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ABSTRACT

We address the learning of trust based on past observations
and context information. We argue that from the truster’s
point of view trust is best expressed as one of several rela-
tions that exist between the agent to be trusted (trustee)
and the state of the environment. Besides attributes ex-
pressing trustworthiness, additional relations might describe
commitments made by the trustee with regard to the current
situation, like: a seller offers a certain price for a specific
product. We show how to implement and learn context-
sensitive trust using statistical relational learning in form of
the Infinite Hidden Relational Trust Model (IHRTM). The
practicability and effectiveness of our approach is evaluated
empirically on user-ratings gathered from eBay. Our results
suggest that (i) the inherent clustering achieved in the al-
gorithm allows the truster to characterize the structure of a
trust-situation and provides meaningful trust assessments;
(ii) utilizing the collaborative filtering effect associated with
relational data does improve trust assessment performance;
(iii) by learning faster and transferring knowledge more ef-
fectively we improve cold start performance and can cope
better with dynamic behavior in open multiagent systems.
The later is demonstrated with interactions recorded from a
strategic two-player negotiation scenario.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems, Intelligent agents
; 1.2.6 [Artificial Intelligence|: Learning—Analogies

General Terms

Algorithms, Design, Experimentation, Security, Theory

Keywords
Computational Trust, Trust Modeling, Relational Learning

1. INTRODUCTION

The need for predicting an agent’s future behavior is get-
ting increasingly important in distributed systems since con-
temporary developments such as the Semantic Web, Service
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Oriented Architecture, as well as Pervasive, Ubiquitous and
Grid Computing are applied mainly to open and dynamic
systems with interacting autonomous agents. In many situ-
ations, such agents show a highly contingent behavior, and
often it is not feasible to implement effective mechanisms to
enforce socially fair behavior as pursued in mechanism de-
sign or preference aggregation. A potential solution to these
problems is the transfer of the human notion of trust to a
machine-computable model, realizing computational trust.

However, in our opinion human-trust and its main objec-
tive as a mechanism for complexity reduction in uncertain
and unknown situations still has not yet found an equiva-
lence in computational trust. The essential property of such
trust-situations is that the human respectively the agent
does not have sufficient information that can directly be
applied to assess a trust value. Instead trust is inferred
from related contextual factors. We think that this lack of
a certain basis for decision-making is the defining charac-
teristic of trust and is not taken into account in most cur-
rent trust models. Consequently, situations where trust can
exclusively be based on the reputation calculated from rec-
ommendations or trust-networks does not comply with this
strict specification of trust. The same holds for cognitive
and game theoretic models of trust based on computable in-
centives of the trustee or statistical models dependent on
repetitive interactions in a restricted context-independent
environment.

Based on those observations our objective is to relax ex-
isting restrictions of computational trust by trying to learn
trust in a rich context-dependent relational environment:
Modeling the environment from the perspective of the truster,
two entities, both described by their respective attributes,
constitute a trust situation: (i) the trustee and (ii) the state
of the environment. Most importantly, both entities are in-
terconnected by relational dependencies.

If the trustworthiness depends not only on the trustee but
also on the state of the environment in which one needs to
trust, the truster can make more precise decisions and can
apply learned knowledge to a wider range of situation. For
instance, a seller might be trustworthy if offering a specific
product, but not when offering another product. Further-
more, in such a situation a relation like the price might help
to assess trustworthiness while depending on a particular
product and the seller at the same time. By taking all this
into account, we can improve predictions, give more mean-
ing to trust and at the same time - by generalizing from
different contexts - increase learning efficiency.

In the following we show how to implement and learn



context-sensitive relational trust using one specific statis-
tical relational model. Our Infinite Hidden Relational Trust
Model (IHRTM) is based on recently introduced infinite re-
lational models (see [12] and [4]). The practicability and
effectiveness of this approach is evaluated empirically on
user-ratings gathered from eBay. Our results suggest that
(i) the inherent clustering achieved in the algorithm allows
the truster to characterize the structure of a trust-situation
and provides meaningful trust assessments (see Section 4.2);
(ii) utilizing the collaborative filtering effect associated with
relational data does improve trust assessment performance
(see Section 4.3); (iii) by learning faster and transferring
knowledge more effectively we improve cold start perfor-
mance and can cope better with dynamic behavior in open
multiagent systems. The later is demonstrated with inter-
actions recorded from a strategic two-player negotiation sce-
nario (see Section 4.4).

The next section introduces the statistical relational repre-
sentation used for context-dependent trust modeling accom-
panied by an intuitive illustration of modeling transactions
and feedback on eBay. Section 3 describes the technical de-
tails and the inference algorithm used to calculate cluster
assignments and trust values in the special case of using
our IHRTM. Section 4 presents the experimental analysis
on three different levels: First the clustering effect on the
eBay data is evaluated, then the predictive performance is
compared to propositional learning algorithms, and finally
the learning efficiency is demonstrated on data from an au-
tomated negotiations scenario. Section 5 discusses related
work, and Section 6 outlines future research directions and
provides conclusions.

2. MODEL DESCRIPTION

Relational models are an obvious formalization of require-
ments arising from the relational dependencies of entities in
social, biological, physical and many other systems.

Our Infinite Hidden Relational Trust Model (IHRTM) con-
sists of two entity classes: On the one hand the trustee-agent
a and on the other hand specific elements of the state s of
the environment. Both entities can be equipped with at-
tributes Att* and Att®, respectively. The interdependen-
cies are expressed as relation interacts(a, s) with attributes
Att® (commitment) and Att" (trust). Figure 1 illustrates
the IHRTM as a DAPER model (c.f. [3]). Entity classes are
depicted as rectangles and the relationship class as a rhom-
bus. Observable evidence Att is modeled in attribute classes
of entities and relationships (ovals). As in a classical non-
relational Bayesian network, direct statistical dependencies
are modeled as directed arcs. The DAPER model should
be thought of as a template which, based on the actual ob-
jects in the domain, is expanded into the ground Bayesian
network.

To illustrate the abstract model we will use the eBay
feedback-system as a concrete example throughout this pa-
per. Being the most popular online auction and shopping
website, fraud on eBay is a serious and well-known prob-
lem. An attempt to deal with fraud is the eBay feedback-
system where users leave feedback about their past transac-
tions with other eBay-users.

Suppose the truster-agent is a buyer who wants to build a
context-sensitive relational trust model to analyze the trust
situation on eBay in general and assess trust values for pur-
chases from eBay in particular. In this scenario, the truster
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Graphical Representation 1: DAPER

itself does not need to be modeled explicitly because he
learns a personalized model based on its own viewpoint and
experience. The trustee a however represents sellers on eBay
and the state s represents items that are for sale. The rela-
tion interacts(a, s) would best be specified as offers(a, s) in
this context.

The attributes Att specify the observable features of the
trust situation. At¢t® describes properties of the seller like
the feedback score, the percentage of positive feedback and
his length of membership. Att® specifies features that are as-
sociated with the product, for instance its category and its
condition (new or used). The price however is represented as
a relational attribute Att® because a different seller could of-
fer the same product for a different price. Thus, Att° stands
for all commitments seller and buyer make in the negotia-
tion process. Besides the price or winning bid this can e.g.
be shipping costs, bidding history, extent of warranty, pay-
ment details and shipping rates. Finally Att' can include all
dimensions of trust that are important for the truster when
he finally gives feedback about his purchases. Relevant di-
mensions might be: actual shipping time, whether the item
was as described, if the communication with the seller was
as expected and so on.

As an example, one could now express the trustworthiness
of an offer concerning product quality Att’, given the seller
a offers item s for price Att°. Note that more than one
attribute per entity or relation can be considered as well.

3. TECHNICAL DETAILS

To complete the technical details of our specific relational
trust model we now introduce the remaining elements of the
THRTM. Following the ideas of [12] and [4] we assign to each
entity a hidden variable, denoted as Z“ and Z° and depicted
as circles in figure 1. Related to the hidden states in hid-
den Markov models, they can be thought of as unknown
attributes of the entities and are the parents of both the en-
tity attributes and the relationship attributes. The under-
lying assumption is that if the hidden variables were known,
both entity attributes and relationship attributes can be well
predicted. A very important result of introducing the hid-



den variables is that now information can propagate in the
ground network, which consists here of attribute variables
exchanging information via a network of hidden variables.

Given that the hidden variables Z have discrete probabil-
ity distributions they intuitively can be interpreted as clus-
ter variables where similar entities (similar sellers or similar
items) are grouped together. The cluster assignments (or
hidden states) of the entities are decided not only by their
attributes, but also by their relations. If both the associ-
ated seller and item have strong known attributes Att® and
Att®, those will determine the cluster assignments and the
prediction for Att’. In terms of a recommender-system ter-
minology we would obtain a content-based recommendation
system. Conversely, if the known attributes Att® are weak,
then the cluster assignments Z“ for the seller a might be
determined by the relations to items s and cluster assign-
ments of those items cluster assignments Z°. Accordingly,
this applies to items s and its cluster assignment Z°. In
terms of a recommender-system terminology we would ob-
tain a collaborative-filtering system. Consequently, IHRTM
provides an elegant way to combine content-based predic-
tions with collaborative-filtering prediction.

In the IHRTM, Z has an infinite number of states. Mix-
ture models with infinite number of states are Dirichlet pro-
cess (DP) mixture models, which have the property that the
number of actually occupied components is determined au-
tomatically in the inference process. The fundamental idea
is, that depending on the complexity of the problem, the
model can “decide” for itself about the optimal number of
states for the hidden variables; thus a time consuming opti-
mization of the number of clusters can be avoided.

After sketching the functioning of the infinite hidden vari-
ables, we can complete the model by describing the local
distribution classes denoting the parameters and hyperpa-
rameters of the probability distributions. They are shown
as small gray circles in the DAPER model (figure 1). As an
alternative to the DAPER model, we can display the struc-
ture of the IHRTM as a plate model, another commonly
used graphical representation for statistical relational mod-
els (figure 2).
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Figure 2: Graphical Representation 2: Plate Model

Now we consider the variables for the seller entity. For
each specific seller i there is a hidden variable Z;* with
the flexible and potentially infinite number of states K°.
The clustering Z;' = k specifies the assignment of seller 7
to the specific cluster k. The weights 7 = (n{,...,Tka)
are multinomial parameters with P(Z% = k) = 7% and are
drawn from a conjugated Dirichlet prior, 7* < Dir(-|ag, a®).
a® = (af,...,a%a). aj represents our prior expectation
about the probability of a seller being in cluster k. af > 0
determines the tendency of the model to either use a large
number (large af) or a small number of clusters in Z (small
ag). For additional technical details on Dirichlet process
mixture models, consult for example [10].

Since we only consider discrete attributes in our eBay
example, a particular attribute Att® is a sample from a
multinomial distribution with multinomial parameters 6% =
(0%, ...,0%a). The base distributions G§ and Gj are the as-
sociated conjugate priors. So, 8¢ « Gj. The same applies
to the multinomial parameter « for each of the K* x K*
configurations related to each relational attribute A¢t® and
Att'. Again, a Dirichlet process prior is employed, so that
v¢ x Gg.

Now we briefly describe the generative models for the
ITHRTM. The method we use to generate samples from a
Dirichlet Process mixture model is the Chinese restaurant
process (CRP, see [10]). The clustering of data points in
a DP can be explained by the following analogy: Imagine
a restaurant with an infinite number of tables. Now cus-
tomers enter the restaurant one by one and choose a table
to sit down. Each customer either chooses to sit down at
an unoccupied table or join some other customers at an al-
ready occupied table, where the table selection probability
is proportional to the number of persons already sitting at
a table. Applying this scenario to the Dirichlet process, the
tables are clusters and the customers are data-points. After
N data-points are sampled the N + 1** sample is generated
as follows.

e The N + 1" agent is assigned to an existing agent clus-
ter ¢ with probability NT&O and inherits parameters 6;
and 7.

e With probability N‘i‘jlo the agent is assigned to a new
cluster K + 1.
For the new user cluster, new parameters 6; and ~ are
generated as described above.

The procedure is repeatedly applied to all hidden variables
in the ground network.

3.1 Inference

Based on the generative model presented in the previ-
ous section we can now generate samples from the IHRTM.
In particular, we are interested in how to generate samples
from the unknown states and parameters, given observed
data. The most important goal is to infer the conditional
distribution of the hidden variables Z¢, Z° given all known
attributes entity attributes Att® and Att® as well as rela-
tionship attributes Att® and Att’. This eventually allows us
to make predictions about unknown attributes, like target
value Att'.

A way to approximate this posterior distribution of the
hidden variables is by means of Gibbs sampling (GS), an
MCMC-method. In our model, it is possible to formulate a



GS in which only samples from the hidden variables are gen-
erated by integrating out model parameters (see [12]). The
Markov chain is thus defined only for the hidden variables
of all entities in the given domain. The GS iteratively sam-
ples the hidden variable Z¢, conditioned on the other hidden
variables Z° until the procedure converges. In particular, Z
is updated as:

1. For Z*: Pick a random agent ¢ . Assume that for Ny
agents, Z* = k without counting user i.

Either assign agent ¢ to cluster k£ with probability pro-
portional to

P(Z':z = k‘ ;”I#iaAtt?70a7fyc7fyt7ZS) X
kP (AL 08, 75, Vi )

where Nj is the number of agents already assigned
to cluster k and 7% « notes the relation parameters of
agent cluster k and all state clusters.

Or generate a new cluster K + 1 with probability pro-
portional to

P(Z{ = K* +1|Z§ 4, Att], 0%,7°, 7", Z°)
o P(ALE |07, Ve s Vie,s)

2. For Z%: Pick a random state j and update its cluster
assignment Z°, accordingly.

3. If during sampling a state becomes unoccupied, remove
that state from the model and re-assigned indices.

After the Markov chain has converged, standard statistical
parameter estimation techniques can be used for estimating
the parameters . ks of Att® from given cluster assignments.
For a detailed description of the algorithm we refer to [12].
We extended the algorithm, as just described, to enable the
handling of more than one relationship attribute. Being able
to use an arbitrary number of relationships is essential to
enable a rich representation of the interaction context as
well as multidimensional trust values.

3.2 Implications

The ultimate goal of the model is to group entities into
clusters. A good set of partitions allows to predict the pa-
rameters y of attributes Att® and Att' by their mere cluster
assignments. In the ground truth, our model assumes that
each entity belongs to exactly one cluster. It simultaneously
discovers clusters and the relationships in-between clusters
that are best supported by the data, ignoring irrelevant at-
tributes.

Although the value of attributes is determined entirely
by the cluster assignment of associated entities, there is no
need for direct dependencies between attributes or extensive
structural learning. The cluster assessment of a entity is in-
fluenced by all corresponding attributes and cluster assess-
ments of related entities. This way information can prop-
agate through the whole network while the infinite hidden
variables Z act as “hubs”. This allows for a collaborative
filtering effect. Cross-attribute and cross-entity dependen-
cies can be learned, something which is not possible with a
“flat” propositional approach that assumes independent and
identical distributed (i.i.d.) data.

At the same time the number of clusters does not need
to be fixed in advance. Thus, it can be guaranteed that the
representational power is unrestricted.

4. EXPERIMENTAL ANALYSIS

To investigate the performance of the IHRTM we employ
real world data from the eBay example used for illustration
in the previous section. Before the empirical results of our
experiments will be presented, we first describe the exper-
imental setup. In the following sections three different as-
pects of the IHRTM’s performance were investigated in the
course of our research: First the algorithm’s abilities to char-
acterize a trust-situation by clustering are investigated in
Section 4.2. Second the predictive performance concerning
trust values is tested. Finally, the learning efficiency is ana-
lyzed in the context of dynamic behavior of non-stationary
trustees. As the later cannot be analyzed within the eBay
scenario we used interactions recorded from a negotiation
game. The experimental setup and evaluation is covered in
Section 4.4.

4.1 Experimental Setup: eBay-User Ratings

eBay feedback-profiles are a valuable source of easily ac-
cessible data that expresses human-trust assessment. Every
eBay member has a public feedback profile where all items
he has bought or sold in the last 90 days are listed with
the associated feedback ratings he received. In addition the
feedback profile includes statistics on all transactions of the
user.

We gathered data from 47 sellers that on the one hand
had at least 10 negative or neutral ratings and on the other
hand sold items in at least one of 4 selected categories from
the lowest level within the eBay-taxonomy. The former is
important because negative or neutral user-ratings on eBay
are rather rare. To further balance the ratio of positive vs.
negative/neutral ratings we only evaluated as many positive
rated transactions as there were negative/neutral ones. In
this way the data-set is stratified, meaning that there is an
equal number of positive and negative ratings per seller.

Attributes Att® of the seller were directly extracted from
the feedback profile. We picked the positive feedback and
the feedback score and discretized both in 2 and 5 classes,
respectively. For the item attributes Att® we chose the top
level category in the eBay taxonomy on the one hand, re-
sulting in 47 discrete states. On the other hand we collected
the item condition which is a binary feature: either new or
used.

From those 47 hand-picked sellers we gathered a total of
1818 rated sales of 630 different items. Two items were as-
sumed to be alike if they were in the same lowest level cate-
gory and their attributes were identical. Relation attributes
are always of size seller x items, so Att® and Att' both are
sparse matrices with 47 x 630 possible entries. The non-zero
entries indicate that this seller has sold this item.

As we wanted to keep the computational complexity low
we only considered binary relational attributes Att® resp.
Att'. For Att® we chose the binarized final price of the auc-
tion and for Att' the rating. Negative and neutral ratings
were both treated as negatives.

After having extracted the data, the GS-process to train
the IHRTM was started. In the beginning the sellers and
items are re-clustered intensely and both cluster assignments
and cluster sizes are unstable. Once the Markov chain starts
to converge the cluster sizes tend to stabilize and eventually,
the training can be stopped. The decrease of the cluster sizes
is exemplarily shown in figure 3 for one cross-validation run.
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Figure 3: Trace of the number of agent- and state-
clusters up to 100 iterations.

4.2 Clustering Effect

After the clusters have stabilized we can visualize two in-
teresting facts about the trust situation.

First, we can plot a matrix showing the assignments of
each seller to a cluster. This can provide knowledge about
how many different clusters exist, which are the most popu-
lar clusters and which elements are grouped together. After
convergence, the 47 sellers were assigned to 4 clusters as
shown on the left half of figure 4. The same assignment ma-
trix can be generated for the items clsuter assignment but
since there are 613 items and 40 item clusters, we did not
plot the matrix and simply show its symbol Z° on top of the
right matrix in figure 4.

Second, the posterior probability P(Att®, Att*|Z*, Z*) can
be visualized. The matrix on the right side in figure 4 illus-
trates the probability of getting a positive rating given the
cluster assignments of a seller and a item. A darker value
indicates a higher probability of being trustworthy in a given
interaction. Now, picking a row (representing an agent clus-
ter) or a column (representing a state cluster) we can identify
clusters that are in general more trustworthy than others.

4.3 Predictive Performance

In order to judge the performance of predicting the trust
value Att' we compared the results of IHRTM with two
other standard machine learning algorithms, namely a sup-
port vector machine (SVM) using a PolyKernel and a Deci-
sion Tree (DecTree) both from the Weka toolbox [11]. Since
those algorithms are both propositional learners, meaning
they cannot handle a relational data representation but only
a vector of independent and identically distributed features
plus a label, we had to “flatten” the data first. By transform-
ing the data into a flat representation, also known as “propo-
sitionalization”, the structural information can get lost. In
general there is no standard propositionalization procedure
(see [5]). The potential low quality of propositional features
is not crucial in our simple scenario but becomes increasingly
problematic in more complex relational models.

We propositionalized the data in three different ways: First,
we only considered the target trust variable Att' and tried
to predict trustworthiness by the mere rate of positive feed-
back as it is done in most existing statistical trust models

Accuracy ROC Area
Ratio | 48.5334 (£3.2407) -
SVM | 54.1689 (£3.5047)  0.512 (£0.0372)
DecTree | 54.6804 (£5.3826) 0.539 (£0.0502)
SVM+ID | 56.1998 (£3.5671)  0.5610 (+0.0362)
DecTree+ID | 60.7901 (+4.9936)  0.6066 (+0.0473)
IHRTM | 71.4196 (£5.5063) 0.7996 (+0.0526)

Table 1: Predictive performance on eBay-user rat-
ings

(see Ratio in table 1). Clearly, the result cannot be better
than random guessing as the data-set is stratified. However,
this demonstrates that the assumption of context indepen-
dency made by many trust models is fatal when trust ob-
servations are uniformly distributed. Second, we tested the
performance of the propositional algorithms with all fea-
tures - namely Att®, Att®, Att° and again Att' - as the la-
bel. As a result we extracted 1818 samples with 5 features
and one label, each. This way, the same features are avail-
able to the propositional learners as they are to the IHRTM.
Third, we accounted for the missing relational information
(which seller sold which product) by introducing two fur-
ther features: An ID-number for the seller and the item,
respectively. So the input to the propositional learners was
a 1818 x 8 matrix in this setup.

The result of all 3 setups is shown in table 1. We report the
accuracy of predicting positive ratings as well as the AUC
(also called ROC area). This measure represents the area
under the receiver operating characteristic curve which is
used for evaluating binary classifiers that can output proba-
bilities instead of binary decisions. In all our experiments we
averaged our results using 5-fold cross-validation. The ac-
companying 95%-confidence intervals are reported as well.
Finally the prediction performance is also evaluated for the
THRTM and compared to the previous attempts (see table
1).

In general, the task of predicting eBay-user ratings seems
to be difficult, which can be explained when reading the
comments assigned to the ratings. The reasons for a pos-
itive or a negative evaluation are most of the time not re-
lated to specific properties of sellers or items but a unique
incident. Besides that, the high incentives to give positive
ratings despite having had negative experience are a general
and well known flaw in the eBay-feedback mechanism: sell-
ers usually wait for the buyer’s rating before they rate the
buyer. Thus, buyers often give positive rating just to receive
a positive rating from the seller as well. As a response to
this problem, eBay is planing to introduce a new feedback
mechanism in May 2008.

Still, the IHRTM’s performance clearly outperforms ran-
dom guessing and could verifiably outperform the proposi-
tional learners. This is most likely due to the collaborative
filtering effect, that can only be utilized by the THRTM.
Thus, there seems to be a gain if learning with the assump-
tion that e.g. when two sellers sell similar items they might
be comparable in their trust-ratings. More precisely, if two
sellers both got positive ratings after selling one specific item
their ratings might be comparable when selling a different
item as well. Or the other way round, if two items both got
positive ratings after sold by one specific seller their ratings
might be comparable when sold by a different seller as well.
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4.4 Learning Efficiency

As mentioned in the introduction, the learning efficiency*
and the ability to rapidly adapt is crucial, especially in
so called initial-trust situations or in situations where the
trustee does learn and adapt as well. To evaluate the per-
formance concerning learning efficiency, we had to use a dif-
ferent, more controlled experimental setup as in the previ-
ous eBay example. Only if we know about the stationarity
of agents we can compare the performance of an adapting
agent to a stationary agent. For this purpose, we recorded
interactions in a simulated strategic two-player negotiation
scenario.

4.4.1 Experimental Setup: Negotiation game

Finding an agreement amongst a group of conflicting in-
terests is one of the core issues of distributed artificial in-
telligence. Auctions, information markets, preference and
judgement aggregation, game theory and automated nego-
tiations are all research areas that deal with those kind of
problems. However, most of the approaches neglect the fact
that finding the best agreeable solution is not sufficient if
commitments can not be enforced by the interaction mecha-
nism or the incentives of the opponents can not be inferred.
In order to investigate this issue we extended the implemen-
tation of a multiagent trading framework by an additional
negotiation step.

In the chosen scenario, players try to collect a certain num-
ber of resources for selling. Only one type of resource can
be collected at a time. In each round, every player gets new
random resources from the deck and some resources must be
added to the stack of collected resources. If the types of the
resources previously held in the stack and the types of new
resources are not identical, all resources collected so far are
wasted. To avoid this, players can trade with other players
and exchange some of their resources. Resources received
from fellow players are pushed onto the stack.

As defined before, let ¢ be the commitments that the
agents are negotiating over. The outcome of this negotiation
is specified by a set of binary features Att°. Now, given a
set of commitments ¢ that two agents have agreed on and
promised to fulfill, the agents enter an additional trading
step in which each of them is free to decide which action to
take. This way, the agent can decide whether to stick to a
commitment or break it at will.

One interaction-round consists of three phases:

Negotiation: Each agent a follows a predefined strategy
that proposes a potential set of actions ¢ both parties

!By learning efficiency we do not mean computational com-
plexity of the learning algorithm, but numbers of observa-
tions needed to make effective predictions.

might agree on (e.g., an exchange of goods). In do-
ing so, agents have neither knowledge of the actions
available to the other agents nor their reward func-
tion. Thus, agents can propose an infeasible action to
convince the opponent to act more to their favor. Re-
ceived proposals can be rejected and counter-proposals
can be made resulting in an iterative approximation of
a solution. The negotiated result is considered as a
commitment attribute Att°.

Trading: This is the final decision made by every agent
whether to stick to a commitment or break it. Finally,
the action t chosen by agent a is executed accordingly.

Evaluation: The agents can review the effective actions ¢
of the opponent by observing the received goods and
draw conclusions for future interactions. The next
stage game is sampled according to a stochastic tran-
sition function.

This procedure is repeated over a potential infinite num-
ber of rounds with different types of agents playing against
each other.

4.4.2 Evaluation

Three different agent types with two different negotiation
strategies and three different trading strategies were used as
opponents in the negotiation game.

The two negotiation strategies are both stationary and
are based on a monotonic concession protocol (cf. [2]).
The agents denoted Honest and Fictitious only propose ac-
tions that they actually could perform, while agent Greedy
also offers and accepts infeasible actions with the intend to
achieve an opponent action with higher payoffs. Both strate-
gies iteratively propose a larger set of actions by lowering
their expected utility and offering less favorable outcomes.

Each agent type plays a different trading strategy where
Honest and Greedy are stationary and Flictitious is adap-
tive. Greedy always maximizes its utility regardless of c,
while Honest-agent always sticks to c. At last, Fictitious
plays according to the fictitious play algorithm. It’s a tra-
ditional learning algorithm from game theory for repeated
games, where the opponent is assumed to be playing a sta-
tionary strategy. The opponent’s past actions are observed,
a mixed strategy is calculated according to the frequency of
each action and then the best response is played, accord-
ingly.

In every round that was played the commitment ¢ and
the effective outcome t were recorded and features Att®, Att®
and Att' were extracted. No specific attributes for Att* were
available except for the identity of the agent. Three discrete
features Att® from s where calculated describing the aver-
age payoff over all possible opponent actions, the maximum



possible payoff and the number of feasible actions. Att® de-
scribes a single binary feature stating whether there is a
feasible action that could be carried out and would result in
a positive reward if the negotiated commitment was carried
out by the opponent. The same feature was recorded for
Att? after the actual action took place.

In this way a total of 600 interactions, 200 per agent type,
containing a total of 289 different stage games were recorded.
The input for the IHRTM consisted of three Att® vectors
with 289 elements, and two 289 x 3 matrices for Att® and
Att'. Again, for a comparison with propositional machine
learning algorithms the data was propositionalized, resulting
in 600 feature vectors with 3 x Att® + 1 x Att® elements
and 600 corresponding labels. As before, the content based
algorithms were also evaluated with an agent- and state-ID
as an additional feature. The evaluation procedure is the
same as in the eBay experiments.
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Figure 5: Results for play against Honest. Bar graph
on the left: AUC for classifying Att’. Graph on the
right: learning curve for increasing number of train-
ing data for the additional Honest-2.

The overall performance according to AUC is depicted
in the bar graph on the left of Figure 5. IHRTM shows
a slightly better performance in classifying Att' than SVM
and DecTree. Without the agent-ID as an additional feature
the performance of DecTree and SVM drops considerably
(black line at around 0.7). Again, we explain the superior
performance by IHRTM’s ability to exploite cross-entity de-
pendencies. Flictitious, as expected, performs much worse
as it is not able to generalize over different interactions and
can’t make use of the context provided by Att® and Att°.

The inherent clustering ability of IHRTM suggests that it
is especially well suited for rapid adaptation when unknown
but related agents and conditions are observed. Actually,
entities can be correctly assigned to a cluster without hav-
ing seen a single effective Att' related to this entity just by
the other attributes. To check this assumption we gathered
data from interactions with another Honest type agent and
evaluated the performance for different numbers of training
samples. On the right of Figure 5 the learning rates for agent
Honest-2 are plotted. The results confirm that especially
for a small sample size < 20 the performance of IHRTM is
clearly better compared to the content based approaches.

In contrast, the performance in the task of trying to pre-
dict Flictitious is clearly worse for all of the techniques (see
Figure 6). Expectedly, IHRTM, SVM and DecTree cannot
handle dynamic opponents. Again, the IHRTM is most com-
petitive in terms of efficient learning.

In addition, the IHRTM offers another advantage over the
other techniques. The predictions are based on an inher-
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Figure 6: Results for play against Fictitious. Bar
graph on the left: AUC for classifying Att'. Graph
on the right: learning curve for increasing number
of training data for the additional Fictitious-2.

ent construction of clusters of Z* and Z°. The fast learn-
ing rate indicates that a previously unknown trustee is cor-
rectly assigned to an existing cluster if this type of agent
has been observed before. Consequently, once Fictitious-2
is assigned to the “Fictitious-cluster” IHRTM could assess
its performance on this cluster and eventually suggest a dif-
ferent learning scheme for agents in this cluster. In other
words it can identify non-stationary behaving agents.

Figure 7 visualizes the final cluster sizes and cluster as-
signments. The top right matrix shows the assignment of
seven different agents to Z%. All three agent types were
clustered correctly into three groups (columns). To eval-
uate this further we generated data from another station-
ary opponent with a different trading strategy that is very
similar to Honest: Sneaky-agent only deviates from c if it
can increases its utility by a large margin. Interestingly,
the assignment of Sneaky- and Honest-agent to the same
cluster suggests that this strategy might effectively build
trust.The matrix in the lower left corner of Figure 7 visual-
ize Z°. From 289 stage games (columns) 8 different clusters
(rows) emerged. This is an impressive reduction in com-
plexity while still having good classification results. The
two stacked matrices in the bottom right corner represent
Att' and Att® (below). Each row indicates one state cluster,
each column an agent cluster. Brighter rectangles indicate
a lower probability for a positive reward. As expected, the
first column (Greedy cluster) is on average brighter than
the second and third column (Honest and Fictitious clus-
ter). All those observations, including the misclassification
of Sneaky, correspond well to human intuition.

5. RELATED WORK

As already pointed out, connecting trust to the trusted
agent alone without considering contextual and other as-
pects (dimensions) of trust is not sufficient in many scenar-
ios. Whereas much research on trust concedes the impor-
tance of context information, most of them do not actually
use such information for the calculation of trust degrees in
a general and automated way [9]. So far, only one approach
also models context by taking into account identity and state
(see [6]). Besides that, using contextual information for ini-
tial trust assessment and the transfer of trust between con-
texts is novel to our knowledge.

Analogously, we argue that a fine grained modeling of re-
lations between agents and their environment is essential to
capture the essence of trust, especially in initial trust situa-
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tions. There exist a few approaches that can take relation-
ships into account when modeling trust. But in most of this
research such relationships are either only considered as rep-
utation or recommendations [7], or as interactions between
a group of agents (e.g., [1]). The diverse kinds of relations
that exist between two agents in a specific situational con-
text are not modeled in detail. In addition, most learning
techniques are optimized for one specific scenario only.

Assessing initial trust values for unknown agents based
on pre-specified membership to a certain group has been ad-
dressed by [8]. A group-based reputation architecture is pro-
posed here where new agents are assessed according to their
pre-specified membership to a certain group of agents. Like-
wise, the TRAVOS-C' system proposed by [9] includes rudi-
mentary ideas from hierarchical Bayes modeling by assign-
ing parameter distributions to groups of agents but doesn’t
come to the point to give a fully automated and intuitive
way of how to learn infinite hidden variables.

6. CONCLUSIONS AND FUTURE WORK

In this contribution, we presented a context-dependent
way to build statistical relational trust models in general
and our Infinite Hidden Relational Trust Model (IHRTM)
in particular. We demonstrated how trust can be modeled
and learned in theory and in two experimental setups: first,
a real world data set from the eBay feedback-system and
second a simulated negotiation game.

Our experimental results suggest that the IHRTM offers
advantages in 3 different dimensions. First, the inherent
clustering capabilities increase interpretability of trust sit-
uations. Second, the predictive performance can be im-
proved compared to a “flat”; feature-based machine learning
approach if trained with relational data that exhibit cross-
attribute and cross-entity dependencies. Third, the IHRTM
is especially well suited for rapid adaptation because of its
ability to transfer knowledge between related contexts.

While the IHRTM cannot handle trustees with strate-
gies that are non-stationary effectively, it can identify non-
stationary agents. An adaptive learning strategy could be
part of future work. Furthermore, we plan to extend our
framework to scenarios with arbitrary numbers of concur-
rently interacting trustees. the same time. While proposi-

tional machine learning algorithms cannot be easily applied
in this case it can be realized by relational models. Fur-
thermore, we are currently comparing the complexity and
performance of different inference algorithms.

We introduced statistical relational trust learning in gen-
eral and presented the IHRTM in particular. The goal of our
work is to advance research on computational trust by mak-
ing modeling and learning of trust more applicable, efficient,
intuitive and interpretable.
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