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Abstract—In recent years, the amount of entities in large
knowledge bases has been increasing rapidly. Such entities can
help to bridge unstructured text with structured knowledge and
thus be beneficial for many entity-centric applications. The key
issue is to link entity mentions in text with entities in knowledge
bases, where the main challenge lies in mention ambiguity. Many
methods have been proposed to tackle this problem. However,
most of the methods assume certain characteristics of the input
mentions and documents, e.g., only named entities are considered.
In this paper, we propose a context-aware approach to collective
entity disambiguation of the input mentions in text with different
characteristics in a consistent manner. We extensively evaluate
the performance of our approach over 9 datasets and compare it
with 14 state-of-the-art methods. Experimental results show that
our approach outperforms the existing methods in most cases.

I. INTRODUCTION

In recent years, large repositories of structured knowledge
publicly available on the Web, such as Wikipedia, DBpedia,
Freebase and YAGO, have become valuable resources in many
areas, such as natural language processing (NLP), information
retrieval (IR) and knowledge extraction. In this regard, entity
disambiguation, which leverages such knowledge bases to
disambiguate the referent entities of the input mentions in
natural language text, has emerged as a topic of major interest.
The main challenge lies in the ambiguity of the textual entity
mentions. Many methods [1], [2], [3], [4], [5], [6], [7], [8] have
been proposed to tackle this problem, where the goal is to map
each input mention given in text to the corresponding entity in
knowledge bases. If there is no existing matching entity in the
knowledge base, NIL will be returned. The knowledge base
adopted in this work is DBpedia, a crowd-sourced community
effort to extract structured information from Wikipedia.

In general, entities can be grouped into named entities and
nominal entities. While named entities have proper names,
nominal entities do not have a proper name but are referenced
typically by a noun phrase, which has a noun as its head word.
For instance, given the sentence “US President Barack Obama
will land in India for a visit.”, the mentions “Barack Obama”
and “India” refer to the named entities Barack Obama and
India, while the mentions “US President” and “visit” refer to
the nominal entities President of the United States and
State visit. In NLP area, recognizing named entities (NER)
in natural language text has been extensively addressed [9],
where the output is labeled noun phrases. However, these are
not entities explicitly and uniquely denoted in a knowledge
base. Recently, a lot of research has focused on named entity

disambiguation that goes one step beyond NER, where the
task is to disambiguate mentions of named entities in natural
language text by linking them to their corresponding entities
in a knowledge base [2], [10], [11]. On the other hand, in
computational linguistics word sense disambiguation (WSD) is
a task aimed at assigning meanings to word occurrences within
text, where such words usually refer to nominal entities [12],
[13]. In addition, some other work focuses on Wikification,
commonly referred to as disambiguation to Wikipedia (D2W),
a task of identifying entities in text and disambiguating them
into the corresponding Wikipedia pages [14], [8], [15]. In this
work, we do not assume any specific entity types in our entity
disambiguation task, where the entities to be disambiguated
could be named entities, nominal entities or both of them. We
also argue that the nominal entities in the given text can help
with disambiguating named entities and vice versa.

The main contributions of this paper are as follows: (1) the
introduction of a context-aware approach to collective entity
disambiguation for different kinds of input mentions in text in
a consistent manner; (2) the contextual entity detection based
on a set of predefined part-of-speech (POS) tag patterns, which
provides the context to help with entity disambiguation for the
given input mentions; (3) the collective disambiguation using
a class of algorithms for estimating the relative importance
of candidate entities in the constructed disambiguation graph
based on Markov chains; and (4) an extensive evaluation
of the performance of our approach over 9 datasets and an
empirical comparison with 14 state-of-the-art methods using
GERBIL [16], a general entity annotation benchmark.

The rest of this paper is organized as follows. We present
the overall approach in Sec. II. The details of contextual entity
detection and disambiguation graph construction are provided
in Sec. III and Sec. IV, respectively. Based on that, we discuss
the collective disambiguation using Markov chains in Sec. V.
Evaluation results are then presented in Sec. VI. Finally, we
survey the related work in Sec. VII and conclude in Sec. VIII.

II. OVERVIEW

In this section, we first formally formulate the task of entity
disambiguation and then briefly describe our approach.

Definition 1 (Entity Disambiguation): Given a set of input
mentions MI = {m1,m2, . . . ,mp} in a document D, where
each mention m is encoded by an integer pair 〈p, l〉 with p
as the occurrence position of m in D and l as the length of
m, and a knowledge base KB containing a set of entities



Example 1

Text: The novel begins in the Shire, where the hobbit Frodo Baggins
inherits the Ring from Bilbo and undertakes the quest to destroy it.
Input mentions: {m1 = 〈24, 5〉, m2 = 〈48, 13〉, m3 = 〈75, 4〉,
m4 = 〈85, 5〉}
Ref. entities: {m1.e=Shire (Middle-earth), m2.e=Frodo Baggins,
m3.e=One Ring, m4.e=Bilbo Baggins}

Example 2

Text: The novel begins in the Shire, where the hobbit Frodo Baggins
inherits the Ring from Bilbo and undertakes the quest to destroy it.
Input mentions: {m1 = 〈4, 5〉, m2 = 〈41, 6〉, m3 = 〈110, 5〉}
Ref. entities: {m1.e=Novel, m2.e=Hobbit, m3.e=Quest}

Example 3

Text: The novel begins in the Shire, where the hobbit Frodo Baggins
inherits the Ring from Bilbo and undertakes the quest to destroy it.
Input mentions: {m1 = 〈4, 5〉, m2 = 〈48, 13〉, m3 = 〈106, 3〉}
Ref. entities: {m1.e=Novel, m2.e=Bilbo Baggins, m3.e=NIL}

TABLE I: Some examples of the entity disambiguation task,
where the input mentions and the contextual mentions in the
given text are highlighted and shadowed, respectively.

E = {e1, e2, . . . , en}, the task of entity disambiguation is to
find a function µ :MI → E∪{NIL}, which maps each input
mention m to an entity e in KB, denoted by m.e, or to NIL
if the mention cannot be linked to any entity in KB.

For each given input mention m ∈ MI , we first retrieve a
set of candidate entities Em using a dictionary collected from
different structures in Wikipedia, which contains each pair of
entity and surface form, i.e., a word or phrase that can be
used to refer to the corresponding entity. Then the objective
of entity disambiguation is to determine which entity e ∈ Em

is the mostly likely entity referred to by m, also called referent
entity. Besides the given input mentions in MI for a document
D, a set of mentions MC containing the mentions m /∈MI in
D, called contextual mentions, that can refer to some entities in
the knowledge base, called contextual entities, could also help
with the entity disambiguation task. While the input mentions
are explicitly given, the contextual mentions have to be derived
by our approach, which will be discussed in Sec. III.

Some examples of entity disambiguation for different types
of input mentions are shown in Table I. For instance, only
the input mentions for named entities are given in Example 1,
which corresponds to the typical named entity disambiguation.
Most existing approaches [2], [10], [5] to this task take into
account only the named entities but ignore the nominal entities,
such as Hobbit referred to by the contextual mention “hobbit”,
which can indeed help with named entity disambiguation
since such contextual entities are related to the actual referent
entities of the input mentions. In Example 2, some individual
words referring to nominal entities are given as input mentions.
This is similar to the word sense disambiguation task, where
the goal is to identify which sense of a word (i.e. meaning) is
used in the given text. Based on the lexical knowledge bases,
such as WordNet, knowledge-based approaches are able to
obtain good performance [17]. Instead of lexical knowledge
bases, large structured knowledge bases, such as DBpedia, can
also be employed, such that the contextual entities appearing in
the given document can be utilized for the disambiguation of
word senses as entities in such knowledge bases. In Example
3, three input mentions, i.e., “novel”, “Frodo Baggins” and
“the”, are given and the actual referent entities include the
nominal entity Novel, the named entity Frodo Baggins and
NIL. Similarly, the contextual entities in the given document

can be beneficial to disambiguating all the input mentions.
Even for NIL corresponding to “the”, which could also refer
to some entities according to our dictionary, such as the entity
THE multiprogramming system, the contextual entities can
help to return NIL, because they are not related to any
candidate entities of the input mention “the”.

Besides the above examples, the input mentions for entity
disambiguation can be yielded by many other ways, e.g., they
can cover only salient entities in the given document annotated
based on voter agreement or determined by domain experts.
A description of 9 datasets used in our experiments will show
different characteristics of the input mentions and documents.
In order to address the problem of entity disambiguation for
such input mentions and documents in a consistent way, we
propose a framework with the following three modules:
• Contextual Entity Detection. The entity disambiguation

task critically depends on the specific context in a given
document D, which is crucial in solving the problem
of entity ambiguity. In this module, we propose a new
approach to contextual entity detection based on a set of
predefined POS patterns. The goal is to select contextual
entities representing the context of D, which can help to
disambiguate the entities for the input mentions.

• Disambiguation Graph Construction. By combining
the candidate entities of input mentions and the contextual
entities detected in the given document, we construct
the disambiguation graph in this module, which captures
both the local mention-entity compatibility and the global
entity-entity coherence as its graph structure. In this way,
the constructed disambiguation graph allows us to encode
different types of dependencies.

• Collective Entity Disambiguation. We then consider the
collective entity disambiguation over the disambiguation
graph as a stochastic process based on Markov chains.
The intuition is that the actual referent entity of an input
mention m should be more relevant in the disambiguation
graph in the sense that it tends to have more relations to
other candidate entities and contextual entities, than the
rest of candidate entities of m, which should have less
relations on average and be more isolated.

III. CONTEXTUAL ENTITY DETECTION

Given the input document, we need to derive the contextual
entities, which can be either named entities or nominal entities.
For instance, in Example 3 of Table I, “Bilbo” and “hobbit”
can refer to the named entity Bilbo Baggins and the nominal
entity Hobbit respectively, both of which can help with the
entity disambiguation for the input mentions. To obtain these
contextual entities, it is essential to first detect their mentions.

We firstly present the extraction process of our dictionary
used to map surface forms to their corresponding DBpedia
entities. We have exploited several structures in Wikipedia. As
each Wikipedia article describes an entity in DBpedia, article
titles, redirect pages and link anchors in Wikipedia can be used
to refer to the corresponding entity. For each DBpedia entity,
we extract its surface forms using these sources. Besides that,
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Pattern Name POS Tag Pattern Example
Noun 1 (NP1) (NN|NNP|NNS|NNPS)+ Kobe Bryant, Basketball
Noun 2 (NP2) NP1 • (CD)+ Windows 10, ISO 8
Noun 3 (NP3) (CD)+ • NP1 2014 World Cup
Noun (NP) NP1 | NP2 | NP3
Description 1 (DP1) (JJ|JJS|JJR)+ Military (Operation)
Description 2 (DP2) (VBG|VBN)+ Judging (Day), Linked (Data)
Description 3 (DP3) NP3 • POS+ NBA’s (Player)
Description (DP) (DP1|DP2 |DP3)

Compound Noun 1
(CNP1) DP* • NP

Australian Prime Minister
Linked Open Data

NBA’s All-time Scoring List
Conjunction (CP) (CC|IN) of, in, and, with
Compound Noun 2

(CNP2) CNP1 • CP • CNP1 Police in Sweden
First Minister of Scotland

Contextual Mention CNP1 |CNP2

TABLE II: POS patterns in regular expressions, where symbols
*, +, |and • denote any number of occurrences, one or more
occurrences, alternation and concatenation, respectively; NN:
singular noun; NNP: proper singular noun; NNS: plural noun;
NNPS: proper plural noun; CD: cardinal digit; JJ: adjective;
JJS: superlative adjective; JJR: comparative adjective; VBG:
present participle of verb; VBN: past participle of verb; CC:
conjunction; IN: preposition; POS: possessive ’s or ’.

we also derive the co-occurrence relations between entities and
terms, where we utilize the terms that co-occur with an entity
in its surrounding sentences in Wikipedia. In addition, the link
frequency between each pair of entity and surface form and
the co-occurrence frequency between each pair of entity and
term are also extracted, which are used for node weighting of
the disambiguation graph discussed in Sec. IV. More details
about the dictionary construction can be found in [18], [19].

Next we introduce two methods that have been widely used
for mention detection based on N-gram and NER, and discuss
their limitations, which serve as the motivation of our proposed
method based on POS analysis.

Some existing work on mention detection [14], [8] firstly
gathers all n-grams from the given document and the extracted
n-grams matching surface forms of entities are then selected as
entity mentions. These methods can detect both named entities
and nominal entities but could also generate a lot of noise,
i.e., mentions without actual referent entities. For instance, in
Example 3 of Table I, “begins” and “from” can also refer to
Battle of France and Etymology based on our dictionary.
Such entities will be considered in the module of collective
entity disambiguation, which are not helpful and might even
result in degraded performance.

In some other work [10], named entity recognition (NER)
has been performed on the input text to detect named entities,
which are then used for entity disambiguation and linking. Due
to the limitation of selected algorithms and training data, NER
systems usually only focus on several types of named entities,
e.g., Person, Location and Organization, such that the entities
in other types cannot be detected. More importantly, all the
nominal entities that might be important contextual entities
and be beneficial to entity disambiguation are just ignored.
In Example 3 of Table I, the contextual entity Hobbit, which
is crucial for the given entity disambiguation task, cannot be
detected by the NER based method.

To address the problems of N-gram and NER methods, we
propose a POS tagging based method for detecting mentions
of contextual entities. Given the input document D, we firstly
perform the POS tagging on D and then extract all sequences
conforming to a set of predefined POS patterns, denoted by
P , as shown in Table II. The extracted sequences based on
the POS patterns serve as the mentions of contextual entities,
which have to satisfy two conditions: (1) they can refer to
some entities in DBpedia based on our dictionary containing
the set of surface forms of all entities, denoted by SF ; (2)
they are not contained in the set of input mentions MI . Then
we obtain the set of contextual entity mentions MC as follows

MC = {m|∀sqm ∈ SQD : sqm ∈ P ∧m.s ∈ SF ∧m /∈MI}
(1)

where SQD represents the set of all possible sequences of
POS tags generated by performing POS tagging on the given
document D, sqm and m.s denote a sequence of POS tags
and an entity surface form w.r.t. the mention m, respectively.

Based on our dictionary, we generate the set of contextual
entities Em for each mention m ∈ MC and the set of all
contextual entities is then just the union of Em for all mentions
in MC defined as EC = ∪m∈MC

Em.

IV. DISAMBIGUATION GRAPH CONSTRUCTION

In this module, we retrieve the set of candidate entities Em

for each input mention m ∈MI based on our dictionary and
the set of all candidate entities is defined as EI = ∪m∈MI

Em.
We then build a directed weighted graph G = {V,R}, called
disambiguation graph, where V = EI ∪ EC is the union of
contextual and candidate entities, and R is the set of directed
edges representing entity relations, where an edge between
two entities ei and ej will be added into R if the following
conditions are satisfied: (1) ei is linked to ej in KB, i.e., ei →
ej ; (2) ei and ej have different mentions, i.e., ei ∈ Em, ej ∈
Em′ and m 6= m′. Our approach then employs several features
to assign weights to nodes and edges in G.

A. Node Weighting

For each mention m, we first calculate its prior importance
PI(m) that captures how likely the surface form m.s is used
as an entity mention as follows

PI(m) =
countlink(m.s)

countlink(m.s) + counttext(m.s)
(2)

where countlink(s) denotes the number of articles that contain
s as anchor text of links and counttext(s) denotes the number
of articles where s appears as raw text without links.

For each pair of mention m and its associated entity e, we
calculate their semantic similarity SS(m, e) that represents the
local mention-entity compatibility between m and e as

SS(m, e) = α · LP (m, e) + (1− α) · CS(m, e) (3)

where LP (m, e) denotes the link probability of e for m and
CS(m, e) denotes the context similarity between m and e, α
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is a tunable parameter. The link probability LP (m, e) captures
how likely m.s refers to e, which can be calculated as

LP (m, e) =
countlink(e,m.s)∑

ei∈Es
countlink(ei,m.s)

(4)

where countlink(e, s) denotes the number of links using s as
anchor text pointing to e as destination and Es is the set of
entities that have the surface form s. The context similarity
CS(m, e) between m and e can be calculated using cosine
similarity on the term vectors of the context of m and e as

CS(m, e) = cos(m.c, e.c) =
〈m.c, e.c〉
|m.c| · |e.c|

(5)

where m.c is the frequency vector of terms that contained in
the surrounding sentences of m and e.c is the frequency vector
of terms that co-occur with e extracted from Wikipedia.

Using the prior mention importance as the initial evidence
and the mention-entity compatibility capturing the most likely
entity behind the mention, we calculate the score of each v ∈
V corresponding to entity e that has the mention m as

S(v) = PI(m) · SS(m, e) (6)

Based on that, the probability p(v) serving as the weight of
each node v ∈ V can be calculated as follows

p(v) =
S(v)∑

u∈V S(u)
(7)

B. Edge Weighting

The module of collective entity disambiguation relies on the
global entity-entity coherence, which reflects the intuition that
entities appearing in the same document are more likely to
be related. Therefore, we calculate the semantic relatedness
between each pair of connected entities ei and ej in G by
adopting the Wikipedia link based measure [20] as

SR(ei, ej) = 1− log(max(|Ei|, |Ej |))− log(|Ei ∩ Ej |)
log(|E|)− log(min(|Ei|, |Ej |))

(8)

where Ei and Ej are the sets of entities that link to ei and ej
in KB respectively, and E is the set of all entities in KB.

Based on the entity relatedness, we calculate the transition
probability for each edge from u to v in G as follows

p(v|u) =

{
SR(u,v)∑

w∈OUTu
SR(u,w) if (u, v) ∈ R

0 otherwise
(9)

where OUTu is the set of entity nodes such that for each node
w ∈ OUTu, there is an edge from u to w in G.

V. COLLECTIVE ENTITY DISAMBIGUATION

Based on the constructed disambiguation graph, we consider
collective entity disambiguation as a stochastic process, more
specifically, a first-order Markov chain model. Intuitively, it
can be interpreted as a process where a single “random walker”
traverses a graph in a stochastic manner for an infinitely long
time and the fraction of time that the walker spends at a single
node, i.e., the stationary distribution of the Markov chain, can

then be considered as being proportional to an estimate of the
importance of this node relative to others in the graph.

For the disambiguation graph G, where nodes represent both
candidate entities and contextual entities in a given document
D and edges correspond to relations between these entities,
the Markov analogy could be seen as an ad infinitum stream
of thought that refers to the interconnection in a sequence of
entities thought by the author for writing the document D.

There is a class of algorithms that have been proposed for
estimating relative importance of nodes in a graph based on
Markov chains. To address the entity disambiguation problem,
we start with the simple method of eigenvector centrality [21],
and then discuss the well-known PageRank [22] and HITS
algorithms [23] as well as their extensions with prior bias [24].

A. Eigenvector Centrality

Eigenvector centrality [21] provides a principled method to
combine the importance of a node in a graph with its neighbors
in ranking. The scores correspond to the likelihood of arriving
in each node by traversing through the graph with a random
starting node, where the decision to take a particular path is
based on the weighted edges. Given the disambiguation graph
G, eigenvector centrality of nodes in G can be defined as the
principle eigenvector of the transition matrix T constructed
from the weights of edges in G. The equation of the principle
eigenvector c is defined as c = T · c, where the maximal
eigenvalue λ corresponding to c is 1, since T is a square
stochastic adjacency matrix. Each entry T (u, v) in T specifies
the transition probability p(v|u) from node u to v in G, which
is defined in Eq. 9, and each entry c(v) in c represents the
eigenvector centrality of node v, which is proportional to the
sum of eigenvector centrality of all nodes connected to v. It
can be estimated through the iterative calculation as

ci+1(v) =
∑

u∈INv
p(v|u) · ci(u) (10)

where INv is the set of entity nodes such that for each node
u ∈ INv , there is an edge from u to v in G. For each mention
m having a set of candidate entities Em, we choose the entity
with the maximal c(v) as the predicted linking entity, i.e.,
e∗m = argmaxv∈Em

c(v).
Based on the Perron-Frobenius theorem [25], an irreducible

and aperiodic Markov chain can be guaranteed to converge to a
unique stationary distribution. If a Markov chain has reducible
or periodic components, a random walker may get stuck in
these components and never visit the other parts of the graph.
To solve this problem, PageRank [22] suggests reserving some
probability for jumping to any node in the graph, such that the
random walker can “escape” from periodic or disconnected
components, which makes the graph irreducible and aperiodic.
We will discuss this issue in the following.

B. PageRank

PageRank [22] is the most well-known example of Markov
chains for ranking Web pages in search engine results, where
the Markov analogy is defined as a “random surfer” surfing
the Web based on the hyperlinks between Web pages. In the
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traditional PageRank, a uniform probability is assigned to any
node in the Web hyperlink graph in case of random jumps of
a surfer. Given the disambiguation graph G = (V,R), we first
define a |V | × 1 vector pV , whose elements are 1

|V | . With the
uniform prior probability p(v) in pV attached to each node
v and the probability p(v|u) of transitioning from all nodes
u linked to v, as defined in Eq. 9, the iterative probability
equation of v in a Markov chain can be defined as follows

π(i+1)(v) = (1−d)·(
∑

u∈INv
p(v|u)·π(i)(u))+d·p(v) (11)

where INv is the set of entity nodes such that for each node
u ∈ INv , there is an edge from u to v in G and d is the
damping factor, which determines how often a surfer jumps
back to node v with probability d·p(v) and is typically chosen
in the interval [0.1, 0.2].

In [26], [27], PageRank has been extended to generate
“personalized” ranks, called personalized PageRank, where
the prior probability of nodes are non-uniform such that it
can effectively bias the resulting ranks to prefer certain kinds
of nodes. In this regard, we replace the uniform distribution
p(v) = 1

|V | for each v ∈ V with the non-uniform prior
probability p(v) defined in Eq. 6. This is analogous to adding
a set of weighted outgoing edges for all the nodes in G.
Intuitively, this creates a small probability for a random walk
to go to some other nodes in G, although it may not have
been initially connected to the current node. After convergence
of the Markov chain, each node v will achieve a stationary
probability π(v). For each mention m having a set of candidate
entities Em, we choose the entity with the maximal π(v) as
the predicted linking entity, i.e., e∗m = argmaxv∈Em

π(v).

C. HITS

Besides PageRank, another seminal contribution to ranking
nodes in Web graph is HITS [23], where two kinds of scores,
namely hub and authority, are assigned to nodes in the graph
depending on the topology of Web graph. In [24], HITS has
been extended by fitting it into a more Markov fashion, where
prior probabilities are assigned to nodes to permit random
jumps. Given the disambiguation graph G, we incorporate
the prior probability vector pV for nodes in G into the
extended HITS algorithm. Similar to PageRank, the prior
probability p(v) in pV can be defined as uniform distribution,
i.e., p(v) = 1

|V | , or non-uniform according Eq. 6. This yields
the following iterative equation for both hub and authority
scores of each node v

a(i+1)(v) = (1− d) · (
∑

u∈INv
)p(v|u)·h

(i)(u)
H(i) + d · p(v) (12)

h(i+1)(v) = (1− d) · (
∑

u∈OUTv
)p(u|v)·a

(i)(u)
A(i) + d · p(v) (13)

where INv (OUTv) is the set of entity nodes such that for
each u ∈ INv (u ∈ OUTv) there is an edge from u to v (v
to u) and d is the damping factor similar to PageRank. H(i)

and A(i) are defined as

H(i) =
∑

v∈V
∑

u∈INv
p(v|u) · h(i)(u) (14)

A(i) =
∑

v∈V
∑

u∈OUTv
p(u|v) · a(i)(u) (15)

Datasets #Doc. #Ent. Avg. Ent./Doc. Avg. Word/Doc.
ACE2004 57 253 4.44 459
AIDA/CoNLL 231 4485 19.42 213
AQUAINT 50 727 14.54 320
DBpedia Spotlight 58 330 5.69 32
IITB 103 11242 109.15 763
KORE50 50 143 2.82 14
MSNBC 20 650 32.5 688
N3 RSS-500 500 590 1.18 34
N3 Reuters-128 128 637 4.98 140

TABLE III: Features of the datasets, including the numbers
of documents and ground truth entities as well as the average
numbers of ground truth entities and words per document.

After convergence of the algorithm, each node v corresponding
to a candidate entity gets a hub score h(v) and an authority
score a(v). Given the set of candidate entities Em of a mention
m, we choose the entity with the maximal authority score a(v)
as the predicted linking entity, i.e., e∗m = argmaxv∈Em

a(v).
Regarding the NIL entity problem, we use a threshold τ

to determine whether we return the predicted entity e∗m for
a mention m or return NIL for all the algorithms including
eigenvector centrality, traditional PageRank, PageRank with
priors, traditional HITS and HITS with priors.

VI. EXPERIMENTS

We conducted extensive experiments to assess our approach
using GERBIL [16], a general entity annotation benchmark.
In the following, we firstly discuss the experimental settings
and then present the evaluation results.

A. Experimental Settings

In the experiments, we use DBpedia 20141 as the knowledge
base. The experiments were carried out on 9 different datasets.
An overview of these datasets is shown in Table III. In the
following, we briefly describe these datasets and their features.

ACE2004 This dataset introduced by [28] is a subset of the
ACE co-reference dataset, where the annotations are obtained
by asking annotators on Amazon’s Mechanical Turk to link
the first mention of each co-reference chain to Wikipedia.

AIDA/CoNLL This dataset introduced by [10] is divided
into 3 chunks: Training, TestA and TestB, where only named
entities are annotated. In [10], the first two chunks are used for
training and tuning, only TestB, made up of 231 documents,
is used for testing. In our experiments, we also use Training
and TestA for parameter learning and tuning, and use TestB
for assessing the performance of our approach.

AQUAINT This dataset introduced by [8] consists of 50
newswire texts, where instead of annotating all occurrences of
entities, only some important entities and their first mentions
are retained to mimic the hyperlink structure in Wikipedia.

DBpedia Spotlight This dataset produced in [1] contains
quite short texts, where the mentions of both named entities
and nominal entities are annotated.

IITB This dataset presented by [29] contains 103 Web
documents, where almost all mentions for broad types of
entities including the not highly relevant ones are annotated.

1http://wiki.dbpedia.org/Downloads2014
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Systems Micro F1 Macro F1
ADGISTIS 0.63 0.47 0.51 0.27 0.47 0.32 0.65 0.61 0.64 0.77 0.5 0.49 0.28 0.48 0.3 0.61 0.61 0.7
AIDA 0.09 0.4 0.08 0.22 0.18 0.64 0.25 0.43 0.37 0.42 0.41 0.08 0.19 0.19 0.59 0.23 0.38 0.3
Babelfy 0.52 0.54 0.68 0.53 0.37 0.74 0.64 0.45 0.45 0.69 0.5 0.68 0.52 0.35 0.71 0.59 0.39 0.39
DBpedia Spotlight 0.47 0.42 0.53 0.71 0.3 0.43 0.37 0.2 0.33 0.67 0.44 0.51 0.69 0.28 0.39 0.36 0.17 0.26
Dexter 0.52 0.4 0.52 0.29 0.21 0.2 0.35 0.37 0.36 0.67 0.38 0.51 0.26 0.21 0.14 0.37 0.3 0.31
Entityclassifier.eu 0.49 0.41 0.42 0.25 0.14 0.29 0.45 0.34 0.37 0.66 0.41 0.38 0.2 0.16 0.26 0.44 0.32 0.34
FOX 0 0.45 0 0.15 0.02 0.29 0.02 0.56 0.55 0.37 0.44 0 0.12 0.02 0.25 0.02 0.54 0.58
FRES N/A N/A N/A N/A N/A N/A N/A N/A 0.36 N/A N/A N/A N/A N/A N/A N/A N/A 0.37
FREME NER 0 0 0 0 0 0 0 0 0 0.37 0 0 0.02 0 0 0 0 0
KEA 0.64 0.52 0.77 0.74 0.48 0.59 0.7 0.44 0.51 0.76 0.52 0.76 0.73 0.46 0.53 0.67 0.39 0.46
NERD-ML 0.56 0.45 0.58 0.55 0.43 0.32 0.54 0.38 0.41 0.72 0.45 0.56 0.53 0.42 0.26 0.54 0.31 0.35
TagMe 2 0.67 0.47 0.71 0.67 0.37 0.57 0.57 0.47 0.43 0.78 0.46 0.69 0.66 0.36 0.49 0.57 0.39 0.36
WAT 0.64 0.58 0.72 0.66 0.41 0.59 0.62 0.44 0.51 0.76 0.59 0.72 0.67 0.39 0.48 0.57 0.37 0.43
Wikipedia Miner 0.69 0.45 0.77 0.69 0.44 0.42 0.5 0.41 0.47 0.79 0.45 0.75 0.67 0.42 0.34 0.48 0.37 0.39
NC+PRankP 0.66 0.76 0.65 0.4 0.48 0.52 0.69 0.49 0.45 0.77 0.74 0.66 0.39 0.47 0.52 0.73 0.59 0.49
NER+PRankP 0.71 0.76 0.70 0.52 0.51 0.55 0.71 0.56 0.53 0.81 0.75 0.72 0.54 0.50 0.55 0.75 0.65 0.59
N-gram+PRankP 0.65 0.78 0.8 0.51 0.52 0.51 0.57 0.63 0.54 0.8 0.79 0.8 0.47 0.51 0.5 0.62 0.7 0.63
*POS+PRankP 0.78 0.78 0.79 0.58 0.54 0.54 0.65 0.64 0.64 0.86 0.8 0.79 0.64 0.54 0.53 0.71 0.71 0.71
POS+EigenC 0.25 0.31 0.34 0.26 N/A 0.18 0.34 0.34 0.31 0.53 0.34 0.34 0.26 N/A 0.22 0.36 0.5 0.41
POS+HITS 0.17 0.28 0.11 0.33 0.07 0.43 0.16 0.4 0.22 0.61 0.37 0.12 0.34 0.07 0.43 0.22 0.55 0.42
POS+HITSP 0.68 0.69 0.62 0.44 0.47 0.5 0.63 0.59 0.56 0.8 0.73 0.62 0.42 0.46 0.49 0.66 0.66 0.66
POS+PRank 0.75 0.77 0.71 0.49 0.52 0.54 0.71 0.6 0.58 0.84 0.78 0.72 0.44 0.51 0.53 0.73 0.67 0.65

TABLE IV: Comparison of 8 variants of our approach and 14 state-of-the-art approaches on 9 datasets using Micro F1 and
Macro F1 (best results formatted in bold), where if a system provides no results or errors, we report them as N/A (not available).

KORE50 This dataset [10] aims for hard disambiguation
task with very ambiguous mentions. 50 hand-crafted, difficult
sentences from different domains are comprised in this dataset.

MSNBC This dataset is presented by [30], in which all
mentions of named entities are annotated in 20 news articles.
It focuses on disambiguating named entities after running NER
and co-reference resolution systems on newsire text.

N3 RSS-500 This dataset is one of the N3 datasets [31],
where 500 sentences selected from crawled RSS feeds for a
wide range of topics are annotated by domain experts.

N3 Reuters128 This is another N3 dataset [31], which
contains 128 economic news articles, where the annotations of
entities and mentions are determined by two domain experts.

Based on the TestA chunk and the Training chunk of the
AIDA/CoNLL dataset, the parameter α in Eq. 3 has been tuned
and we learn the threshold τ to determine whether we return
the predicted entity e∗m for a mention m as the target entity or
return NIL. Regarding NER and POS based contextual entity
detection, we employ Stanford Named Entity Recognizer2 and
POS Tagger3. For N-gram based contextual entity detection,
we extract all n-grams with n ≤ 20.

B. Evaluation Results

We extensively evaluated various variants of our approach to
entity disambiguation based on different combinations of the
methods for contextual entity detection (including NC, NER,
N-gram and POS, where NC denotes the method without using
any contextual entities such that the disambiguation graph
contains only candidate entities of the input mentions and the
others denote the methods using NER, N-gram and POS based

2http://nlp.stanford.edu/software/CRF-NER.html
3http://nlp.stanford.edu/software/tagger.html

contextual mention detection, respectively) and the algorithms
for collective entity disambiguation (including EigenC, PRank,
PRankP, HITS and HITSP, which denote the algorithms of
Eigenvector Centrality, traditional PageRank, PageRank with
Priors, traditional HITS and HITS with Priors, respectively).
In the experiments, we employ the measures of micro F1 and
macro F1 as the quality criteria.

The experimental results show that our approach with the
combination of POS and PRankP, denoted by POS+PRankP,
achieves the best results on most datasets compared to other
combinations. Due to the limitation of space, we focus the
following discussion on 8 variants of our approach, where
POS or PRankP is involved. We compare our approach against
14 state-of-the-art approaches using GERBIL and the results
will be discussed in Sec. VI-B1. In addition, the impact of
different contextual entity detection methods and collective
entity disambiguation algorithms in our approach will be
discussed in Sec. VI-B2 and Sec. VI-B3, respectively.

1) Comparison with State-of-the-Art Methods: As shown in
Table IV, we compare our approach with 14 state-of-the-art
approaches on 9 datasets. The best variant of our approach
POS+PRankP outperforms all 14 state-of-the-art approaches
on 7 out of 9 datasets for both micro F1 and macro F1. Besides
POS+PRankP, some other variants can also achieve relatively
good results compared to the state-of-the-art approaches. For
example, NER+PRankP, N-gram+PRankP and POS+PRank
outperforms all state-of-the-art approaches on 4 datasets for
micro F1 and on 5 datasets for macro F1, respectively.

We observe that our approach doesn’t work well for two
datasets, i.e., DBpedia Spotlight and KORE50, where KEA and
Babelfy achieve the best results for each dataset, respectively.
The reason could be that the documents in these two datasets
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Fig. 1: Total processing time (s) of 8 variants of our approach.

are very short and also contain very ambiguous mentions such
that our approach doesn’t have enough context to perform the
collective entity disambiguation. For such kind of documents,
the context should be extracted not only from the given
document itself but also from other external resources.

2) Analysis of Contextual Entity Detection: Among the
variants of our approach based on different contextual entity
detection methods, POS+PRankP apparently achieves the best
results in most cases. According to both measures of micro F1
and macro F1, it obtains the best results on 5 out of 9 datasets.
Compared with POS+PRankP, N-gram+PRankP yields the
best results on 2 datasets for micro F1 and 1 dataset for macro
F1, and NER+PRankP gets the best results on 1 dataset for
both micro F1 and macro F1. In general, the variants of our
approach using contextual entity detection, i.e., NER+PRankP,
N-gram+PRankP and POS+PRankP, considerably outperform
NC+PRankP that doesn’t use any contextual entities.

Note that NC+PRankP also achieves very good results on
the AIDA/CoNLL and MSNBC datasets, where it outperforms
all 14 state-of-the-art approaches. The reason could be that
each document in these datasets contains quite a lot of input
mentions of named entities, such that these input mentions
result in more candidate entities that can be utilized by the
collective disambiguation. Although the IITB dataset has a
much higher average number of input mentions per document,
many of them refer to entities that are not relevant and thus
cannot be beneficial to collective entity disambiguation, such
that NC+PRankP doesn’t perform very well on IITB.

In addition, we investigate the impact of different contextual
entity detection methods on the runtime performance of our
approach to entity disambiguation. Fig. 1 illustrates the total
time for processing 9 datasets using different variants of our
approach. We observe that N-gram+PRankP requires more
time than POS+PRankP, which in turn, takes more time than
NER+PRankP and NC+PRankP. This reflects the fact that
N-gram results in more contextual entities than POS, which
have to be taken into account by the collective disambiguation
algorithms. Similarly, POS results in more contextual entities
than NER. Since NC doesn’t yield any contextual entities, it
achieves the best runtime performance.

3) Analysis of Collective Entity Disambiguation: We now
analyze the impact of different collective entity disambiguation

algorithms, where POS is assumed to be the contextual entity
detection method. As shown in Table IV, the variant using
PRankP clearly outperforms the others. While PRank and
HITSP yield relatively good results, the variants with EigenC
and HITS show really poor performance.

Regarding the runtime performance as illustrated in Fig. 1,
we observe that the variant with EigenC takes substantially
more time, where the processing of the IITB dataset did not
stop after running for one day such that we manually stopped
it, while the variants with the other collective disambiguation
algorithms exhibit only minor differences.

VII. RELATED WORK

In this section, we review the state-of-the-art approaches to
entity disambiguation, which have been empirically compared
with our approach in the experiments.

DBpedia Spotlight [1] is one of the first approaches by
combining named entity recognition and disambiguation based
on DBpedia. By employing a vector space model, each entity
is represented as a vector in a multidimensional word space,
where term frequency (TF) and inverse document frequency
(IDF) are utilized to model the relevance and importance of
words. In addition, the inverse candidate frequency (ICF) is
used to weight words according to their ability to distinguish
between candidate entities.

Wikipedia Miner [8] is one of the oldest tools widely used
for entity disambiguation and linking based on Wikipedia.
It provides useful statistics about anchor texts and links in
Wikipedia and defines an entity relatedness measure using
Wikipedia link structures. Based on a classifier using different
features, e.g., prior probability, context relatedness and quality,
an entity disambiguator and a link detector are provided.

NERD [4] has been proposed for recognizing and extracting
entities from tweets. Using a conditional random fields (CRF)
model, entity types can be classified based on a rich feature
vector composed of several linguistic features. In addition, a
set of NER extractors are supported by the NERD Framework
The follow-up, NERD-ML [6] improved the classification task
by redesigning the selection of the features.

TagMe 2 [3] utilizes a set of links, pages and an in-link
graph from Wikipedia to annotate entities in natural language
text. It first recognizes named entities by matching terms with
Wikipedia anchor texts and then disambiguates the detected
mentions using the in-link graph and page information from
Wikipedia. Furthermore, the identified named entities that are
considered as non-coherent to the rest of the entities in the
given text are then pruned by TagMe 2.

WAT [7] is the successor of TagMe including a re-design of
all its components, i.e., the spotter, the disambiguator and the
pruner, where two sets of algorithms have been introduced:
the graph-based algorithms for collective entity linking and
the vote-based algorithms for local entity disambiguation, and
SVM linear models are used to tune the spotter and the pruner.

AGDISTIS [5] is a pure entity disambiguation framework,
which aims at increasing the accuracy of entity disambiguation
by combining some measures for calculating string similarity,
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a label expansion strategy for co-referencing and the HITS
algorithm for graph-based disambiguation. According to this
combination, the correctness of entities detected in a given
document can be significantly improved.

AIDA [10] only focuses on named entities and adopts the
YAGO knowledge base as the entity collection to perform
entity disambiguation. It relies on coherence graph building
and dense subgraph algorithms, which aims at maximizing
the coherence among the selected annotations.

KEA NER/NED [32] considers heterogeneous text sources
created by automated multimedia analysis as context, which
have different levels of accuracy, completeness, granularity and
reliability. Ambiguity is solved by selecting candidate entities
with the highest probability according to the context.

Babelfy [33] is based on random walk models and a densest
subgraph algorithm to tackle both word sense disambiguation
and entity linking tasks in a multilingual setting depending on
the BabelNet semantic network.

Dexter [34] is an open-source framework with the aim of
simplifying the implementation of entity disambiguation and
linking such that it allows to replace single parts of the system,
where several methods have been integrated.

VIII. CONCLUSIONS

In this paper, we proposed a context-aware approach to
collective entity disambiguation for the input mentions with
different characteristics in a consistent manner. By leveraging
the contextual entities derived from the given document and
the algorithms of collective disambiguation based on Markov
chains, our approach achieves promising results on various
types of input mentions. Through the extensive experiments
conducted on 9 different datasets, we show that our approach
outperforms 14 state-of-the-art methods in most cases. The
experimental results also show the limitation of our approach
for short text with very ambiguous mentions. In future work,
we would like to incorporate other contexts extracted from
external resources into the collective disambiguation to address
the challenges of ambiguous mentions in short text.
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