions need to be taken for sh. As
EPs are acyclic and deterministic, choosing T (sh, ah) will
always result in sh+1. The reward R(sh, ah) is a vector of
local feedback received after choosing action ah in state sh,
i.e. the vector contains feedback for each decision compo-
nent. We are given a set E of Nh experts, where in step
h of the EP a subset of E = E1, . . . , EH is available for
being queried. An expert eh is a function eh : Sh → AS,
where AS ⊆ Sh × Sh+1 are relations for mapping decision
candidates. Possible actions dahj ∈ dAh for dsh can finally

be defined as dAh := {dsh+1|∃eh ∈ E : (sh, sh+1) ∈ eh(sh)}.
For simplicity, we denote ∆E : Sh → Sh+1 the action sug-
gestion of expert eh for state sh, which can be inferred from
A. The reward function given an expert’s suggested action
is, then, defined by R(dsh,∆eh(dsh)). The budget Mh con-
fines the number of state-expert pairs (eh, sh) one is allowed
to query in step h.

The distribution over (state,expert)-pairs P (sh, eh) is con-

structed based on weights weh : Sh → [0, 1]D
h

for expert eh.

P (sh, eh) =

∑
ds∈sh weh (

ds)∑
s′∈Sh

∑
ds′∈s′

∑
e′∈Eh we′ (

ds′)
(1)

The state-action value function (also referred to as Q-
function) estimate for taking an action ah in sh, is recur-
sively defined as:

Q(sh, ah) =
∑
ds∈sh

∑
e∈Eh

we(
ds) ∗ 1{∆e(ds)=da} (2)

with expert weights:

weh(dsh) = R(dsh,∆eh(dsh))

+ δ
∑

sh+1∈Sh+1

T (sh+1|sh, ah) max
ah+1∈Ah+1

Q(sh+1, ah+1)

(3)
where δ defines the impact of future rewards. Finally, the

state-action distribution P (sh, ah) is defined as the normal-
ized state-action value function estimate:

P (sh, ah) =
Q(sh, ah)∑

s′∈Sh
∑
a′∈Ah Q(s′, a′)

(4)

Similar to MDPs, the Q−function takes into account fu-
ture actions for the current state-action value. More specif-
ically, learning to balance exploration and exploitation, as
prevalent in CBs or MDPs, also appears in EPs in terms
of learning which experts e1, . . . , eH to query for s1, . . . , sH.
For multi-step decision problems, this is generally referred
to as Reinforcement Learning (RL).

An EP proceeds in episodes z ∈ Z, where for each episode
z the process goes through all steps. In each step h for
h = 1, . . . ,H:

• We are given Ŝh+1. // with |Ŝh| = 1 for h = 1.

• Build state-expert pair distribution P (sh, eh).

• Choose and query Mh state-expert pairs (sh, eh) and
retrieve ah1 , . . . , a

h
M.

• Build state-action distribution P (sh, ah) based on

Âh := {ah|dah ∈ dAh}, containing all possible actions
based on ah1 , . . . , a

h
M.



• Choose ah = 1ah, . . . ,D
h

ah and receive R(sh, ah), but

observe all residual rewards ∀âh ∈ Âh : R(sh, âh) 1.

• If h < H then set Ŝh+1 = {sh+1|sh+1 ∈ Âh}.

The reward of the decision process Rcum can be defined
as the expected cumulative reward collected over H, i.e:

Rcum = E[

H∑
h=1

Dh∑
d=1

Rh(dsh, dah)] (5)

The overall goal of an EP is to learn how to act in the
given decision process, i.e. finding the optimal policy π∗

with π : S → A which maximizes Rcum.

Our Learning Goal
In this work, we are interested in learning weights weh(dsh)
for experts, constrained by a budget Mh. This entails con-
tinuously or periodically improving policy π while collecting
samples (sh, eh), as the sample collection process directly
influences the quality of the learned weights and vice versa.
For learning weh(dsh), we exploit rich state spaces to calcu-
late so-called meta-dependencies between experts and deci-
sion candidates.

We will next introduce the concept of meta-dependencies
between experts and decision candidates, which is the base-
line for learning expert weights for EPs.

3. META-DEPENDENCIES
A meta-dependency expresses a relation between a deci-

sion candidate dsh and either (i) two experts ehi , e
h
j of the

same step, (ii) two experts ehi , e
h+1
j of subsequent steps or

(iii) a single expert eh. It approximates how single- or pairs
of experts behave for a decision candidate based on behav-
ioral measures for one action µ : Sh × Ah → [0, 1] or two
actions µ : Sh×Ah×Ah → [0, 1] to assess dshi on similar de-
cision candidates cshj in its neighbourhood, using a domain

dependent kernel κ ∈ K with κ : Sh × Sh → [0, 1].
While (iii) is the analogy to straight-forward function ap-

proximation techniques for the meta-analysis of single ex-
perts, (i) and (ii) are classes of pairwise measures which en-
able an agent to decide which experts cooperate well. Given
MD(eh, dsh), the set of all calculated meta-dependencies for
(eh, dsh), we aim to approximate expert weight weh(dsh) as-
suming different kinds of relationships. We will now present
meta-dependencies for each of the three classes.

3.1 Pairwise Intra-Step Experts
Pairwise intra-step meta-dependencies for (ehi , e

h
j ,
dsh)

with i 6= j quantify the relative behaviour between two
experts of the same step given a decision candidate, ex-
ploiting its neighbourhood. The (ε, θ)-dependency of a pair
(ehi , e

h
j ,
dsh) with κ, µ is expressed as:

MDκ,µ
1 (ehi , e

h
j ,
dsh) =∑

lsh∈Nκ(dsh) κ(dsh, lsh)µ(lsh,∆ehi
(lsh),∆ehj

(lsh))∑
lsh∈Nκ(dsh) κ(dsh, lsh)

(6)

1Feedback might be available in retrospect at h = H.

with Nκ(dshi ) = {cshj |κ(dshi ,
cshj ) ≥ γ} 2 the decreasingly

sorted neighbourhood of dsh with minimal similarity γ, ε =∑
lsh∈Nκ(dsh)

κ(dsh,lsh)

|Nκ(dsh)| and |Nκ(dsh)| ≥ θ.
To be able to compare two expert actions

∆ehi
(dsh),∆ehj

(dsh) we define two behavioural measures for

intra-step expert meta-dependencies: joint precision µ1 and
independence µ2:

µ1(dsh, dahi ,
dahj ) =

R(dsh, dahi ) +R(dsh, dahj )

2
(7)

µ2(dsh, dahi ,
dahj ) = |R(dsh, dahi )−R(dsh, dahj )| (8)

3.2 Pairwise Inter-Step Experts
Pairwise inter-step meta-dependencies for (ehi , e

h+1
j , dsh)

with i 6= j quantify the impact of ehi on the subsequent step
3. The (ε, θ)-dependency of a pair (ehi , e

h+1
j , dsh) with κ, µ

is expressed as:

MDµ,κ
2 (ehi , e

h+1
j , dsh) =∑

lsh∈N(dsh) κ(dsh, lsh)µ(∆ehi
(lsh),∆

eh+1
j

(∆ehi
(lsh))∑

lsh∈Nκ(dsh) κ(dsh, lsh)

(9)

with ε and θ as defined as before. For inter-step expert
meta-dependencies, we define behavioural measure µ3 as
precision of a single expert, i.e.:

µ3(
dsh, dah) = R(dsh, dah) (10)

3.3 Single Experts
Single expert meta-dependencies for (eh, dsh) quantify the

behaviour of eh for dsh based on similar decision candidates
lsh. The (ε, θ)-dependency of (ehi ,

dsh) with κ, µ is expressed
as:

MDµ,κ
3 (eh, dsh) =

∑
lsh∈Nκ(dsh) κ(dsh, lsh)µ(lsh,∆eh(lsh))∑

lsh∈Nκ(ds) κ(dsh, lsh)

(11)

with ε and θ as defined as before. We use the precision of
a single expert µ3 as behavioural measure for single expert
meta-dependencies.

We, finally, define a simple kernel-dependent density mea-
sure ψε,θκ to reflect how certain we are in the value of a meta-
dependency:

ψε,θκ (dsh) =

{
Nκ(dsh)

θ
ε, if |Nκ(dsh)| < θ

ε, otherwise
(12)

For expert eh, the set of meta-dependencies for dsh is
construed as union over all kernels, i.e. MD(eh, dsh) =
∪∀κ∈KMDκ(eh, dsh) with MDκ(eh, dsh):

2For simplicity, we assume that Nκ(dshi ) only returns can-
didates which can be evaluated for a given µ, as numerous
state-expert pairs are omitted due to budgets Mh.
3As the current state might contain wrong decisions of prior
steps, one could also incorporate the impact of eh−1

j on ehi
if ∃csh−1|eh−1

j (csh−1) = dsh.



MDκ(ehi ,
dsh) = ∪∀ehj ∈Eh\ehi ∀µ∈{µ1,µ2} MDµ,κ

1 (ehi , e
h
j ,
dsh)

∪∀eh+1
j ∈Eh+1} MDµ3,κ

2 (ehi , e
h+1
j , dsh)

MDµ3,κ
3 (ehi ,

dsh)

(13)

To approximate weh(dsh), single expert meta-
dependencies measure the likelihood of an expert’s
success, while pairwise intra-step expert meta-dependencies
use correlations between two experts. As pairwise inter-step
expert meta-dependencies take into account future rewards
based on experts of the subsequent step, they support
approximating Q(dsh, dah) (cmp. eq. 2).

Expert weights can be learned in different RL scenarios.
In general, there are Model-based, Value Function-based and
Policy Search-based RL approaches, whereas the latter two
are Model-Free. Both of our approaches are Value Function-
based, as we learn the Q-function based on expert weights.
To this end there are two classes of methods, namely Online-
and Batch RL: Online RL updates Q after each new state,
while in Batch RL updates are deferred for a fixed number
of episodes to learn supervised models. We next present an
Online Model-Free RL approach to learn expert weights.

4. ONLINE RL FOR EXPERT PROCESSES
In the Online RL setting, one aims to continuously im-

prove predictions with every observed reward. We take a
Model-Free RL approach, thus not learning R and T (T
is known in our special case) but approximating expert
weights. Note that most works in RL do not aim to general-
ize across world states [21] (although numerous approaches
deal with function approximation and limited generalization
[35, 25, 40]).

To this end, we use meta-dependencies as direct esti-
mators for expert performances. Over multiple episodes,
we keep and update meta-weights for meta-dependencies to
gradually get more accurate predictions.

We will first describe the Multiplicative Weights/Hedge
(MWH) algorithm and map it to meta-dependencies. Based
on the latter, different measures related to EA, CBs and
MDPs are integrated to account for imperfect information
due to the budget and the influence of current decision on
future ones.

4.1 MWH with Meta-Dependencies
The Multiplicative Weights (MW) update method [11, 2]

entails drawing experts from a normalized probability dis-
tribution and updating their weights according to this prob-
ability. Hedging over experts [16] extends MW by exponen-
tial weights. For an EP, the essential MWH update rule for
weh(z) can be defined as:

weh(z + 1) =

weh(z) exp

(∑
sh∈Ŝh

∑
dsh∈sR

scaled(dsh,∆eh(dsh))∑
sh∈Ŝh

∑
dsh∈s 1{q(eh,sh)=1}

η

)
(14)

where Ŝh are the states of episode z, q : E × S → [0, 1]
denotes if expert e was queried for s, η ≤ 1 is the influence
parameter of the update, and Rscaled returns the rewards
rescaled to [−1, 1].

The update rule keeps a global weight for each expert
as it does not incorporate any available contextual infor-
mation. To be able to exploit contextual information, we
apply MWH directly to meta-dependencies and refer to
them as meta-experts me ∈ ME, where ∀MDi(

dsh) ∈
MD(eh, dsh)∃mei : mei(

dsh) = MDi(
dsh) ψε,θκ (dsh)

and χ : ME → E is the assignment function from
meta-experts to experts. A meta-expert, thus, predicts
the value of meta-dependency MDi(

dsh) 4 for candi-
date dsh weighted by ψε,θκ . Let now Rmeta(dsh,me) =
me(dsh) Rscaled(dsh,∆χ(me)(

dsh)) be the reward function
for meta-experts. The resulting update rule for meta-
weights wme(z + 1) is:

wme(z + 1) = wme(z) exp

(
Ravg(Ŝh,me) η

)
(15)

where Ravg(Ŝh,me) =
∑
sh∈Ŝh

∑
dsh∈sh R

meta(dsh,me)∑
sh∈Ŝh

∑
dsh∈sh 1{q(χ(me),sh)=1}

.

An expert weight, then, is defined by:

weh(dsh) =

∑
me 1{χ(me)=eh} me(

dsh) wme(z)∑
me wme(z)

(16)

However, MWH does not deal with incomplete informa-
tion resulting from budget Mh. We, thus, adapt techniques
from Budgeted EA [1] and adversarial CBs to account for
state-expert pairs we did not choose to query.

4.2 MWH with Incomplete Information
As an EP allows to query Mh different state-expert pairs,

we extend the weight updates with so-called importance
weighting, which was proposed for Budgeted EA. This is
achieved by normalizing the reward by the probability of all
experts queried in z, h with importance weight iw(z, h) =∑
s∈Ŝh

∑
e∈Eh 1{q(e,s)=1}p(e|s):

wme(z + 1) = wme(z) exp

(
Ravg(Ŝh,me)

iw(z, h)
η

)
(17)

Adversarial CBs do not consider data to be i.i.d. but try to
gradually adapt their strategies online. The EXP family of
CBs (e.g. [3]) are based on MWH, but extend the approach
to update expert weights for non-taken actions, i.e. experts
in EPs. While in adversarial CBs all experts are queried
to suggest an action, all meta-experts are queried in EPs to
suggest a weight for their assigned expert. This is equivalent
to a weighted binary decision of each meta-expert, either
voting for or against their expert.

EXP4.P [7] is an adversarial bandit approach with low
regret (i.e. negative reward) bound. Here, the probability
of choosing an action is equivalent with an expert weight in
EPs, which we adapt to:

weh(dsh) = (1−Nh phmin)∑
me 1{χ(me)=eh} me(

dsh) wme(z)∑
me wme(z)

+ phmin

(18)

4For simplicity MDi(
dsh) refers to either MDκ,µ

1 (ehj , e
h
k ,
dsh),

MDκ,µ
2 (ehj , e

h+1
k , dsh) or MDκ,µ

3 (eh, dsh)



where phmin = [0, 1
Nh

] is the minimum probability for
choosing any expert.

The update rule of EXP4.P is a modification of MWH
(cmp. eq. 15) and Budgeted EA (cmp. eq. 17) in that
one ensures exploration for unlikely experts through phmin
and uses confidence bounds to express the variance of the
reward. It can be directly used for EPs:

wme(z + 1) =wme(z) exp

(
phmin

2(
1{χ(me)=e}

Ravg(Ŝh,me)

iw(z, h)
+

1

iw(z, h)
η

))
(19)

Finally, we incorporate outcomes of the chosen joint action
by boosting expert weights if an expert’s suggested action
was wrongfully chosen or wrongfully not chosen, i.e.:

wronghz (me) =1{qhz (χ(me))=1}(
1{(qhz (∆e(s))=0)∧(Rmeta(s,∆e(s))>0))}

+ 1{(qhz (∆e(s))=1)∧(Rmeta(s,∆e(s))<0)}

) (20)

The resulting boosting factor, then, consists of parameter
β which is either active or inactive:

boosthz (me) = β wronghz (me) (21)

The final weight update rule is:

wme(z + 1) =wme(z)(me) exp

(
phmin

2
boosthz (me)(

1{χ(me)=e}
Ravg(Ŝh,me)

iw(z, h)
+

1

iw(z, h)
η

))
(22)

Both update rule and expert probability do not specif-
ically incorporate techniques from Model-Free RL ap-
proaches, such as the well-known Q-Learning algorithm [41],
i.e. future rewards are not explicitly optimized (cmp. eq. 3
for explicit optimization). Here, we rather incorporate fu-
ture rewards via meta-dependencies, where meta-experts for
pairwise inter-step experts take into account how an expert’s
suggestion influences future results.

Online RL enables reacting to each change in an expert’s
performance, but this often yields a suboptimal use of sam-
ples. Batch RL [23], on the other hand, enables more effi-
cient use of samples while stabilizing the learning process by
updating Q less frequently. Batch RL approaches, therefore,
defer updates for a fixed number of episodes.

We, now, take a Batch RL perspective on EPs and use
SRL for function approximation.

5. BATCH RL FOR EXPERT PROCESSES
Other than in Online RL, Batch RL [23] approaches con-

duct updates after a fixed number of episodes Zbatch, thereby
enabling the use of Batch Supervised Learning. The central
idea is to use a scalable SRL approach – i.e. Probabilistic
Soft Logic (PSL) – for meta-dependencies to learn a collec-
tive model for experts of same or subsequent steps.

We consider an adapted version of an EP where batch up-
dates and -predictions are possible. The new EP is changed
to deal with Zbatch samples within a single step h before
continuing to h + 1. To use all available information of the
EP, we train two models for each step h – an a priori model
before querying any expert and an a posteriori model after
having queried all state-expert pairs 5. To this end, PSL
enables directly integrating kernels into the model, thereby
transferring inferred weights to other decision candidates by
collective inference.

The section proceeds as follows: we first describe PSL, a
template language for generating Hinge-Loss Markov Ran-
dom Fields. We, then, elaborate on how to model weights
weh(dsh) to approximate Q.

5.1 Probabilistic Soft Logic and Hinge-loss
Markov Random Fields

A Hinge-loss Markov Random Field (HL-MRF) [5] is
a conditional probabilistic model over continuous random
variables. The use of hinge-loss feature functions makes in-
ference tractable. HL-MRFs are defined as probability den-
sities:

P(Y |X) ∝ 1

Znorm
exp[−

M∑
j=1

λjφj(Y,X)]

with weights λm, linear function lj , ∆j ∈ {0, 1}, Znorm
the respective normalization constant and φj(X,Y ) =
[max{lj(Y,X), 0}]pj the hinge-loss potential functions.

PSL [19, 10] is a modeling language for HL-MRFs. A
model in PSL comprises weighted, first-order logic rules
(templates for φj) with features defining a Markov network.
Here, PSL relaxes conjunctions, disjunctions and negations
of Boolean variables A,B as A ∧ B = max{A + B − 1, 0},
A ∨B = min{A+B, 1} and ¬A = 1−A.

As exact inference for a PSL model is a convex optimiza-
tion problem, it potentially scales to large datasets, making
it applicable for EPs with large state spaces, using meta-
dependencies.

5.2 Meta-Dependencies with PSL
We aim to learn expert weights weh(dsh) by using PSL to

construct different potential functions φj(X,Y ) and learn
their weights λi, where Y = ∪∀s∈Ŝh∀ds∈s∀e∈Ehwe(

ds), X =

∪∀s∈Ŝh∀ds∈sh∀e∈EhMDκ,µ(e, ds). We construct one PSL
model per step h and, other than in our online approach,
learn one expert weight function for Eh as our intuition is
that meta-dependencies enable to generalize across different
experts of the same step.

All n-ary relations we define map their variables to a real
number between zero and one, e.g. Relation : A×B → [0, 1]
for n = 2. An expert weight weh(dsh) is represented as
relation W(eh, dsh). Meta-dependencies for pairwise intra-
step experts MDκ,µ

1 (ehi , e
h
j ,
dsh), pairwise inter-step experts

MDµ,κ
2 (ehi , e

h+1
j , dsh) and single experts MDµ,κ

3 (eh, dsh)
are pre-computed meta-dependencies with respective den-
sities MD1−Dκ,µ(ehi , e

h
j ,
dsh),MD2−Dµ,κ(ehi , e

h+1
j , dsh) and

MD3−Dµ,κ(eh, dsh) (cmp. eq. 12). Densities are calculated

5Note that we gradually increase our training set with each
batch, where densities provide a natural way to passively
forget older samples. An alternative would be to actively
forget all old batches but reuse old weights as priors.



based on ψε,θκ . Tr(eh, dsh1 ,
dsh+1

2 ), the transition relation,
denotes that an expert suggests dsh+1

2 in state dsh1 .
Pairwise intra-step expert rules express that the weight

of an expert increases if (ehi , e
h
j ,
dsh) is (ε, θ)-dependent

and (ehi , e
h
j ) agree on dsh+1 with µ ∈ {µ1, µ2}. We,

first, model rules for the a priori setting where no infor-
mation about expert suggestions is available. Here, we
set relation Agree(eh1 , e

h
2 ,
dsh1 ) = MDκ,µ4

2 (eh1 , e
h
2 ,
dsh1 ) with

µ4(dsh, dahi ,
dahj ) = 1{dahi =dahj }

.

MDκ,µ
1 (eh1 , e

h
2 ,
dsh1 ) ∧MD1−Dκ,µ(eh1 , e

h
2 ,
dsh1 )

∧Agree(eh1 , e
h
2 ,
dsh1 ) =⇒ W(eh1 ,

dsh1 )

¬MDκ,µ
1 (eh1 , e

h
2 ,
dsh1 ) ∧MD1−Dκ,µ(eh1 , e

h
2 ,
dsh1 )

∧Agree(eh1 , e
h
2 ,
dsh1 ) =⇒ ¬W(eh1 ,

dsh1 )

After having queried all state-expert pairs, we can leverage
new information by only increasing expert weights if there
is agreement.

MDκ,µ
1 (eh1 , e

h
2 ,
dsh1 ) ∧MD1−Dκ,µ(eh1 , e

h
2 ,
dsh1 )

∧ Tr(eh1 ,
dsh1 ,

dsh+1
2 ) ∧ Tr(eh2 ,

dsh1 ,
dsh+1

2 ) =⇒ W(eh1 ,
dsh1 )

¬MDκ,µ
1 (eh1 , e

h
2 ,
dsh1 ) ∧MD1−Dκ,µ(eh1 , e

h
2 ,
dsh1 )

∧ Tr(eh1 ,
dsh1 ,

dsh+1
2 ) ∧ Tr(eh2 ,

dsh1 ,
dsh+1

2 ) =⇒ ¬W(eh1 ,
dsh1 )

Rules for pairwise inter-step expert meta-dependencies are
direct applications of (ε, θ)-dependency for (ehi , e

h+1
j , dsh)

and its negative implication with µ = µ3. Here, we use the
same rules for both the a priori and the a posteriori setting.

MDκ,µ
2 (eh1 , e

h+1
2 , dsh2 ) ∧MD2−Dκ,µ(eh1 , e

h+1
2 , dsh2 )

=⇒ W(eh1 ,
dsh2 )

¬MDκ,µ
2 (eh1 , e

h+1
2 , dsh2 ) ∧MD2−Dκ,µ(eh1 , e

h+1
2 , dsh2 )

=⇒ ¬W(eh1 ,
dsh2 )

Similarly, we directly apply (ε, θ)-dependency for (eh, dsh)
as positive influence on weh(dsh) with µ = µ3, while the
negation also holds. A priori and a posteriori models, again,
consist of the same rules.

MDκ,µ
3 (eh, dsh) ∧MD3−Dκ,µ(eh, dsh) =⇒ W(eh, dsh)

¬MDκ,µ
3 (eh, dsh) ∧MD3−Dκ,µ(eh, dsh) =⇒ ¬W(eh, dsh)

We propagate inferred weights by relation
Similarκ(dsh1 ,

csh2 ), thus using kernels directly to ex-
ploit similarities among decision candidates. It becomes
clear that batch predictions might potentially increase the
performance of the approach, as kernels cluster similar
decision candidates.

Similarκ(dsh1 ,
csh2 ) ∧W(eh, dsh1 ) =⇒ W(eh, csh2 )

Similarκ(dsh1 ,
csh2 ) ∧ ¬W(eh, dsh1 ) =⇒ ¬W(eh, csh2 )

We finally align experts with same outputs by driving
their weights to be the same as well. For the a priori setting,
we define rules based on the agreement probability:

W(e1,
dsh1 ) ∧Agree(eh1 , e

h
2 ,
dsh1 ) =⇒ W(eh2 ,

dsh1 )

¬W(e1,
dsh1 ) ∧Agree(eh1 , e

h
2 ,
dsh1 ) =⇒ ¬W(eh2 ,

dsh1 )

Based on the observed expert action candidates, rules for
the a posteriori case are modelled as:

W(e1,
dsh1 ) ∧ Tr(eh1 ,

dsh1 ,
dsh+1

2 ) ∧ Tr(eh2 ,
dsh1 ,

dsh+1
2 )

=⇒ W(eh2 ,
dsh1 )

¬W(eh1 ,
dsh) ∧ Tr(eh1 ,

dsh1 ,
csh+1

2 ) ∧ Tr(eh2 ,
dsh1 ,

csh+1
2 )

=⇒ ¬W(eh2 ,
dsh)

For learning weights of the PSL model and inferring
weh(dsh), we use an approximate maximum likelihood
weight learning algorithm and maximum a posteriori (MAP)
inference [4].

6. EMPIRICAL EVALUATION
We evaluate our methods based on an EP for named entity

recognition (NER) and disambiguation (NED) (cmp. Fig. 1
b)). The resulting EP has H = 2 with S1 a state space
over words, S2 a state space over named entities and S3 a
state space over disambiguated named entities, i.e. resources
available in a (semi-) structured knowledge base (e.g. DB-
pedia [24], YAGO [36] or Wikipedia6). For NER (h = 1),
decision candidates are n-grams with n = 1, . . . , |words(s1)|.
The actual number of decision candidates is determined by
E1, the set of all NER experts. For NED (h = 2), decision
candidates are possible named entities, suggested by E2, the
set of all NED experts. Decision candidates for NED out-
puts (h = 3) are single disambiguated named entities.

6.1 Setup

6.1.1 Data
We cross-validate our approaches on the Microposts 2014

corpus [6] and evaluate on the Spotlight corpus [28] after
training on Microposts 2014, where we treat each tweet and
each sentence within an article as single state sample. We
only use tweets for training phases throughout the evalu-
ation to test the ability of transferring meta-dependencies
to different data distributions, as the Spotlight Corpus is
comparably small and such problems might often occur in
practice.

6.1.2 Meta-Dependencies
Kernels: We summarize the kernel set K and the imple-

mentations 7 8 we used in Tab. 1, where state or candidate
respectively indicates whether the kernel is calculated on a
piece of text or a decision candidate.

Densities: We vary θ and γ for κ and set:

• θlength = θextra = θstate lingual = Z
4

• γlength = γextra = γstate lingual = 0.7

• θembeddings = θminhash = θcandidate lingual = Z
10

• γembeddings = γminhash = γcandidate lingual = 0.5

6http://www.wikipedia.org/
7https://code.google.com/archive/p/word2vec/
8https://github.com/ekzhu/datasketch



Kernel Implementation
Candidate Lingual Type Part-of-Speech (POS) tag
Candidate Word embeddings Pretrained on articles 7

Candidate MinHash Jaccard similarity8

State Length Number of characters
State Extra Characters Count #, @
State Lingual Type Average POS tag

Table 1: Used kernels for evaluation.

6.1.3 Experts
We use expert implementations available as Web services

and do not tune parameters.
For NER experts, we use Stanford Tagger [15], FOX [34]

and Spotlight Spotter [28]. The NED experts are AGDISTIS
[38], AIDA [17] and Spotlight Tagger [28].

6.1.4 Evaluation measures
We evaluate our approach in terms of two target measures:

a) accuracy estimation of experts and b) outcome optimiza-
tion of the EP by performing 10-fold cross-validation and
using precision, recall and F1-measure, as proposed by en-
tity linking benchmark GERBIL [39] 9. For all experiments,
we set M1 = 2,M2 = 4.

a) Accuracy Estimation:
The goal is to correctly estimate the weights weh(dsh)∀eh ∈
E1 ∪ E2 and, thus, to predict if the suggested action of an
expert is correct or not.

• Gl-Avg: Compute global performance weights for ex-
perts on left-out training data [33]

• Loc-Avg: Single expert meta-dependencies for dsh

• On-MHW: Online MWH approach to learn weights
weh(dsh) with pmin = 0.05, η = 0.8, β = 1.5

• Batch-PSL: Complete PSL model 10 to learn weights
weh(dsh) with Zbatch = Z

10

b) Outcome optimization:
The goal is to optimize the overall outcome of the EP, i.e.
Rcum.

• AIDA: e1 = Stanford Tagger, e2 = AIDA

• DBS: e1 = DBpedia Spotlight Spotter (dictionary
lookup), e2 = DBpedia Spotlight Tagger

• AGD: e1 = FOX, e2 = AGDISTIS

• Gl-Avg, Loc-Avg, On-MHW, Batch-PSL as defined for
a) with majority voting according to P (sh, ah).

6.2 Results
We show the evaluation results for a) accuracy estimation

for h = 1 and h = 2, and b) outcome optimization in Tab. 2,
Tab. 3 and Tab. 4.

9For NER a true positive is a correctly found named en-
tity, a true negative is the correctly predicted abstinence
of a named entity, a false positive is a mistakenly predicted
named entity and a false negative is the mistakenly predicted
abstinence of a named entity.

10https://github.com/linqs/psl

Microposts ’14 Spotlight
Appr. F1 Prec Rec F1 Prec Rec
Gl-Avg 0.71 0.75 0.67 0.7 0.69 0.72
Loc-Avg 0.76 0.65 0.93 0.78 0.66 0.94
On-MWH 0.85 0.84 0.87 0.82 0.84 0.8
Batch-PSL 0.82 0.8 0.85 0.79 0.78 0.81

Table 2: Evaluation results for a) h = 1.

Microposts ’14 Spotlight
Appr. F1 Prec Rec F1 Prec Rec
Gl-Avg 0.56 0.63 0.51 0.42 0.39 0.46
Loc-Avg 0.71 0.6 0.87 0.56 0.44 0.78
On-MWH 0.73 0.67 0.81 0.67 0.62 0.72
Batch-PSL 0.8 0.73 0.88 0.74 0.72 0.77

Table 3: Evaluation results for a) h = 2.

The results show that – for a) (accuracy estimation) – our
approaches (Batch-PSL and On-MHW) are able to outper-
form both Gl-Avg without meta-dependencies and Loc-Avg
with single expert meta-dependencies. For b) (outcome op-
timization), Batch-PSL is able to outperform the straight-
forward use of experts as well as all learning approaches in
terms of F1-measure.

The results for On-MHW are stable and always close to
Batch-PSL, only outperforming the latter for a) (accuracy
estimation) for h = 1.

In general, our approaches are able to automatically learn
fine-grained expert weights and produce good combinations
of expert outputs.

6.2.1 Qualitative Results of Meta-Dependencies
The learned meta-weights show that single- as well as

pairwise intra-step expert meta-dependencies both drive
weights towards one, while pairwise inter-step expert
meta-dependencies have the opposite effect. The meta-
dependencies, thus, complement each other to provide well-
balanced estimates.

Although kernels for state text length and -extra charac-
ters are heuristics, they improve the predictive power. As
both the PSL model as well as the adapted version of MWH
are easily extensible and scale well, adaptation to new tasks
or domains is straightforward.

The textual kernels are most influential, suggesting that
additional textual kernels, covering more decision candi-
dates, might substantially improve the predictions. Our ap-
proaches, thus, enable exploiting numerous embedded text
representations to be combined for specific complex tasks.

Finally, the results suggest that meta-dependencies
learned on tweets also improve learning expert weights for
news articles, making knowledge transfer possible.

7. RELATED WORK
We, first, situate EPs into well-established decision-

theoretic frameworks of SAS and compare our approaches
to related SAS techniques. We, then, integrate our work
into related MAS branches, as we argue that our approaches
might lead towards better coordination and communication
for solving EPs in decentralized MAS.

7.1 Single-Agent Systems



Microposts ’14 Spotlight
Appr. F1 Prec Rec F1 Prec Rec
DBS 0.33 0.24 0.51 0.45 0.38 0.57
AGD 0.28 0.59 0.19 0.13 0.56 0.07
AIDA 0.33 0.69 0.21 0.24 0.69 0.15
Gl-Avg 0.41 0.51 0.34 0.36 0.48 0.29
Loc-Avg 0.47 0.59 0.38 0.42 0.49 0.37
On-MHW 0.54 0.6 0.5 0.43 0.44 0.42
Batch-PSL 0.56 0.72 0.46 0.48 0.64 0.39

Table 4: Evaluation results for b)

Decision Making with Multi-Step Expert Advice directly
maps to SAS where one agent controls all actions (i.e. ex-
perts) and is related to (i) Decision Making with Expert Ad-
vice (EA) [11], as we are able to observe the rewards of all
queried experts. Still, since there is a budget for querying
experts we need to take decisions inbetween steps. There
are overlaps with (ii) Budgeted EA [1] where not all ex-
perts can be queried and (iii) Contextual Bandits (CBs) [3]
which reward only one outcome. In addition, as we deal
with decision processes over multiple steps, (iv) Contextual
Markov Decision Processes (CMDPs) [21] are strongly re-
lated. In comparison, we are allowed to explore multiple
decision candidates for a single state and need to keep re-
spective probability distributions.

Knowledge-based trust [13] extends knowledge fusion ap-
proaches [12], which combine the outputs of multiple triple
extractors from multiple websites and could thus be seen as
instance of (i), where a combination function over experts is
learned based on heterogeneous data. While we do not deal
with problem settings where input data might be flawed, our
approach could be integrated into knowledge-based trust by
providing accurate confidence measures for the used infor-
mation extractors.

To determine the accuracy of experts in an independent
and identically distributed (i.i.d.) data setting, [29, 30] use
pairwise error independence measures between binary clas-
sifiers without requiring labelled data and, also, fall under
(i). We do not solely rely on unlabeled data, but leverage
Collective Learning to integrate labeled and unlabeled data.
In addition, we assume relations among experts to be i.i.d.
and experts are allowed to perform worse than average.

The algorithm selection problem has widely been stud-
ied for combinatorial search problems [20] or automatic ma-
chine learning (AutoML) [37], and was originally stated by
[32]. Algorithm selection problem is a special case of (ii) and
(iii), and AutoML falls under (iv) as very rich state spaces
have to be dealt with, multiple steps partially occur and
a budget is imposed during the learning phase. Automat-
ing machine learning pipelines, as approach by auto-sklearn
[14], entails automating feature selection, algorithm selec-
tion and hyperparameter optimization. While prominent
Bayesian optimization techniques share numerous overlaps
with strategies to balance exploitation and exploration in
CBs or MDPs, our focus is guiding the decision process for
single states and their decision candidates.

While ensemble learning deals with learning functions over
individual models [43], meta-learning aims to optimize the
application of learned models to new data sets based on
performance histories and so-called meta-features describ-
ing the datasets [9]. Both types of approaches can be seen

as batch versions of (i). Our work, however, focuses on se-
lecting experts (i.e. algorithms) for specific data points by
exploiting meta-dependencies, where multiple instances of
the same expert with different parameterizations could be
used.

7.2 Multi-Agent Systems
While we defined EPs for centralized decision-making in

SAS, a MAS view would distribute control of one or more
experts to decentralized agents, rendering agent communi-
cation and coordination important. Here, one would deal
with a multi-stage MAS where agents are fully cooperative.
Works for single-stage coordination [18, 26] in MAS deal
with agents for one-step problems, but extensions to the
multi-stage case exist [8]. The latter are MDP extensions
and partition the action space according to available agents.

Communication might be limited if agents cannot query
their experts in each episode due to a budget or if agents
have to choose a subset of agents to communicate with (eg.
[42]). To this end, central differences occur for payoffs, where
in cooperative scenarios either the joint action is rewarded
for all agents [18] (i.e. they receive the same payoffs) or,
such as in bandit settings, only those agents receive a reward
which voted for the chosen action [26].

8. CONCLUSION
We formalized Expert Processes for Multi-Step Expert

Advice by reusing central concepts of Decision Making
with Expert Advice, -Budgeted Expert Advice, Markov
Decision Processes and Contextual Bandits. For learn-
ing distribution-independent expert weights, we introduced
meta-dependencies based on characteristics of data points
and their decision candidates. We argued that these
meta-dependencies can be best exploited by Online Model-
Free Reinforcement Learning based on the Multiplicative
Weights/Hedge algorithm and Batch Model-Free Reinforce-
ment Learning with a probabilistic relational model as func-
tion approximator, both enabling to learn expert weights.
We evaluated our approaches for an Entity Linking Expert
Process, where they were able to provide superior results for
estimating accuracies of experts and optimizing the overall
outcome.

9. FUTURE WORK
EPs enable applying RL approaches to Multi-Step Expert

Advice. As our Online Model-Free RL approach is based on
EA, we do not directly deal with function approximation.
There are extensions to well-known RL approaches, such as
Q-learning with linear function approximation [27] or Least
Squares Policy Iteration (LSPI) [22, 25], which might be
helpful to learn functions over meta-experts.

We solve EPs in a SAS, assuming a central agent to decide
which experts to query for which states. However, a decen-
tralized MAS might enable higher degrees of scalability due
to parallelization and higher degrees of generalizability of
learned weights due to additional self-interest of each agent.
Approaches for learning decentralized coordination [42] or
learning to communicate in MAS [8, 18] might, thus, be
beneficial for EPs. In addition, pairwise meta-dependencies,
e.g. for intra- or inter-step experts, seem to be readily ap-
plicable for optimizing coordination and communication in
such a setting.
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