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Abstract.

Increasingly, data is published in the form of semantic graphs. The most notable example is the Linked Open Data (LOD)
initiative where an increasing number of data sources are published in the Semantic Web’s Resource Description Framework and
where the various data sources are linked to reference one another. In this paper we apply machine learning to semantic graph
data and argue that scalability and robustness can be achieved via an urn-based statistical sampling scheme. We apply the urn
model to the SUNS framework which is based on multivariate prediction. We argue that multivariate prediction approaches are
most suitable for dealing with the resulting high-dimensional sparse data matrix. Within the statistical framework, the approach
scales up to large domains and is able to deal with highly sparse relationship data. We summarize experimental results using a
friend-of-a-friend data set and a data set derived from DBpedia. In more detail, we describe novel experiments on disease gene
prioritization using LOD data sources. The experiments confirm the ease-of-use, the scalability and the good performance of the
approach.
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1. Introduction

Increasingly, data is published in the form of seman-
tic graphs. The most notable example is the Linked
Open data (LOD)[1] initiative where an increasing
number of data sources are published in the Seman-
tic Web’s Resource Description Framework (RDF) [2]
and where the various data sources are linked to refer-
ence one another. LOD forms a huge semantic graph
with links from subject nodes to object nodes. Infor-
mation access is enabled via query languages such

*Corresponding author.

as SPARQL —potentially enriched with reasoning—
retrieval and search. LOD is potentially also a great
source for machine learning applications, which is the
topic of this paper. In particular we focus on Statis-
tical Relational learning (SRL) which is able to ex-
ploit statistical patterns in interlinked domains. This
is in contrast to regular machine learning, which ex-
ploits patterns in attribute-based representations, and
to Inductive Logic Programming (ILP), which con-
cerns machine learning in interconnected determinis-
tic, or close-to-deterministic, domains. We argue that
LOD has particular properties that should be taken
into account in SRL. Most importantly, LOD is typ-
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ically not collected systematically as the data origi-
nates from different sources and is also incomplete in
many cases. This is true, in particular, for relationships
across different data sources: the referencing between
data sources is typically sparse and incomplete. Thus
in our work we have a preference for approaches that
can deal with the sparsity of the data, the incomplete-
ness of the data, and which scale well with the growing
size of LOD. An approach fulfilling these requirements
is the SUNS! approach, which has been introduced in
a series of papers [3,4,5] and is readily applicable to
LOD data. Here we review the SUNS approach and
describe applications to different LOD domains. We
also show how ontological background knowledge can
be integrated into SUNS and how learned information
can be integrated into an extended SPARQL language
for querying. A novel contribution of this paper is a
detailed description of the application of the SUNS
model to Linked Life Data (LLD) [6], which is a cu-
rated subset of LOD with a focus on life science data.
In the next section, we review related work. In Sec-
tion 3 we discuss machine learning in the context of
LOD and define a setting with a clear statistical in-
terpretation. In Section 4 we describe the learning ap-
proach. The following sections are concerned with ex-
periments using LOD. In Section 5 we discuss the ap-
plication of the SUNS model to social network data
from LOD and illustrate how learned results can be
queried using an extended SPARQL query. In Sec-
tion 6 we apply our approach to LOD’s DBpedia data.
Here, we demonstrate how ontological background
knowledge can be integrated into learning. Section 7
discusses the application to LLD where the task is to
predict new gene disease relationships from known re-
lationships. Section 8 presents our conclusions.

2. Related Work and Some Background
2.1. Related Learning Approaches

In [7] the authors describe SPARQL-ML, a frame-
work for adding data mining support to SPARQL.
SPARQL-ML was inspired by Microsoft’s Data Min-
ing Extension (DMX). A particular ontology for spec-
ifying the machine learning experiment is developed.
The approach uses Relational Bayes Classifier (RBC)
and Relational Probabilistic Trees (RPT).

ISUNS stands for Statistical Unit Node Set.

The work on inductive databases [8] also considers
relational representations but is focused on the better
curated data situation in relational databases.

Bayesian approaches (examples that are suitable for
the relational domains are [9,10,11,12]) are quite flex-
ible and interpretable and provide a probability distri-
bution over a relational domain (see Section 3.2). Ex-
periments on LOD data are still quite limited [13].

Inductive logic Programming (ILP) considers deter-
ministic or close-to-deterministic dependencies. Typ-
ical examples are many ILP approaches [14,15] and
propositionalized ILP approaches [16,17]. [18] de-
scribes a perspective of ILP for the Semantic Web.

Multivariate prediction generalizes supervised learn-
ing to predict several variables jointly, conditioned on
some inputs. The improved predictive performance in
multivariate prediction, if compared to simple super-
vised learning, has been attributed to the sharing of sta-
tistical strength between the multiple tasks, i.e., data is
used more efficiently (see [19] and citations therein for
areview). Due to the large degree of sparsity of the re-
lationship data in typical semantic graph domains, we
expect that multivariate prediction is quite interesting
and we apply it in this paper.

Recently, there has been quite some work on the re-
lationship between kernels and graphs [20,21,22,23].
Relation prediction on graphs is quite related to semi-
supervised learning as surveyed in [24] where the goal
is to predict node labels based on known node la-
bels in a graph. Kernels for semi-supervised learning
have, for example, been derived from the spectrum of
the Graph-Laplacian. In [25,26] approaches for Gaus-
sian process based link prediction have been presented.
Link prediction in relational graphs has also been cov-
ered from the relational learning and the ILP com-
munities [27,28,29]. Kernels for semantically rich do-
mains have been developed by [30]. Link prediction
is covered and surveyed in [31,32]. Inclusion of onto-
logical prior knowledge to relational learning has been
discussed in [33].

In last years, tensor factorization based approaches
have been also applied to relational learning. [34] in-
troduces the Bayesian Clustered Tensor Factorization
(BCTF) and applies it to various smaller relational
data sets. TripleRank [35] applies the CP [36] tensor
decomposition to RDF graphs for faceted browsing.
A scalable tensor factorization approach to relational
learning, RESCAL, proposed in [37], performs collec-
tive learning and can be applied to classification and
entity resolution problems. Very recently, it has been
used to factor the YAGO?2 ontology [38].
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From early on there has been considerable work on
supporting ontologies using machine learning [39,40,
41], while data mining perspectives for the Semantic
Web have been described by [42,43]. [44] provides a
survey of the statistical learning models and related
techniques for Semantic Web data representations.

2.2. Related Work on Disease Gene Prioritization

Kann [45] provides an up-to-date review on the lat-
est advances in the field of translational bioinformat-
ics, focusing on the advances of computational tech-
niques to search for and classify disease genes.

Certain gene properties differentiate disease genes
and have been used as the basis for computational
tools to prioritize disease gene candidates derived from
these experiments. All of the current approaches are
based on the integration of different sources such as:
gene function (disease genes are expected to share
common functional properties), pathways (disease
genes are most likely to share common pathways),
gene expression (disease genes are expected to be co-
expressed), gene regulation (genes within the same
gene-regulation network are expected to affect similar
diseases), sequence properties, and protein interaction
(disease genes are often highly connected with other
genes from the same disease).

Current limitations result from the amount and qual-
ity of the available experimental data generated by
these techniques is a major limitation of the gene-
prioritization techniques. For instance, protein-protein
interaction-based methods suffer from the incomplete-
ness and low quality of the data currently available for
interaction networks in mammals. Another source of
uncertainty is the disease mapping information used
to train and evaluate the computational methods, for it
is of variable resolution and expected to contain large
numbers of false positives.

Machine learning methods, e.g., decision trees and
similarity based methods are widely used. For exam-
ple, PhenoPred derives a similarity score that repre-
sents the chance of the gene disease association to be
true [46]. In the following we will compare our system
with the ToppGene Suite, which is one of the state-of-
the art approaches with an easy to use interface [47].
It uses a fuzzy-based similarity measure between the
genes in the training and test set based on their seman-
tic annotation.

hasIncome

Fig. 1. Example of an RDF graph displaying a social friendship net-
work in which the income of a person is an attribute. Concepts (re-
sources) are represented by circular nodes and triples are represented
by labeled directed links from subject node to object node. The di-
amond-shaped nodes stand for random variables which are in state
one if the corresponding triples exist. Nodes representing statistical
units (here: Persons) have a darker rim.

3. Statistical Learning in Semantic Graphs
3.1. RDF and Linked Open Data

Semantic domains can be represented as directed la-
beled graphs where nodes stand for concepts such as
objects, categories or attributes and links describe sim-
ple subject-predicate-object statements: a directed arc
points from the subject node (e.g., representing an ob-
ject or a category), to an object node (e.g., represent-
ing an object, a category or an attribute) (Figure 1).
The link is labeled by the predicate. Examples of such
semantic graphs are the RDF graphs of the Semantic
Web [2] and LOD [1], the underlying data structure in
the YAGO?2 ontology [48] and the semantic graph for-
mat in [49]. We assume that the graph only contains
links that are known to exist.? In this paper we con-
sider the learning task of predicting links which are not
present in the semantic graph but which likely exist,
considering statistical patterns that are implicit in the
data. For example, we might predict the likelihood that
Jack wants to be friends with Jane or that Jack’s in-
come is high or that Jack is a human being, and not a
parrot.

In the next sections we briefly discuss statistical ap-
proaches to networked data and motivate our approach.

2 A link, resp. the associated subject-predicate-object statement, is
sometimes referred to as a triple.
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3.2. Network Models in Statistical Relational
Learning

Let’s consider the following mapping between a
semantic RDF graph and a probabilistic model. In
semantic graphs, nodes represent objects in the real
world and links represent simple subject-predicate-
object statements. In a probabilistic setting the RDF
links become random variables (Figure 1). In a graph-
ical probabilistic model, the random variables, i.e. the
links in the RDF graph, become nodes and links be-
tween the random variables represent direct proba-
bilistic dependencies. Bayesian graphical models with
directed links and Markov networks with undirected
links are two common representatives of graphical
probabilistic models.

Since in most networked domains it is reasonable
to assume that information at one location influences
via some paths information at other locations in the
network, a graphical probabilistic model would reflect
this global dependency as well. Statistical network
models, which have been developed from this view
point are, e.g., PRMs [9], MLNs [10], the IHRM [11],
IRM [12] and, most recently, tensor models [37]. Ad-
vantages of these approaches are their elegance, power
and generality. A disadvantage is that learning and pre-
diction can be computationally expensive since infer-
ence needs to take into account all evidence in the net-
work by crossing over all nodes in the network. The
problem can sometimes be alleviated, e.g., by lifted in-
ference [50] and by exploiting the structure of the net-
work. Another problem here is that generalization to
new entities requires that these entities and their struc-
ture are integrated into the existing graphical proba-
bilistic model, requiring inference over the joint do-
main.

One might argue that a graphical probabilistic model
modeling a complete RDF graph is most close to the
ground truth and might reflect the true belief of a user
about dependencies, independencies, and probabilistic
distributions. This fits well to a Bayesian view as a
rational measure of belief, and in fact, most network
models in SRL follow a Bayesian approach [9,10,11,
12].

3.3. Approaches with a Frequentist Flavor Using an
Urn Model

In a frequentist approach, probabilities are defined
in the limit of an infinite number of trials. At first, it
might appear to be difficult to apply frequentist mod-

eling to networked domains since one often needs to
work with only one network (e.g., one university do-
main). On the other hand this seems to be a common
situation in statistical modeling: e.g., if one samples
persons and studies their properties, one often ignores
the fact that these persons participate in different net-
works, e.g., that two persons might be members of the
same family. A statistical setting here can be well de-
fined considering an urn process. In statistics, an urn
problem is an idealized mental exercise in which some
objects of real interest are represented as colored balls
in an urn or other container and are the statistical units
in the experiment. One pretends to draw (remove) one
or more balls from the urn; the goal is to determine the
probability of drawing one color or another, or some
other properties. If objects are returned to the urn (sam-
pling with replacement), a statistical process is well-
defined and generalization from the sample to the pop-
ulation via inductive statistics is well-defined as well.
In our context, the objects of interest (the “balls”) are
defined as entities with specified properties in the se-
mantic graph, e.g., all students in Munich. These en-
tities define the balls in the urn, i.e., the population.
A sample is the formed by randomly selecting entities
from the population.

Generalization to entities outside of the population
(i.e., beyond the semantic graph in the data base) can
also be guaranteed if both the entities in the popula-
tion and the entities in the test set can be considered
unbiased samples of a common population. Thus, we
consider the situations where, e.g., the population con-
sists of all 20-year old students in Munich and the sam-
ple consists of a subset. Statistical inference allows us
to generalize from the sample to the population. The
question whether one can generalize to another popu-
lation, e.g., to all students in Munich, depends on the
fact if the new population is similar to the original pop-
ulation. e.g., if 20-year old students are statistically
identical to the whole student population.

We want to note that a Bayesian analysis using the
urn model is possible as well. It would now be required
that the user formulates the prior modeling assump-
tions with respect to the urn sampling model.

As in any statistical analysis, care must be taken.
Some pitfalls specific to a networked domain are dis-
cussed in [51].
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4. Scalable Kernel Machine Learning for
Semantic Graphs

The SUNS approach is based on the scalable urn
model described in Section 3.3 and has been intro-
duced in [3] where a feature-based approach was de-
scribed. Since the number of features is very large in
the applications we are considering in this publication,
we formulate the problem in terms of inner products
of features, i.e., we use a kernel formulation. The ker-
nel solution is made scalable by using the Nystrom ap-
proximation.

4.1. The Nystrom Approximation

We now assume that for any two statistical units %
and j in the population a kernel k; ; is defined. A sub-
set of the population of size N, i.e., the sample, de-
fines the training set. Let K be the kernel matrix (i.e.,
Gram matrix) for the training instances. In many ap-
plications N can be very large, therefore we now fol-
low [52] and use the Nystrom approximation to scale
up kernel computations to large data sets.

The Nystrom approximation is based on an approx-
imation to eigen functions and starts with the eigen de-
composition

K=UDUT )]

of the kernel matrix. The Nystrdm approximation to
the kernel for two arbitrary instances ¢ and j can be
written as

kij~ k! U, diag, (1/d;) U, k.

where diag,. (1/d;) is a diagonal matrix containing the
inverse of the r leading eigenvalues in D and where
U, contains the corresponding 7 columns of U.> Here,
k., is a vector of kernels between instance ¢ and the
training instances.

The vector of approximate kernels between a statis-
tical unit ¢ and all units in the training data can be writ-
ten as

k., =~UUk; 2

3Based on this approximation the rank of any kernel matrix is less
than or equal tor < N.

and the matrix of approximate kernels between all
pairwise units in the training data is

K =~ U, diag, (d;)U,". 3)

These modified kernels can now be used in kernel ap-
proaches such as SVM learning or Gaussian process
learning. In particular, the reduced rank approximation
Equation 3 can greatly reduce the computational re-
quirements [52].4

4.2. Example: Regularized Least Squares Solutions
for Multivariate Prediction

We now assume that for an instance ¢ we have L
targets or random variables y; = (y;1,...,Y;, L)T
available. We want to train a model of the form ¢; =
kT (.,4)W where W is an N x L weight matrix.

A regularized least squares cost function can be for-
mulated as

trace(Y — KW)(Y — KW)" + X traceW ' KW

where Y = (y1,...,yn)" and where A\ > 0 is a reg-
ularization parameter. If we use the Nystrom approxi-
mation for the kernels we obtain as least squares solu-
tion for the weight matrix

1
Wis = U diag, (le) U'y.

The prediction for the training data (i.e., in smoothing
or transduction) is

Y:Udiagr<dil_/\> U'y
l

and in general
b=k () Wis. @

We now consider some special kernels. Assume that
for each instance 7, in addition to the random variables
of interest y;, we also have covariates x; available. Co-
variates might, for example, represent aggregated in-
formation. If the kernel can be written as an inner prod-
uct of the covariates k7 ; = JJ;FJUJ', our Nystrom ap-

4We use the Nystrom approximation slightly differently
from [52]. There, Equation 1 is used on a submatrix of K and Equa-
tion 2 is then used to approximate K.



6 Y. Huang et al. / Statistical Learning in Semantic Graphs

proximation is equivalent to regularized PCA regres-
sion in that covariate space. Another interesting solu-
tion is when kf i = v, y; in which case our Nystrom
approximation is equivalent to regularized matrix re-
construction via PCA, often used in collaborative fil-
tering. Note that in the latter case the low rank Nys-
trdm approximation is not only a necessity to obtain a
scalable solution but is also necessary to obtain valid
predictions at all: with A — 0 and r = N we would
obtain the trivial Y = Y. Finally, with k}, = 2/ 2;
where z; = (az,,y," )T, we obtain the reduced rank
penalized regression (RRPP) algorithm in the SUNS
framework [4]. Here, « is a positive weighting factor
balancing the influence of the two information sources.

4.3. Kernel for Semantic Graphs

So far the discussion has been quite general and
the Nystrom approximation can be used for any kernel
defined between instances in the population. As dis-
cussed in Section 2, there are a number of interesting
kernels defined for nodes in a graph but most of them
are not directly applicable to the rich domain of a se-
mantic graph with many different node types and many
different relation types. An exception is [30], which
defines kernels exploiting rich ontological background
knowledge.

We here present the kernel based on the SUNS
framework [53]. The random variables represent the
likelihood of links where the statistical unit is the sub-
ject or object. Additional features describe aggregated
information. Although features are explicitly calcu-
lated, a kernel approach is still preferred since in the
applications that we are considering the number of fea-
tures can be quite large whereas IV, the size of the sam-
ple, can be controlled more easily.

4.3.1. The Random Variables or Targets in the Data
Matrix

Figure 1 shows a simple semantic graph with nodes
Person, Jack, Joe, Jane, High and relation types
rdf:type, knows, knows, haslncome. We now intro-
duce for each potential triple a triple node drawn as a
diamond-shaped node in Figure 1. A triple node is in
state one (true) if the triple is known to exist and is
in state zero (false) if the triple is known not to exist.
Graphically, one only draws the triple nodes in state
one, i.e., the existing triples.

We now associate some triples with statistical units.
The idea is to assign a triple to a statistical unit if the
statistical unit appears in the triple. Let’s consider the

statistical unit Jane. Based on the triples she is par-
ticipating in, we obtain (?personA, rdf:type, Person),
(Joe, knows, ?personA), and (?personA, haslncome,
High) where ?personA is a variable that represents a
statistical unit. The expressions form the random vari-
ables (outputs) and define columns in the data matrix.’
By considering the remaining statistical units Jack and
Joe we generate the expressions (columns), ( ?personA,
knows, Jane) and (Jack, knows, ?personA). We will not
add (Jane, knows, ?personA) since Jane considers no
one in the semantic graph to be her friend. We iterate
this procedure for all statistical units in the sample and
add new expressions (i.e., columns in the data matrix),
if necessary. Note that expressions that are not repre-
sented in the sample will not be considered.

In [3] the triples associated with a statistical unit
were denoted as statistical unit node set (SUNS). The
data matrix formed with the [V statistical units as rows
and the random variables as columns is denoted as
Y. Note that Y contains random variables derived for
multiple different predicates.

4.3.2. Non-random Covariates in the Data Matrix

The columns in the data matrix that we have de-
rived so far represent truth values of actual or potential
triples. Those triples are treated as random variables in
the analysis. If the machine learning algorithm predicts
that a triple is very likely, we can enter this triple in the
semantic graph. We now add columns to the data ma-
trix that provide additional information for the learn-
ing algorithm but which we treat as covariates or fixed
inputs.

First, we derive simplified relations from the seman-
tic graph. More precisely, we consider the expressions
derived in the last subsection and replace constants by
variables. For example, from ( ?personA, knows, Jane)
we derive (?personA, knows, ?personB) and count how
often this expression is true for a statistical unit ?per-
sonA, i.e., we count the number of friends of person
?personA.

Also consider that often a textual description is
available for a node from which non-random features
can be derived (See the experiments in Section 6).

Second, we consider a simple type of aggregated co-
variate from outside a SUNS. Consider first a binary
triple (?personA, knows, Jane) . If Jane is part of an-
other binary triple, in the example, ( ?personA, hasln-
come, High) then we form the expression (?personA,

SDon’t confuse a random variable representing the truth value of
a statement with a variable in a triple, representing an object.
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knows, ?personB) A (?personB, hasIncome, High) and
count how many rich friends a person has. A large
number of additional covariates are possible but so far
we restricted ourselves to these two types. The matrix
formed with the [V statistical units as rows and the co-
variates as columns is denoted as X and the complete
data matrix becomes the matrix (aX,Y’).

Covariates are of great importance, in particular if
statistical units are rather disconnected. For example,
to predict the social status of two professors at differ-
ent universities in different countries, it might be rel-
evant how many students they administer, but not ex-
actly which students, or it might be important that they
are the dean of some department, but not of which de-
partment. In social network terms: it might be relevant
that they play the same roles.

5. Experiments and Querying Using FOAF Data
5.1. Data Set and Experimental Setup

5.1.1. Data Set

The experiments are based on friend-of-a-friend
(FOAF) data. The purpose of the FOAF project [54]
is to create a web of machine-readable pages describ-
ing people, their relationships, and people’s activi-
ties and interests, using W3C’s RDF technology. The
FOAF ontology is based on RDFS/OWL and is for-
mally specified in the FOAF Vocabulary Specification
0.91°.

We gathered our FOAF data set from user profiles
of the community website LiveJournal.com’. All ex-
tracted entities and relations are shown in Figure 2.
In total we collected 32,062 persons and all related
attributes. An initial pruning step removed little con-
nected persons and rare attributes. The resulting data
matrix, after pruning, has 14,425 rows (persons) and
15,206 columns. Among those columns 14,425 ones
(friendship attributes) refer to the property knows. The
remaining 781 columns (general attributes) refer to
general information about age, location, number of
blog posts, attended school, online chat account and
interest.

Shttp://xmIns.com/foaf/spec/
http://www.livejournal.com/bots/

#BlogPosts

OnlineChat
Account

| Location | | School |

Fig. 2. Entity-relationship diagram of the LJ-FOAF domain

5.1.2. Evaluation Procedure and Evaluation Measure

The task is to predict potential friends of a per-
son, i.e., knows statements. For each person in the data
set, we randomly selected one knows friendship state-
ment and set the corresponding matrix entry to zero,
to be treated as unknown (test statement). In the test
phase we then predicted all unknown friendship en-
tries, including the entry for the test statement. The
test statement should obtain a high likelihood value,
if compared to the other unknown friendship entries.
Here we use the normalized discounted cumulative
gain (nDCG) [55] (described in the Appendix) to eval-
uate a predicted ranking.

5.1.3. Baseline Methods

As a baseline we create a random ranking for all un-
known triples, i.e., every unknown triple gets a random
probability assigned. Another baseline is Pearson cor-
relation coefficient (PCC) where the prediction for a
user x; is calculated as Z; = + Z]# z; Hiﬁfj\llrwjl and

N is a normalization term.

5.1.4. Data Retrieval and Sampling Strategies

Setting 1 describes the situation where the depicted
part of the Semantic Graph is randomly accessible,
meaning that all instances can be queried directly from
triple stores. Statistical units in the sample for training
are randomly sampled and statements for other ran-
domly selected statistical units are predicted for testing
(inductive setting). In this setting, persons are rarely
connected by the knows relations. The knows relation
in the training and test set is very sparse (0.18%).

Setting 2 also concerns the situation where statis-
tical units in the sample are randomly selected, but
this time the truth values of statements concerning the
statistical units in the training sample are predicted
(transductive setting). Some instances of the knows re-
lation of the selected statistical units are withheld from
training and used for prediction. Prediction should be
easier here since the statistics for training and predic-
tion match perfectly.
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Fig. 3. Comparison between different algorithms. nDCG all is plotted against the number of latent variables: (a) and (b) for settings 1 and 2

respectively.

5.2. Results

Besides RRPP of the SUNS approach we inves-
tigate three other multivariate prediction approaches
based on matrix completion, i.e., singular value de-
composition (SVD), non-negative matrix factoriza-
tion (NNMF) [56] and latent Dirichlet allocation
(LDA) [57]. All approaches estimate unknown matrix
entries via a low-rank matrix approximation. NNMF is
a decomposition under the constraints that all terms in
the factoring matrices are non-negative. LDA is based
on a Bayesian treatment of a generative topic model.
After matrix completion of the zero entries in the data
matrix, the entries are interpreted as certainty values
that the corresponding triples are true. After training,
the models can also be applied to statistical units in the
population outside the sample.

Figure 3 shows the experimental results for our
FOAF data set. The error bars show the 95% confi-
dence intervals based on the standard error of the mean
over the samples. The figure plots the nDCG all score
of the algorithms against the number of latent vari-
ables. RRPP clearly outperforms the other methods
and also the baseline and does not exhibit overfitting
with increasing rank. LDA is a Bayesian method which
performs second best but overfits with increasing rank.

Note that NNMF does not appear in Figure 3 (a), since
it is not applicable in a inductive setting.

A more detailed description of the experimental re-
sults can be found in [4].

5.3. Comparison to IHRM

It is interesting to compare our method to statisti-
cal relational models. The IHRM model is an infinite
latent-class multi-relational Bayesian learning method
and was evaluated in [33] using a FOAF dataset. This
data set was also gathered from the website LiveJour-
nal.com. A difference to the data set used in this pa-
per is that there was no information available about
Interest and rather an attribute expressing whether a
user has an image. The details about the data set
can be obtained in [33]. We utilize the same data set
and the same experimental setting and calculate the
area under the ROC curve (AUC) as evaluation mea-
sure. When predicting knows relations, PPRR achieves
0.9322(+0.003) which is clearly better than the AUC
score performed by THRM 0.813(=£0.005).
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5.4. Extended SPARQL and More Sampling
Strategies

We want to demonstrate how learned probabilistic
statements can be queried. The following SPARQL
query illustrates a query for LiveJournal users who live
in Munich and might want to be Trelena’s friend:

SELECT ?s ?p ?0 WHERE ({
?s ?p 70 .
?s skos:subject dbp-cat:
Members_of_the_German_Bundestag .

}

PREFIX vya: http://blogs.yandex.ru/schema/foaf
PREFIX foaf: http://xmlns.com/foaf/0.1/
PREFIX dc: http://purl.org/dc/elements/1.1/
SELECT DISTINCT ?person
WHERE {

?person ya:located ?city .

?person foaf:knows <http://trelana.

livejournal.com/trelana>
WITH PROB ?prob .

FILTER REGEX (?city, "Munich")
}
ORDER BY DESC (?prob)

Listing 1: The query includes the predicted knows
triples for Trelena and rates them by predicted
probability.

Figure 4 shows an output of a knows prediction ap-
plication.

6. Experiments with DBpedia Data

DBpedia [58] is part of LOD and contains struc-
tured information extracted from Wikipedia. At the
time of writing this paper, it describes more than 3.4
million concepts, including 312,000 persons, 413,000
places and 94,000 music albums, DBpedia does not
only serve as a “nucleus for the web of data”, but also
holds great potential to be used in conjunction with
machine learning approaches. Yet, even though DB-
pedia already provides a great value, it is still limited
in the information it provides and in terms of quality.
For example, although there are many cities covered in
DBpedia, most information, like its most famous cit-
izens and its most spectacular sights, is not very use-
ful for machine learning purposes. Here we report re-
sults using a population consisting of all members of
the German Bundestag to evaluate our approach. This
population has been created by collecting all triples
that are returned by the SPARQL query

Listing 2: The query generates the population of the
German Bundestag.

6.1. Data Quality

A great benefit of LOD data is that by one simple
SPARQL query the sample is defined. While DBpedia
has great potential for machine learning, there are also
challenges when these machine learning approaches
are applied to DBpedia data. The first issue is related to
the problem of incomplete data. It is very common for
subjects in a DBpedia population to share only a sub-
set of predicates. For instance, only 101 of 293 mem-
bers of the German Bundestag represented in DBpe-
dia have an entry for the predicate dbp-ont :party or
dbp-prop:party. Therefore, in order to handle DBpe-
dia data, a machine learning algorithm has to be able
to deal with missing or incomplete data. The second
issue is related to noisy predicates. For predicates it
is often the case that there are semantical duplicates,
€.g. dbp-prop:party and dbp—ont:party.VVhﬂe du-
plicate predicates are not a big problem by default,
they can become a challenge when they are used incon-
sistently, which can greatly increase the preprocessing
effort. Third, even more serious than noisy predicates
are noisy objects. E.g. the Christian Democratic Union
of Germany was represented by the literals "cpu"
and "Christian Democratic Union" or the resources
dbpedia:Christian_Democratic_Union and dbpedia
:Christian_Democratic_Union_ (Germany). Thus the
true members of this party would have been divided
into four distinct subsets and this needs to be resolved
prior to learning. Finally, we have to consider the size
of the dataset, as the sample can get quite large when
all available information in DBpedia is used for a pop-
ulation.

6.2. Predicting Party Membership

In the following experiments the learning challenge
was to correctly predict the political party for each
subject, where the party is identified by the object of
the predicate dop-prop:party. Duplicate predicates
would bias the experiments as they are heavily cor-
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interestingly, it is predicted that she should be her own friend (black frame),

related with the target predicate. Therefore predicates
like dbp-ont:party O dbp-ont:Person/party Were
removed. Moreover, predicate-object pairs that are
very closely related to a party membership like (zs,
skos:subject, dbp-cat:Politicians_of_the_Social_
Democratic_Party_of_Germany) Or (?s, rdf:type,
yago:GermanGreenPartyPoliticians) were also re-
moved. Rare features were sometimes pruned. In order
to demonstrate the aforementioned challenges associ-
ated with DBpedia data, we conducted the following

experiments

— ORIG: The original data from DBpedia (version
3.5.1). After pruning, this dataset consisted N =
293 rows (persons) and 804 columns.

DISAMB: In this experiment the objects of the
target predicate were manually disambiguated to
solve the noisy objects problem. After the disam-
biguation exactly one concept (resource) for each
party (CDU, CSU, SPD, FDP, Alliance *90/The
Greens, The Left, Centre Party) remained in the
data set. Thus, for each statistical unit we esti-
mate L = 8 variables. Furthermore, in the origi-
nal data set only 101 of 293 statistical units had an
entry for dop-prop:party dbp-ont :party. Since
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predicted first with confidence values on one (green frame). Then
followed by a ranked list of predicted friends (red frame).

machine learning algorithms benefit from a larger
number of examples we manually added the party
for the remaining 192 units. After pruning, this
data set had 802 columns.

PEARSON: We used the Pearson correlation co-
efficient on the disamb data set as a baseline
method.

AGE: In this experiment the age of each politician
was added as a continuous feature, by subtract-
ing the birth year (when available) from the year
2010. To prevent that the age values dominated
the remaining columns, age values were normal-
ized. After pruning this data set had 804 columns.
WEIGHT: We used a weighting coefficient of
o = 0.4 to put less importance on the covariates
(see Section 4.2).

STATE: The predicates dbp-prop:birthPlace Or
dop-ont:birthPlace specify the city or village
of birth. For the members with no entry here, we
filled in the entry manually. Naturally, the birth-
place is not a useful attribute for our task, whereas
the state of the birthplace can be quite valuable,
since in Germany exist clear local party prefer-
ences. Filling in the state information from the
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birthplace information can easily be done by ex-
ploiting geographical part-of-relationships with
OWL reasoning.

— TEXT: Finally associated textual information was
exploited by tokenizing the objects of the predi-
cates rdf:comment and dbp-prop:abstract and
by adding one column for each occurring token.
When a token was present for a particular statis-
tical unit, the entry was set to one, else to zero.
After pruning the data set had 2591 columns.

— ALL: In this experiment all previously described
approaches were combined. Since the number of
attributes changed, we also changed the weight-
ing factor to oo = 0.2. After pruning this data set
had 2623 columns.

Except for ORIG, the basis for all experiments was
the DISAMB data set. To evaluate how well the party
membership is predicted, we performed leave-one-out
cross-validation by iterating over all subjects. In each
iteration we set all dbp-prop:party entries for the
subject of the current iteration to zero and used pre-
dicted estimates for ranking. As evaluation measures
we used nDCG and bpref [59], the latter often being
used in TREC tracks designed for evaluation environ-
ments with incomplete relevance data.

Figure 5 and 6 show the results for nDCG and bpref.
As expected, the results obtained from the raw data
were worst with a score of 0.722. The effect of data
cleaning from disambiguation improved the score by 7
points. A small improvement in score can be achieved
by adding the age. This shows that age is a weak pre-
dictor of party membership, at least in this Bundestag
data set. Furthermore, an improvement in score can be
achieved by putting more weight on the quantity of in-
terest, i.e., the party membership. The textual descrip-
tion sometimes contains strong hints on party mem-
bership and the score improves to 0.928. The state in-
formation is also quite relevant as an input, which is
well explained by the peculiarities of German politics.
Finally, quite a high score of 0.963 is achieved by a
combination of all methods.

7. Experiments using Linked Life Data

Life science data forms a significant part of the LOD
cloud. To a large extent, the life science data has been
extracted from well maintained data bases such that
this portion of LOD is of high quality. We apply our
approach to an important problem in life sciences, i.e.,

All
State
Text
Weight
Age
Pearson
Disamb

Original

0.0 0.2 0.4 0.6 0.8 1.0
bpref-5

Fig. 5. The bpref scores on the Bundestag population.
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Fig. 6. The nDCG scores on the Bundestag population.

the prediction of gene-disease relationships and show
that we obtain competitive results to state-of-the-art
solutions.

7.1. Gene-Disease Prediction

Disease genes are those genes involved in the causa-
tion of, or associated with a particular disease. At this
stage, more than 2500 disease genes have been dis-
covered. Unfortunately, the relationship between genes
and diseases is far from simple since most diseases
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are polygenic and exhibit different clinical pheno-
types. High-throughput genome-wide studies like link-
age analysis and gene expression profiling typically re-
sult in hundreds of potential candidate genes and it is
still a challenge to identify the disease genes among
them. One reason is that genes can often perform sev-
eral functions and a mutational analysis of a particular
gene reveal dozens of mutation cites that lead to differ-
ent phenotype associations to diseases like cancer [45].
Analysis is further complicated because environmen-
tal and physiological factors come into play as well as
exogenous agents like viruses and bacteria.

Despite this complexity, it is quite important to be
able to rank genes in terms of their predicted rele-
vance for a given disease as a valuable tool for re-
searchers and with applications in medical diagnosis,
prognosis, and a personalized treatment of diseases.
During the last years, a number of solutions and tools
have been developed for this purpose, such as Topp-
Gene [47]. Those tools use features and gene similar-
ity measures to generalize from known disease genes
to others. Kann [45] provides an up-to-date review on
the latest advances in the field of translational bioin-
formatics, focusing on the advances of computational
techniques to search for and classify disease genes.

Certain gene properties differentiate disease genes
and have been used as the basis for computational
tools to prioritize disease gene candidates derived from
these experiments. All of the current approaches are
based on the integration of different sources such as:
gene function (disease genes are expected to share
common functional properties), pathways (disease
genes are most likely to share common pathways),
gene expression (disease genes are expected to be co-
expressed), gene regulation (genes within the same
gene-regulation network are expected to affect similar
diseases), sequence properties, and protein interaction
(disease genes are often highly connected with other
genes from the same disease).

The quality of the available experimental data is a
major limitation of the gene-prioritization techniques.
For instance, protein-protein interaction-based meth-
ods suffer from the incompleteness and low quality of
the data currently available for interaction networks in
mammals.

In the following we will compare our system with
the ToppGene Suite, which is one of the state-of-the-
art approaches with an easy to use interface [47] and
uses a fuzzy similarity measure between genes.

7.2. Gene-Disease Data

A great benefit of LOD is that the data required for
the experiments, i.e., gene-disease relationships, gene
attributes, and disease attributes, can be extracted with-
out much effort. For gene-disease relationships manu-
ally curated and well maintained data bases were used.
In particular, we used OMIM [60], UniProt [61], Phar-
mGKB [62] and CTD [63]. All of these databases
except UniProt use Entrez Gene [64] identifiers for
genes. However, the mapping of UniProt to Entrez
Gene is complete enough to use only Entrez Gene
identifiers as the gene vocabulary. Unfortunately this
doesn’t apply to diseases. Some of the databases use
OMIM terms while others use MeSH. The mapping of
OMIM to MeSH or vice versa is non-trivial and sub-
ject of ongoing research (e.g. see [65]). For this reason
only data with MeSH identifiers have been used. After
the gene-disease relations had been extracted, this in-
formation was stored in an RDF triple store, by creat-
ing triples of the kind (<Entrez Gene ID>, siemens:
related_to, <MeSH ID>).

In the next step we retrieved data for the gene at-
tributes. We used the attributes mentioned in a re-
cent review article [45]. For instance, we accessed Bi-
oGRID [66] and HPRD [67] which provide protein in-
teraction information. UniProt [61] and Reactome [68]
provide data about pathways and Gene Ontology [69]
provides gene function annotations.

Again it was quite helpful that the relevant data
sources were available in the LOD cloud and were as
such easily accessible. In particular, Bio2RDF [69] and
Linked Life Data (LLD)? are two projects from the Se-
mantic Web and the Linked Data community that inte-
grate various bioinformatic databases and publish this
information in the form of RDF triples. At the time
of this writing the Bio2RDF website’ lists 57 different
databases. Figure 7 shows the various databases and
how they are connected.

In Bio2RDF, resources are accessible via a REST-
like interface and identified by normalized URIs of the
form nttp://bio2rdf.org/<namespace:id>. There-
fore, for each Entrez Gene ID we queried the Bio2RDF
with the appropriate identifier, retrieved all available
information as RDF triples and added them to the ex-
isting gene-disease graph. In doing so, we were able to
derive attributes for protein interaction by using data
from e.g. BioGRID or HPRD, gene function by us-

8http://linkedlifedata.com
9http://bio2rdf.wiki.sourceforge.net/
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Fig. 7. Bio2RDF databases and connections. (Source
http://bio2rdf.wiki.sourceforge.net)

ing Gene Ontology annotations, Pathway through data
from Pathway Commons, UniProt or Reactome. More-
over, we included information about the protein do-
main from CDD [70] as well as PubMed co-citations.
The gene length was added in a postprocessing step as
a normalized continuous attribute. Therefore, most of
the attributes that have been identified in [45] as impor-
tant for gene-disease priorization could be retrieved by
one single request to Bio2RDF and one postprocessing
step for any gene in the gene-disease relation graph.

Finally, we gathered data for disease attributes. As
mentioned above we used only MeSH diseases in
our experiments for gene-disease relationship predic-
tion. Their attributes are neither available as easily
nor in any RDF format. We crawled the MeSH tree
structure of the diseases via MeSH Browser (2010
MeSH)'?. Then, we split tree numbers according to
the levels of the MeSH hierarchy from the top one
to the leafs. For instance, the disease “abetalipopro-
teinaemia” (mesh:D000012) is located in three nodes
in the hierarchy and one of them is C16.320.565.
Therefore, we form the attributes C16, C16.320 and
C16.320.565. In this way we obtained for 1138 MeSH
diseases totally 4389 attributes which are arranged in a
10-level hierarchy.

The gene-disease data set is available at nhttp://

www.dbs.ifi.lmu.de/~huang/index.htmlf#datasets.

1Ohttp://www.nlm.nih.gov/mesh/MBrowser.html

7.3. The Data Matrices

We compared two experiments. In the first exper-
iment, the genes were treated as statistical units and
in the second experiment the diseases were treated as
statistical units. In the first experiment the data ma-
trix consisted of the N x M data matrix Y where the
rows of Y represent the IV genes and the columns of
Y represent the M diseases. The element y; ; is equal
to one if it is known that gene ¢ affects disease j and
is zero otherwise. We explored N = 3820 genes and
M = 3102 diseases, 1138 of which are MeSH terms.
Y is very sparse and contains only 0.07 % ones where
the MeSH part of Y has 0.13% ones. In addition, the
data matrix contains the matrix X with the attributes
describing the genes. In the raw data, we obtained al-
most a million attributes. This number was reduced to
less than 100000 after cutting the attributes that are as-
sociated with only one gene. X is very sparse as well,
filled with 0.13% ones.

In the second experiment, the diseases were treated
as statistical units and the data matrix consisted of
the Y. In addition, the data matrix contains the ma-
trix X p with the attributes describing the diseases. We
used 4389 disease attributes. Only 0.28% of the entries
of Xp are ones.

7.4. Experiments on Gene-Disease Modeling

7.4.1. Evaluation

In the experiments we removed a known gene-
disease relationship for each gene (i.e., we set the en-
try to zero) and predicted the likelihood of all zero en-
tries. We then evaluated how the known relationship
was ranked in comparison to the other zeros using the
nDCG@n score with n = 10 (the nDCG score is de-
scribed in the Appendix). We repeated the procedure 5
times to be able to produce error bars and mean values.

Figure 8 shows the nDCG score against rank r for
the basis SUNS models on the gene data set (a) and the
disease data set (b). In both experiments an attribute-
based prediction (only using X, resp. X p for the ker-
nel) gave worst results (att) (regularized PCA regres-
sion of Section 4.2). Models using Y for the kernel
performed much better (rel) (regularized matrix recon-
struction using PCA of Section 4.2). When both Y and
Xg, resp. Xp were used with o = 1, the results were
suboptimal, due to the dominance of the attributes.
Best performance could be achieved by carefully tun-
ing a. Due to the large number of attributes, in the first
experiment a small & = 0.1 gave best results whereas
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Fig. 8. (a) The nDCG @10 score against rank 7 for the SUNS model where the statistical units were the genes. The bottom (blue, att) line shows
the performance of the SUNS model using only X for the kernel and the second line from the top (red, rel) shows the performance of the
SUNS model using Y for the kernel. We can see that the relationships were better predictors. An RRPP SUNS model with o = 1 (second line
from bottom, green, att+rel) was worse than the relationship model alone. An RRPP SUNS model with a = 0.1 gave best results. (b) The same
but for the SUNS model where the statistical units were the diseases. At high rank r the attributes were also quite informative. An RRPP SUNS

model with a = 0.5 gave best results, when rank r exceeded 50.

in the second experiment, we used o = 0.5. With an
optimally tuned « both choices of statistical units re-
sulted in similar performances (RRPP). An interesting
question is if it is beneficial to combine both models.
Figure 9 shows the nDCG score against rank r for the
multi-population SUNS models in which the predic-
tion of both models are simply averaged. With RRPP
SUNS models as components (b), we got overall best
performance by simply averaging predictions.'!

7.4.2. Comparison with ToppGene

In order to compare our approach with other ex-
isting gene prioritization tools, we have selected the
state-of-the-art service ToppGene. Therefore the same
evaluation procedure as described in [71] and [72] has
been employed. First, various diseases have been se-
lected from the OMIM and MeSH databases together
with their related genes. The number of related genes
ranges from 18 for Hypertension to 47 for Asthma. Ad-
ditionally, 99 random, but unrelated genes have been
selected for each disease. For each disease the fol-

Different weighting factors did not improve with respect to sim-
ple averaging.

lowing validation procedure has been applied: Perform
leave-one-out validation for each related gene by re-
moving this gene (the “target” gene) from the training
set (ToppGene) or setting the target relation to zero.
Then, a ranking of the 99 random genes combined with
the target gene is computed. Hereby, sensitivity was
defined as the frequency of the target genes that are
ranked above a given threshold (e.g. in the top 10% of
the results) and specificity as the frequency of genes
that are ranked below the threshold. Since we used data
different from the original ToppGene paper, we sub-
mitted all training and test data manually through the
ToppGene web interface'? and recorded the ranking.
All ToppGene results have been computed with the
standard parameters suggested by the interface.

Table 1 shows the evaluation results of SUNS and
ToppGene on 4 different diseases. Each number rep-
resents an average over up to 50 genes. We can see
that in 7 out of 12 cases SUNS was superior to Topp-
Gene. In Psoriasis ToppGene is superior for top 20%.
We have observed a trend that for higher percentage

2http://toppgene.cchmc.org/prioritization.jsp
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Table 1

Validation results of SUNS and ToppGene. The best results for each

disease are printed bold.

Top5%  Top 10%  Top 20%

Autistic Disorder (mesh:D001321)

ToppGene 0.20 0.26 0.36
SUNS 0.36 0.40 0.46
Psoriasis (mesh:D011565)

ToppGene 0.44 0.52 0.92
SUNS 0.64 0.68 0.72
Hypertension, essential (omim:145500)

ToppGene 0.61 0.83 1.0
SUNS 0.89 1.0 1.0
AIDS, delayed/rapid progression to (omim:609423)

ToppGene 1.0 1.0 1.0
SUNS 091 091 1.0

values, ToppGene tends to be strong. We believe that
these results are quite promising, considering that in
ToppGene the weights on the relevance of the different
attributes were carefully adjusted whereas in SUNS,
all attributes essentially have the same weights. We

see a good chance that with a careful weighting of at-

tributes, our approach can even perform better.
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8. Further Applications and Conclusions

This paper discussed approaches towards statisti-
cal machine learning in semantic graphs. We proposed
the SUNS approach as a flexible, robust and scal-
able approach. In the typical data situation with many
columns in the data matrix, we proposed a kernel ap-
proach. We demonstrated that the SUNS approach can
easily be applied to a large number of learning tasks.

First, we presented results from a social network do-
main and we showed how learned information can be
retrieved using an extended SPARQL query.

Secondly, we applied the approach to data extracted
from DBpedia. Here the data is quite noisy and consid-
erable preprocessing is needed to yield good results.
Also, by including textual data the prediction results
were considerably improved. This improvement can
already be observed even if a simple keyword based
representation is used without any sophisticated in-
formation extraction. Some of the data preprocessing
steps can easily be executed with ontological (OWL-)
reasoning, such as the generalization from city to state.
In fact, materialization of facts derivable from logi-
cal reasoning is recommended as a preprocessing step.
Other preprocessing steps, such as the calculation of
age from the birthday and the current date, were done
algorithmically.

In a third and novel application, we studied a life
science domain with several hundred thousand covari-
ates, demonstrating the scalability of the approach. We
achieved excellent performance in gene prioritization.

The presented approach was also used in coopera-
tions with other research teams. In [73] the SUNS ap-
proach is applied for item recommendations in the con-
text of RDF stream reasoning. In contributions to the
MEDICO use case in THESEUS'? the SUNS model
is used as a learning decision system for predicting
procedures and diagnoses for a given patient. The rec-
ommendation is based on a data set of previously col-
lected patient histories.

Scalability of the overall approach is guaranteed.
First, we can control the number of instances consid-
ered in the Nystrom approximation. Second we can
control the rank of the approximation. Third, we can
control the number of local features that are used to de-
rive the kernel. In our experiments, M, the number of
features, was always quite high. In this case the most
costly computation is the calculation of the kernel re-
quiring N2 M operations.

Bhttp://theseus-programm.de/

LOD data provides a great potential for applying
machine learning approaches on that. Besides those
examples in this paper, recently we investigated the ap-
plication of a tensor factorization approach to predict-
ing the rdf:type relation (e.g. dbpedia-owl:Person)
in [38] and also the application of a combined learn-
ing approach to prediction the writer’s nationality (e.g.
yago:FrenchWriters) in [74], when textual data is in-
cluded. In the last paper it is also discussed how a
SUNS-like model can be extended to model a com-
plete LOD data base with many types of entities and
relationships.
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9. Appendix
Details on the nDCG Score

We use the normalized discounted cumulative gain
(nDCQG) to evaluate a predicted ranking. The nDCG
score is calculated by summing over all the gains in the
rank list R with a log discount factor as

DCG(R
t Z1og 1+k)’

where 7(k) denotes the target label for the k-th
ranked item in R, and r is chosen such that a perfect
ranking obtains value 1. To focus more on the top-
ranked items, we also consider the nDCG@n which
only counts the top n items in the rank list. These
scores are averaged over all ranking lists for compari-
son.
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