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Abstract. One of the main characteristics of Semantic Web (SW) data is that it
is notoriously incomplete: in the same domain a great deal might be known for
some entities and almost nothing might be known for others. A popular exam-
ple is the well known friend-of-a-friend data set where, for privacy concerns and
other reasons, some members document exhaustive private and social informa-
tion whereas almost nothing is known for other members. Although deductive
reasoning can be used to complement factual knowledge based on the ontologi-
cal background, still a tremendous number of potential statements remain to be
uncovered. The paper is focused on the prediction of potential relationships and
attributes by exploiting regularities in the data using statistical relational learning
algorithms. We argue that multivariate prediction approaches are most suitable
for dealing with the resulting high-dimensional sparse data matrix. Within the
statistical framework, the approach scales up to large domains and is able to deal
with highly sparse relationship data. A major goal of the presented work is to
formulate an inductive learning approach that can be used by people with little
machine learning background. We present experimental results using a friend-of-
a-friend data set.

1 Introduction

The Semantic Web (SW) is becoming a reality. Most notably is the development around
the Linked Open Data (LOD) initiative. The term Linked Data is used to describe
a method of exposing, sharing, and connecting data via dereferenceable Unique Re-
source Identifiers (URIs) on the Web. Typically, existing data sources are published in
the Semantic Web’s Resource Description Framework (RDF), where statements are ex-
pressed as simple subject-property-object(s, p, o) triples and are graphically displayed
as a directed labeled link between a node representing the subject and a node represent-
ing the object (Figure 1). Data sources are interlinked with other data sources in the
LOD cloud. In some efforts, subsets of the LOD cloud are retrieved in repositories and
some form of logical reasoning is applied to materialize implicit triples. The number
of inferred triples is typically on the order of the number of explicit triples. One can
certainly assume that there are a huge number of true triples which are neither known
as facts nor can be derived from reasoning. This might concern triples within one of the



contributing data sources such as DBpedia4 (intralinks), as well as triples describing
interlinks between the contributing data sources. The goal of the work presented here
is to estimate the truth values of triples exploiting patterns in the data. Here we need
to take into account the nature of the SW. LOD data is currently dynamically evolving
and quite noisy. Thus flexibility and ease of use are preferred properties if compared to
highly sophisticated approaches that can only be applied by a small number of machine
learning experts. Reasonable requirements are as follows:

– Machine learning should be “push-button” requiring a minimum of user interven-
tion.

– The learning algorithm should scale well with the size of the SW.
– The triples and their probabilities, which are predicted using machine learning,

should easily be integrated into SPARQL-type querying.5

– Machine learning should be suitable to the data situation on the SW with sparse
data (e.g., only a small number of persons are friends) and missing information
(e.g., some people don’t reveal private information).

Looking at the data situation, there are typically many possible triples associated
with an entity (these triples are sometimes called entity molecules or, in our work, sta-
tistical unit node set) of which only a small part is known to be true. Due to the large
degree of sparsity of the relationship data in the SW, multivariate prediction is appro-
priate for SW learning. The rows, i.e., data points in the learning matrix are defined by
the key entities or statistical units in the sample. The columns are formed by nodes that
represent the truth values of triples that involve the statistical units. Nodes representing
aggregated information form the inputs. The size of the training data set is under the
control of the user by means of sampling. Thereby the data matrix is typically inde-
pendent or only weakly dependent on the overall size of the SW and in consequence
the time consumption and feasibility of model training is essentially independent of
the overall size of the SW. In this paper we use the friend-of-a-friend (FOAF) data set,
which is a distributed social domain describing persons and their relationships in SW-
format. Our approach is embedded in a statistical framework requiring the definition of
a statistical unit and a population. In our experiments we compare different sampling
approaches and analyze generalization on a test set.

The paper is organized as follows. In the next section we discuss related work,
In Section 3 we discuss how machine learning can be applied to derive probabilistic
weights for triples whose truth values are unknown and introduce our approach. In
Section 4 we present experimental results using friend-of-a-friend (FOAF) data. Finally,
Section 5 contains conclusions and outlines further work.

2 Related Work

The work on inductive databases [1] pursues similar goals but is focussed on the less-
problematic data situation in relational databases. In [2] the authors describe SPARQL-

4 http://dbpedia.org/
5 SPARQL is a new standard for querying RDF-specific information and for displaying querying

results.



Fig. 1. Example of an RDF graph displaying a social friendship network in which the income
of a person is an attribute. Resources are represented by circular nodes and triples represented
by labeled directed links from subject node to object node. The diamond-shaped nodes stand for
random variables which are in stateone if the corresponding triples exist. Nodes representing
statistical units (here:Persons) have a darker rim.

ML, a framework for adding data mining support to SPARQL. SPARQL-ML was in-
spired by Microsoft’s Data Mining Extension (DMX). A particular ontology for spec-
ifying the machine learning experiment is developed. The SRL methods in [2] are
ILP-type approaches based on a closed-world assumption (Relational Bayes Classi-
fier (RBC) and Relational Probabilistic Trees (RPT)). This is in difference to the work
presented here, which maintains more of an open-world assumption that is more ap-
propriate in the context of the SW. Another difference is that in our work, both model
training and statement prediction is performed off-line (at loading time). As a result, in
the presented approach, querying can be very fast.

Unsupervised approaches (examples that are suitable for the relational SW domain
are [3–6]) are quite flexible and interpretable and provide a probability distribution
over a relational domain. Although unsupervised approaches are quite attractive, we
fear that the sheer size of the SW and the huge number of potentially true statements
make these approaches inappropriate for Web-scale applications. Supervised learning,
where a model is trained to make a prediction concerning a single random variable typ-
ically shows better predictive performance and better scalability. Typical examples are
many ILP approaches [7, 8] and propositionalized ILP approaches [9, 10]. Interestingly,
it was shown that even better predictive performance can be achieved based on multi-
variate structured prediction, which is a combination of unsupervised and supervised
learning: Based on some input features, as in supervised learning, several variables are
predicted jointly, as in unsupervised learning. The improved predictive performance in
multivariate prediction has been attributed to the sharing of statistical strength between
the multiple tasks, i.e., data is used more efficiently (see [11] and citations therein for
a review). Due to the large degree of sparsity of the relationship data in the SW, we
expect that multivariate prediction is quite interesting for SW learning.



3 Statistical Modeling

3.1 Defining the Sample

We must be careful in defining the statistical unit, the population, the sampling pro-
cedure and the features. A statistical unit is an object of a certain type, e.g., a person.
The population is the set of statistical units under consideration. In our framework, a
population might be defined as the set of persons that attend a particular university. For
learning we use a subset of the population. In the experimental section we will explore
various sampling strategies. Based on the sample, a data matrix is generated where the
statistical units in the sample define the rows.

3.2 The Random Variables in the Data Matrix

We now introduce for each potential triple atriple nodedrawn as a diamond-shaped
node in Figure 1. A triple node is in stateone(true) if the triple is known to exist and is
in statezero(false) if the triple is known not to exist. Graphically, one only draws the
triple nodes in stateone, i.e., the existing triples.

We now associate some triples with statistical units. The idea is to assign a triple to
a statistical unit if the statistical unit appears in the triple. Let’s consider the statistical
unit Jane. Based on the triples she is participating in, we obtain(A, typeOf, Person),
(Joe, knows,A), and(A, hasIncome, High) whereA is a variable that represents a
statistical unit. The expressions form the random variables (outputs) and define columns
in the data matrix. By considering the remaining statistical unitsJackandJoewe gener-
ate the expressions (columns),(A, knows, Jane) and(Jack, knows,A). We will not
add(Jane, knows,A) since Jane considers no one in the data base to be her friend.
We iterate this procedure for all statistical units in the sample and add new expressions
(i.e., columns in the data matrix), if necessary. Note that expressions that are not repre-
sented in the sample will not be considered. Also, expressions that are rarely true (i.e.,
for few statistical units) will be removed since no meaningful statistics can be derived
from few occurrences. In [12] the triples associated with a statistical unit were denoted
asstatistical unit node set(SUNS).

3.3 Non-random Covariates in the Data Matrix

The columns we have derived so far represent truth values of actual or potential triples.
Those triples are treated as random variables in the analysis. If the machine learning
algorithm predicts that a triple is very likely, we can enter this triple in the data store.
We now add columns that provide additional information for the learning algorithm but
which we treat as covariates or fixed inputs.

First, we derive simplified relations from the data store. More precisely, we consider
the expressions derived in the last subsection and replace constants by variables. For
example, from(A, knows, Jane) we derive(A, knows,B) and count how often this
expression is true for a statistical unitA, i.e. we count the number of friends of person
A.



Second, we consider a simple type of aggregated features from outside a SUNS.
Consider first a binary triple(A, knows, Jane) . If Jane is part of another binary triple,
in the example,(A, hasIncome, High) then we form the expression(A, knows,B) ∧
(B, hasIncome,High) and count how many rich friends a person has. A large number
of additional aggregated features are possible but so far we restricted ourselves to these
two types.

After construction of the data matrix we prune away columns which haveonesin
fewer thanε percent of all rows or in more than(1 − ε) of all rows, whereε is usually
a very small number. Thus, we remove aggregates features that are very rarely true or
almost always true, since for those no meaningful statistical analysis is possible. Note
that by applying this pruning procedure we reduce the exponential number of random
variables to typically a much smaller set.

3.4 Algorithms for Learning with Statistical Units Node Sets

In a statistical setting as described above, the statistical unit node set (SUNS) is defined
mostly based on local neighborhood of statistical units. By adding aggregated informa-
tion derived from the neighborhood, homophily can also be modeled. For instance, the
income of a person can be predicted by the average income of this person’s friends. In
the following we will briefly explain the workflow.

First, we introduce a data matrixY in which the statistical units form the rows of
sizeN . The columns, denoted as output attributes or random variables, correspond to
those RDF statements which the statistical units might be involved in. Moreover, we
might add aggregated information as additional columns and these columns, denoted
as input attributes or covariates, form another matrixX. Next, we apply multivariate
learning algorithms to the data matrices. In the present paper we utilize a reduced rank
penalized regression (RRPP) algorithm to obtain an estimated matrix via the formula

Ŷ = Ur Dr

(
dk

dk + λ

)
UT

r Y (1)

whereDr andUr are derived from ar-rank eigen decomposition of the kernel ma-
trix K ≈ UrDrU

T
r . Ur is aN × r orthonormal matrix andDr is a diagonal matrix in

which dk are ther-largest eigen values withk = 1, ...r andλ is the balance parame-
ter between the approximation error and the regularizer. The kernel matrixK can be
defined specifically for each application. Due to the nature of high dimensionality, we
work with a linear kernel. More precisely, the kernel matrix can be defined solely based
on the input attributesK = XXT , or solely based on the output attributesK = Y Y T ,
or based on bothK = ZZT , whereZ = [αX, Y ] is formed by concatenatingX andY
andα is a positive weighting factor. The predictive performance of these kernel matrices
will be analyzed and discussed in future work.

As we will see in the experiments, the resulting data matrices are typically high-
dimensional and sparse. In this situation, multivariate prediction approaches have been
most successful [11]. In multivariate prediction all outputs are jointly predicted such
that statistical strength can be shared between outputs. The reason is that some or all
model parameters are sensitive to all outputs, improving the estimates of those param-
eters. The approaches we are employing here are based on a matrix completion of the



Fig. 2.Entity-relationship diagram of the LJ-FOAF domain

entire data matrix, including inputs and outputs.6 Besides RRPP we investigate matrix
completion based on a singular value decomposition (SVD), matrix completion based
on non-negative matrix factorization (NNMF) [13] and matrix completion using latent
Dirichlet allocation (LDA) [14]. All approaches estimate unknown matrix entries via a
low-rank matrix approximation. NNMF is a decomposition under the constraints that
all terms in the factoring matrices are non-negative. LDA is based on a Bayesian treat-
ment of a generative topic model. After matrix completion of thezero entries in the
data matrix, the entries are interpreted as certainty values that the corresponding triples
are true. After training, the models can be applied to statistical units in the population
outside the sample.

4 Experiments

4.1 Data Set and Experimental Setup

Data Set: The experiments are based on friend-of-a-friend (FOAF) data. The FOAF
ontology is based on RDFS/OWL and is formally specified in the FOAF Vocabulary
Specification 0.917.

All extracted entities and relations are shown in Figure 2. In total we collected
32,062 persons and all related attributes. From this triple set, which we call full triple
set, we selected 14,425 persons with a “dense” friendship information. On average, a
given person has 27 friends. Then we pruned rare attributes which are associated with
less than 10 persons. Table 1 lists the number of different individuals (top rows) and
their known instantiated relations (bottom rows) in the full triple set, in the pruned
triple set and in triples sets in different experiment settings (explained below). The
resulting data matrix, after pruning, has 14,425 rows (persons) and 15,206 columns.
Among those columns 14,425 ones (friendship attributes) refer to the propertyknows.
The remaining 781 columns (general attributes) refer to general information about age,
location, number of blog posts, attended school, online chat account and interest.

6 Although the completion is applied to the entire matrix, onlyzeros —representing triples with
unknown truth values— are overwritten.

7 http://xmlns.com/foaf/spec/



setting 1 setting 2 setting 3 setting 4

Fig. 3.Evaluated sampling strategies

Data Retrieval and Sampling Strategies: In our experiments we evaluated the gen-
eralization capabilities of the learning algorithms given eight different situations and
the first four ones are illustrated in Figure 3. Cloud symbolizes the part of the Web that
can effectively be accessed (in our case the data set given in Table 1). Crosses represent
persons that are known during the training phase (training set) and circles represent
persons withknows relations that need to be predicted.

Setting 1 describes the situation where the depicted part of the SW is randomly acces-
sible, meaning that all instances can be queried directly from triple stores. Statisti-
cal units in the sample for training are randomly sampled and statements for other
randomly selected statistical units are predicted for testing (inductive setting). This
way, on average persons are barely connected by theknows relation. Theknows
relation in the training and test set are very sparse (0.18%).

Setting 2 also shows the situation where statistical units in the sample are randomly
selected, but this time the truth values of statements concerning the statistical units
in the training sample are predicted (transductive setting). Some instances of the
knows relation of the selected statistical units are withheld from training and used
for prediction. Prediction should be easier here since the statistics for training and
prediction match perfectly.

Setting 3 assumes that the Web address of one user (i.e., statistical unit) is known.
Starting from this random user profile, the profiles of users connected by theknows
relation are gathered by crawling breadth-first and are then added to the training set.
The test set is gathered by continued crawling (inductive setting). This way all pro-
files are (not necessarily directly) connected and training profiles show a higher
connectivity (1.02%) compared to test profiles (0.44%). In this situation general-
ization can be expected to be easier than setting 1 and 2 since local properties are
more consistent than global ones.

Setting 4 is the combination of setting 2 and 3. The truth values of statements concern-
ing the statistical units in the training sample are predicted (transductive setting).
Instances of theknows relation are withheld from training and used for prediction.

Settings 5-8 use the same set of statistical units as settings 1-4 respectively, but do
not limit the choice of the friendship attributes. More precisely, in settings 1-4,
due to the reflexivity of theknows relation, the statistical units are the friendship
attributes, concerning only the friendships within the sampled users, whereas in
setting 5-8, any user known by the sampled users can be considered as a friendship
attribute. Note that in the latter settings the connectivity is clearly higher than the
previous settings. The reason is that after pruning not well known users, only good



networked users are kept in the data matrix. The concrete numbers of the statisti-
cal units and the friendship attributes are shown inPerson(row) andPerson(col)
respectively in Table 1.

Evaluation Procedure and Evaluation Measure: The task is to predict potential
friends of a person, i.e.,knows statements. For each person in the data set, we ran-
domly selected oneknows friendship statement and set the corresponding matrix entry
to zero, to be treated as unknown (test statement). In the test phase we then predicted all
unknown friendship entries, including the entry for the test statement. The test statement
should obtain a high likelihood value, if compared to the other unknown friendship en-
tries. Here we use the normalized discounted cumulative gain (NDCG) [15] (described
in the Appendix) to evaluate a predicted ranking.

Benchmark methods: Baseline: Here, we create a random ranking for all unknown
triples, i.e., every unknown triple gets a random probability assigned.Friends of friends
in second depth (FOF, d=2):We assume that friends of friends of a particular person
might be friends of that person too. From the RDF graph point of view theknows
relation propagates one step further alongside the existingknows linkages.

4.2 Results

In settings 1 and 2 we randomly sampled 2,000 persons for the training set. In addition,
in setting 1 we further randomly sampled 2,000 persons for the test set. In setting 3,
4,000 persons were sampled, where the first half were used for training and the sec-
ond half for testing. Setting 4 only required the 2,000 persons in the training set. In
settings 5-8 we followed the same sampling strategies as in settings 1-4 respectively
and extracted all users known by the sampled users to form the friendship attributes. In
each case, sampling was repeated 5 times such that error bars could be derived. Table 1
reports details of the samples (training set and, if applicable, test set). The two bench-
mark methods and the four matrix completion methods proposed in Section 3.4 were
then applied to the training set. For each sample we repeated the evaluation procedure
described above 10 times, i.e., random selection of oneknows relation per person to
be treated as unknown. Since NNMF is only applicable in a transductive setting, it was
only applied in setting 1, 3, 5 and 7. Moveover, theFOF, d=2 is not applicable in set-
tings 5-8, since the statistical units and the friendship attributes are not the same users
and consequently it is impossible for many statistical units to access the friends of their
friends.

Figure 4 shows the experimental results for our FOAF data set. The error bars show
the 95% confidence intervals based on the standard error of the mean over the samples.
Figures plot theNDCG allscore of the algorithms against the number of latent variables
in settings 1-4 on the left side and in settings 5-8 on the right side. The bestNDCG all
scores of all algorithms in different settings are shown in Table 2, wherez indicates the
number of latent variables when the best scores are achieved.

First, we observe that the experimental results in settings 5-8 are much better than
those in settings 1-4. Somehow it is unfair to directly compare these two blocks of
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settings, since the friendships attributes are different, although the statistical units are
the same in the corresponding setting pairs: 1 and 5, 2 and 6 and so on. Consequently,
the sparsity of the data matrix and the predicted test statements are not identical either.
Still, we might conclude that a careful feature selection at the design phase plays a
very important role and that in social networks good connected persons influent the
predictive performance positively.

Second, the methods perform in a similar manner both in settings 1-4 and in setting
5-8. In settings 3 and 4 all four matrix completion methods clearly outperform the
benchmark algorithms. In settings 1 and 2 NNMF and SVD are only slightly better than
FOF, d=2. LDA outperforms all other approaches and RRPP comes up and reaches a
comparable NDCG score withz = 400. In settings 5-8, the similar behavior can be
seen except that RRPP achieves the best performance, followed by LDA. In general, we
observe that LDA and RRPP outperform NNMF and SVD in each setting. In addition,
these two methods are not sensitive to the predefined number of latent variables as long
as the chosen number is reasonably high. LDA reaches its maximum NDCG score, for
instance, withz = 150 latent variables in settings 4 and 8 and the performance does not
deteriorate when the number of latent factors is increased. The score of RRPP keeps
increasing and does not drop down either. In contrast, NNMF and SVD are sensitive
with respect to the predefined number of latent variables. NNMF reaches the maximum
with z = 150 andz = 100 in setting 4 and 8 respectively, while the highest score of
SVD occurs byz = 100 andz = 50 in the same settings.

Third, comparing the results over different settings we can easily find that for the
matrix completion methods one obtains best performance in settings 4 and 8, next best
performance in settings 2 and 6, then follow settings 1 and 5 and settings 3 and 7 are
the most difficult. The baseline method, random guess, is independent to the settings
and achieves almost the same score. A single irregularity is that FOF, d=2 in setting
2 performs better than in setting 4. The fact that the scores in settings 4 and 8 are
the best indicates that a link-following sampling strategy increases indeed the perfor-
mance of learning methods. Similar results in statistical comparisons between random
and network-cross sampling have been obtained in other works, e.g., [16]. On one side,
the sampled persons are more likely to come from the same communities and have
similar profiles so that they likely would want to know each other. On the other side,
theknows relation is more dense than in the case of random sampling (see Table 1).
In the latter case persons more rarely have common friends. The experimental results
confirm the assumption that the more sparse the matrix is, the more difficult the prob-
lem becomes since friendship patterns are more rare. In addition, we observe that the
prediction performance in setting 1 is not much worse than the prediction performance
in setting 2. Although from disjoint sets the statistics in training and testing are similar,
leading to comparable results. Interestingly, we see that the performance of setting 3
is much worse than the prediction in setting 4. This phenomenon can be observed in
settings 5-8 too. We attribute this to the general statistics in the training and the test set
which are very different in settings 3 and 7. In Table 1 it is apparent that for instance, in
setting 3 theknows relation in the training data set (1.02%) is significantly more dense
than in the test data set (0.44%). Intuitively speaking, the people in the training know



each other quite well, but the people in the test do not know the people in the training
as much.

5 Conclusions and Outlook

In our experiments based on the FOAF data set, LDA and RRPP showed best perfor-
mance, which we attribute to the fact that both methods, in contrast to NNMF and SVD,
have a smaller tendency to overfitting. Thus LDA or RRPP can be a default method be-
ing insensitive to exact parameter tuning. All four approaches exploited the benefits of
multivariate prediction since approaches based on single predictions (not reported here)
did not even reach the performance of the benchmark approaches. We demonstrated
how probabilistic statements can be integrated into extended SPARQL queries. As ex-
ample, based on the learning results for the FOAF data, one could answer queries such
as:Who would likely want to be Jack’s friend; which female persons in the north-east
US, would likely want to be Jack’s friends.

The approach can be extended in many ways. One might want to allow the user
to specify additional parameters in the learning process, if desired, along the line of
the extensions described in [2]. Another extension concerns ontological background
knowledge. So far, ontological background knowledge was considered by including
logically inferred statements into learning. A great advantage of the approach is that
ontological knowledge is not required for the generation of the data matrix since the
latter is generated based on observed SW triples. Ongoing work explores additional
ways of exploiting ontological background information, e.g., for structuring the learning
matrix. Similarly, we did not yet address the problem of ontology mapping and the
problem of having identical entities represented on the SW under different identifiers.

Acknowledgements: We acknowledge funding by the German Federal Ministry of
Economy and Technology (BMWi) under the THESEUS project and by the EU FP 7
Large-Scale Integrating Project LarKC.

6 Appendix

Details on the NDCG Score

Here we use the normalized discounted cumulative gain (NDCG) to evaluate a predicted
ranking, which is calculated by summing over all the gains along the rank listR with a
log discount factor as NDCG(R) = Z

∑
k(2r(k)−1/ log(1+k), wherer(k) denote the

target label for thek-th ranked item inR, andZ is chosen such that a perfect ranking
obtains value 1. To focus more on the top-ranked items, we also consider theNDCG@n
which only counts the topn items in the rank list. These scores are averaged over all
functions for comparison.
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Fig. 4. Comparison between different algorithms.NDCG all is plotted against the number of
latent variables:(a)-(h) for settings 1-8 respectively.


