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Abstract

In this paper we explore some of the opportunities and challenges
for machine learning on the Semantic Web. The Semantic Web pro-
vides standardized formats for the representation of both data and
ontological background knowledge. Semantic Web standards are used
to describe meta data but also have great potential as a general data
format for data communication and data integration. Within a broad
range of possible applications machine learning will play an increas-
ingly important role: Machine learning solutions have been developed
to support the management of ontologies, for the semi-automatic an-
notation of unstructured data, and to integrate semantic information
into web mining. Machine learning will increasingly be employed to
analyze distributed data sources described in Semantic Web formats
and to support approximate Semantic Web reasoning and querying.
In this paper we discuss existing and future applications of machine
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learning on the Semantic Web with a strong focus on learning algo-
rithms that are suitable for the relational character of the Semantic
Web’s data structure. We discuss some of the particular aspects of
learning that we expect will be of relevance for the Semantic Web
such as scalability, missing and contradicting data, and the potential
to integrate ontological background knowledge. In addition we review
some of the work on the learning of ontologies and on the population
of ontologies, mostly in the context of textual data.

1 Introduction

The world wide web (WWW) represents an ever increasing source of informa-
tion. Until now the WWW is mostly accessible to humans via search engines
and browsers whereas computers only have a very rudimentary understand-
ing of web content. The vision behind the Semantic Web (SW) is that com-
puters should also be able to understand and exploit information offered on
the web [1]. In the near future, a web representation might contain human-
readable parts and sections made available in SW-formats to be accessible
for automated processing. The SW is based on two concepts. First, a formal
ontology provides domain specific background information that is shared by
several parties: It provides a common vocabulary for a given domain and de-
scribes object classes, predicate classes and their interdependencies, as well
as additional background information formalized in logical statements. Sec-
ond, web information is annotated by statements readable and interpretable
by machines via the common ontological background knowledge.

One of the prime SW applications will be context/user sensitive informa-
tion retrieval where the result will still be in textual or multimedia format, to
be interpreted by a human. But this information will be much more specific
to the user’s needs, since data can be integrated from multiple sites and smart
information filters can be applied. Thus a search engine becomes more of an
agent who knows the user, who has a deep understanding of the information
request, who knows what to find where on the web and who presents the
requested information in an appropriate user-friendly form. An immediate
benefit from semantic annotation will be that annotated web pages might
obtain a higher search rank since the match between query and page content
can be evaluated with high confidence. In a second group of applications, the
items to be searched for are not human readable texts or multimedia data but
are machine readable information about an item or a web service. Semantic
web services are of great interest both for academia and industry [2, 3]. Ser-
vice requests and service offerings can be formulated precisely based on SW
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standards and can be understood as precisely by semantic search engines and
web applications. In the third family of applications the SW becomes the
web of data. SW technologies will form the infrastructure for a standardized
representation of information and for information exchange. Biomedicine is
a forerunner here with almost 1000 databases publicly available today. If
the data were published under a common SW ontological format, all this
information would be accessible for querying and for analysis. As the WWW
brought the knowledge of the world to our finger tips, the SW will bring the
data of the world to our applications. Finally, in a fourth family of applica-
tions, SW technologies are being used in advanced expert systems to model
complex industrial domains [4].

Reasoning plays an important role on the SW: Based on ontological back-
ground knowledge and the set of asserted statements, logical reasoning can
derive new statements. But logical reasoning has its limitations. First, log-
ical reasoning does not easily scale up to the size of the web as required by
many applications; projects like the EU FP 7 Large-Scale Integrating Project
LarKC are under way to address this issue [5]. Second, uncertain informa-
tion is not suitable for logical reasoning. The representation of uncertain
information on the SW and reasoning with uncertainty on the SW have only
recently been addressed [6]. Third, logical reasoning is completely based on
axiomatic prior knowledge and does not exploit regularities in the data that
have not been formulated as ontological background knowledge. In contrast,
and as it has been demonstrated in many application areas, successful solu-
tions can often be achieved by induction, i.e., by learning from data. The
analysis of the potential of machine learning for the SW is the topic of this
contribution.

The most immediate application of machine learning is SW mining, en-
hancing traditional web mining applications. Web content mining, web struc-
ture mining, web usage mining and the learning of ranking functions for
retrieval will all benefit from the additional information available on the
SW [7]. In another group of applications, machine learning serves the SW
by supporting ontology construction and management, ontology evaluation,
ontology refinement, ontology evolution, as well as the mapping, merging and
alignment of ontologies [8, 9, 10, 11, 12]. Mostly these tasks are addressed
on the basis of unstructured or semi-structured textual data. After all, most
current web pages contain textual information; but other types of input data
will become increasingly important, as well [13]. Alternatively, researchers
are concerned with learning of data already in SW formats. As already men-
tioned, the current trend is that an increasing amount of information is made
available in SW formats and machine learning and data mining will be the
basis for the analysis of the combined data sources. A particular aspect here
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is the learning of logical constraints that can then be formulated in the lan-
guage of the employed ontology [14, 15, 16, 17]. One can also contemplate
that future ontologies should be extended to be able to represent learned
information that cannot easily be formulated with current standards, e.g.,
represent the input-output mapping represented in probabilistic classifiers.
The trained statistical models can then be used to estimate the probability
that statements are true, which are neither explicitly asserted in the database
nor can be proven to be true (or false) based on logical reasoning. Since the
conclusions drawn from machine learning are typically probabilistic, this un-
certainty needs to be represented [6, 18, 5]. Consequently, querying can
include learned statements, e.g., : Find all female persons that live in the
southeastern US, are older than 21 years, own a house and are likely to own
a sailboat where the last information, i.e., the likelihood of owning a sail-
boat, was learned from data. Finally, in applications where the raw data
is unstructured, machine learning can support the population of ontologies,
i.e., the mapping of unstructured data to SW statements. Most work here
concerns the population from textual data although the annotation of semi-
structured data and multimedia data. e.g. images and video, is of great
relevance as well. A goal here is to describe multimedia content semantically
for fast content-based reasoning and retrieval.

In this paper we analyze algorithms from machine learning that are suit-
able for SW applications. First and foremost, SW data describe relationships
between objects. Consequently, suitable learning approaches should be able
to handel the relational character of the data. By far the majority of ma-
chine learning deals with non-relational feature-based representations (also
referred to as propositional representation or attribute-value representation).
Only recently statistical relational learning (SRL) is finding increasing inter-
est in the ML community [19]. In Section 3 we present a novel discussion on
feature-based learning in the SW and in Section 4 we relate this discussion
to learning algorithms from inductive logic programming (ILP). In Section 5
we discuss matrix decomposition approaches and in Section 6 we present re-
lational graphical models that are based on a joint probabilistic model of a
relational domain. We discuss the machine learning approaches with respect
to their applicability in a SW context, i.e., their scalability to the expected
large size of the SW, their ability to integrate ontological background knowl-
edge, their ability to handle the varying quality and reliability of data1 and
finally, their ability to deal with missing and contradictory data. In Section 7
we add a discussion on ontology learning and ontology population based on
textual data. Ontology learning and ontology population are the most de-

1Trust learning is an emerging field [20].
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veloped aspects of machine learning on the SW. In Section 8 we report first
experiments based on the FOAF data set and in Section 9 we present con-
clusions. We will start the remaining part of the paper with an introduction
into the SW as proposed by the W3C.

2 Components of the SW Languages

The World Wide Web Consortium (W3C) [21] is the main international stan-
dards organization for the WWW and develops recommendations for the
SW. We will discuss here the main SW standards, i.e., RDF, RDFS and
OWL [22, 23]. RDF is useful for making statements about instances, RDFS
defines schema and subclass hierarchies, and OWL can be used to formulate
additional background knowledge. Very elegantly, the statements in RDF,
RDFS and OWL can all be represented as one combined directed graph
(Figure 1). A common semantics is based on the fact that some of the lan-
guage components of RDFS and OWL have predefined domain-independent
interpretations.

2.1 RDF: A Data Model for the SW

The recommended data model for the SW is the resource description frame-
work (RDF). It has been developed to represent information about resources
on the WWW (e.g., meta data/annotations), but might as well be used to
describe other structured data, e.g., data from legacy systems. A resource
stands for an object that can be uniquely identified via a uniform resource
identifier, URI, which is sometimes referred to as a bar code for objects on the
SW. The basic statement is a triple of the form (subject, property, property
value) or, equivalently, (subject, predicate, object). For example (Eric, type,
Person), (Eric, fullName, Eric Miller) indicates that Eric is of the concept
(or class) Person and that Eric’s full name is Eric Miller. A triple can graph-
ically be described as a directed arc, labeled by the property (predicate) and
pointing from the subject node to the property value node. The subject of
a statement is always a URI, the property value is either also a URI or a
literal (e.g., String, Boolean, Float). In the first case, one denotes the prop-
erty as object property and a statement as an object-to-object statement. In
the latter case one speaks of a datatype property and of an object-to-literal
statement. A complete database (triple store) can then be displayed as a
directed graph, a semantic net (Figure 1). One might think of a triple as
a tuple of a binary relation property(subject, property values). A triple can
only encode a binary relation involving the subject and the property value.
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Higher order relations are encoded using blank nodes. Consider the origi-
nally ternary relation transaction(User, Item, Rating). The blank node might
be TransactionId with triples (binary relations): (TransactionId, userRole,
User), (TransactionId, transactionObject, Item) and (TransactionId, evalua-
tion, Rating). A blank node is treated as a regular resource with an identifier,
only that it might be invisible from outside the file. Blank nodes are also
helpful for defining containers such as bags (unordered container), sequences
(ordered container) and collections (lists).

Each resource is associated with one or several concepts (i.e., classes) via
the type-property. A concept can be interpreted as a property value in a
type-of-statement. Conversely, one can think of a concept as representing
all instances belonging to that concept. Concepts are defined in the RDF
Vocabulary Description Language, also called RDF-Schema or RDFS. Both
RDF and RDFS form a joint RDF/RDFS graph. In addition to defining all
concepts, the RDFS also contains certain properties that have a predefined
meaning, implementing specific constraints and entailment rules. First, there
is the subclass property. If an instance is of type Concept1 and Concept1 is
a subclass of Concept2, then the instance can be inferred to be also of type
Concept2. Subclass relations are essential for generalization in reasoning
and learning. Each property has a representation (node) in RDFS as well.
A property can be a subproperty of another property. For example, the
property brotherOf might be a subproperty of relatedTo. Thus if A is a
brother of B one can infer that A is relatedTo B.

A property can have a domain respectively range constraint: (marry,
domain, Person) and (marry, range, Person) states that if two resources
are married then they must belong to the concept Person. Interestingly,
RDF/RDFS statements cannot lead to contradictions in RDF/RDFS, one
reason being that negation is missing. The same remains true for some less
expressive ontologies.

2.2 Ontologies

Ontologies build on RDF/RDFS and add expressiveness. W3C developed
standards for the web ontology language OWL, which comes in three dialects
or profiles: the most expressive is OWL Full, which is a true superset of
RDFS. A full inference procedure for OWL Full is not implementable with
simple rule engines [23]. Some applications requiring OWL Full might build
an application-specific reasoner instead of using a general one. OWL DL
(description language) is included in OWL Full and OWL Lite is included
in OWL DL. Both OWL DL and OWL Lite are decidable but are not true
supersets of RDFS.
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Figure 1: An RDF-graph fragment. Redrawn from [24].

In OWL one can state that classes are equivalent or disjoint and that
properties respectively instances are identical or different. The behavior of
properties can be classified as being symmetric, transitive, functional or in-
verse functional, . . . (e.g., teaches is the inverse of isTaughtby). In RDFS
concepts are simply named. OWL allows the user to construct classes by
enumerating their content (explicitly stating its members), through forming
intersections, unions and complements of classes. Also classes can be defined
via property restrictions. For example, the constraints that (1) first-year
courses must be taught by professors, (2) mathematics courses are taught
by David Billington, (3) all academic staff members must at least teach one
undergraduate course, can all be expressed in OWL using the constructs
allValuesFrom (∀), hasValue, and someValuesfrom (∃). Furthermore, car-
dinality constraints can be formulated (e.g., a course must be taught by
someone, a department must have at least ten and at most 30 members)
(Examples from [22]). Very attractive is that both instances and ontologies
can be joined by simply joining the graphs: in fact the only real thing is the
graph [23].

In some data rich applications ontologies will have no relevance beyond
the definition of classes and properties. Conversely, in some domains, such
as bioinformatics, medical informatics and some industrial applications [4],
sophisticated ontologies have already been developed [23].
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2.3 Reasoning

An ontology formulates logical statements, which can be used for analyz-
ing data consistency and for deriving new implicit statements concerning
instances and concepts. Total materialization denotes the calculation of all
implicit triples at loading time, which might be preferred if query response
time is critical [25]. Note, that total materialization is only feasible in some
restricted ontologies.

2.4 Rules

RuleML (Rule Markup Language) is a rule language formulated in XML and
is based on datalog, a function-free fragment of Horn clausal logic. RuleML
allows the formulation of if-then-type rules. Both RuleML and OWL DL
are different subsets of first-order logic (FOL). SWRL (Semantic Web Rule
Language) is a proposal for a Semantic Web rules-language, combining sub-
languages of OWL (OWL DL and Lite) with those of the Rule Markup
Language (Unary/Binary Datalog). Datalog clauses are important for mod-
eling background knowledge in cases where DL might be inappropriate, for
example in many industrial applications.

2.5 Querying

The recommended RDF-query language for the SW is SPARQL (SPARQL
Protocol and RDF Query Language). The SPARQL syntax is similar to
SQL. A search pattern is a directed graph with variable nodes (i.e., a graph
pattern). The result is is either in the form of a list of variable bindings or
in the form of an RDF-graph.

3 Feature-based Statistical Learning on the

SW

3.1 Feature-based Statistical Learning

Based on a long tradition, statistical learning has developed a large number
of powerful analytical tools and it is highly desirable to make these tools
available for the SW. Figure 2 (top) shows the main steps that are performed
in statistical learning, analyzing, as example, students in a university. First,
a statistical unit is defined, which is the entity that is the source of the
variables or features of interest [26, 27, 28]. The goal is to generalize from
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Figure 2: Top: Standard machine learning. Bottom: Machine learning ap-
plied to the SW.

observations on a few units to a statistical assembly of units. Typically a
statistical unit is an object of a given type, here a student. In general one is
not interested in all statistical units but only in a particular subset, i.e., the
population. The population might be defined in various ways, for example it
might concern all students in a particular country or, alternatively, all female
students at a particular university.

In a statistical analysis only a subset of the population is available for
investigation, i.e. a sample. Statistical inference is dependent on the details
of the sampling process; the sampling process essentially defines the random
experiment and, as a stationary process, allows the generalization from the
sample to the population. In a simple random sample each unit is selected
independently. Naturally, sometimes more complex sampling schemes are
used, such as stratified random sampling, cluster sampling, and systematic
sampling.

The quantities of interest of the statistical investigation are the features
(or variables) that are derived from the statistical units. In the example,
features are a student’s IQ and a student’s age. In the next step the data
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matrix is formed where each row corresponds to a statistical unit and each
column corresponds to a feature. Finally, an appropriate statistical model
is employed for modeling the data, i.e., the analysis of the features and the
relationships between the features, and the final result is analyzed by the
user. Naturally, all of this is typically an iterative process, e.g., based on a
first analysis new features might be added and the statistical model might
be modified.

In a supervised statistical analysis one partitions the features in explana-
tory variables (a.k.a. independent variables, predictor variables, regressors,
controlled variables, input variables) and dependent variables (a.k.a response
variables, the regressands, the responding variables, the explained variables,
or the outcome/output variables). Note that it is often a design choice if one
either defines a population based on the state of a variable or if one uses that
variable as an independent variable. Consider a binary variable male/female.
One choice might be to partition the population into males and females and
learn separate models for each population. Another option is to simply use
gender as an independent variable and consider a joint population of males
and females. The second choice is for example more appropriate if the sample
is small. Hierarchical Bayesian modeling is a compromise in which statistical
inference in different populations is coupled.

3.2 Feature-based Statistical Learning on the SW

The main steps for statistical learning on the SW are displayed in Figure 2
(bottom). The first new aspect is that the statistical analysis is based on the
world as it is represented on the SW and that all quantities of interest, i.e.,
statistical unit, population, sample and features, are defined in context of the
SW.2 As before, a statistical unit might be defined to be an object of a given
type, e.g., a student. More generally a statistical unit might be composed of
several objects that have a particular relationship to each other. In Figure 2,
as an example, a statistical unit might be a composed entity consisting of a
student and a class that the student attends, i.e., a registration.

A population might now be defined by a SW query that produces a table
whose tuples (i.e., variable bindings) correspond to the objects that identify
a statistical unit. In the example in Figure 2 we might define a query to gen-
erate a population table with objects student and class; a tuple then stands
for the statement that a student registered in a particular class. Sampling, as
before, selects a proper random subset of the population. A particular aspect

2Technically one needs to be aware that the generation of a sample with the help of
a search engine or a crawler might introduce a bias, for example, if snowball sampling is
employed.
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of SW data is the dominance of relationships between objects. Thus, fea-
tures that are calculated for a statistical unit might reflect this relationship
structure.

Technically, one first generates a data matrix. The number of rows in the
data matrix is identical to the number of tuples in the sample table, i.e., the
number of statistical units in the sample. A statistical unit is a primary key
for the table. The data matrix has a fixed number of columns corresponding
to the number of features, which are derived for each unit. All matrix entries
are initialized to be N/A (not available or missing) and will (partially) be
replaced by feature values as described in the following two steps.

Next, database views3 are generated that contain as attributes the objects
in a statistical unit (respectively a subset of those objects) plus additional
attributes. In Figure 2, the first view contains the student’s ID and the
student’s IQ, the second view contains the class ID and the class difficulty
and the third view contains the student ID, the class ID and the grade the
student obtained in a class. Note that views can be generated from rather
complex queries.

In the next step, relational features are calculated based on these views.
In the simplest case each statistical unit is represented exactly in one tuple
in each view and features are calculated based on the tuple attributes. The
situation becomes more complex if a statistical unit is not represented in a
view or if it is represented more than once. In the first case, i.e., a statistical
unit is not represented in a view, one either enters zero or another default en-
try (e.g., the number of a person’s children is zero) or one does not overwrite
the corresponding N/A entry in the data matrix (e.g., when a student’s IQ
is unknown). In the second case, i.e., a statistical unit is represented in more
than one tuple in a particular view —in the example if a student attended
a class twice and got two grades— some form of aggregation can be applied
(number-of, average, max, min, etc.). In domains like the SW, many-to-
many relations often play a significant role and can lead to a large number
of sparse features: The number of items a customer has acquired is typically
still very small if compared to the total number of items. In the case that
object IDs are used as features, the learning algorithm needs to be able to
handle the potentially high-dimensional sparse data. Technically, it might
be possible to execute the described steps, i.e., the generation of the sample,
the views and the data matrix, in one SQL/SPARQL operation.

Finally, the statistical model can be applied beyond the sample to the
population. It is important to note that we have a well-defined statistical

3A view is a stored query accessible as virtual table composed of the result set of a
query. Alternatively, one could also work with a temporary or persistent table.
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problem as long as we restrict the analysis to the world in as much it is
represented in the SW. Of course the SW can grow (and shrink) such that
online learning and transfer learning might become applicable. To what
degree the statistical model can be generalized to the real world needs to be
analyzed carefully since sometimes the SW data are generated by multiple
parties for their own reasons and not for the purpose of a statistical analysis.

3.3 Search for the Best Features

So far it was assumed that the user would be able to define the features
of interest. In particular in supervised learning one is often interested to
automate the selection of the best input features. Popescul and Ungar [29]
describe a relational learning approach based on a greedy search for optimal
relational features derived from SQL queries (see also [30]). Features are
dynamically generated by a refinement style search over SQL queries includ-
ing aggregation, statistical operators, groupings, richer join conditions and
argmax based queries. The features are used to predict the target relation
using logistic regression. Additional features are generated by clustering,
which leads to new “invented” attributes. The authors obtain good results
on citation prediction and document classification. It is straightforward to
implement a similar search procedure on SW data. Note that the automatic
generation of candidate features is certainly attractive; on the other hand the
computational burden is quite large; feature definition based on the experi-
menters insight and some pruning might be adequate in many applications.

3.4 Discussion

Statistical learning on the SW, as presented, is highly scalable since the
determining factor is the number of statistical units in the sample, which
basically is independent of the size of the SW. One needs to be aware that
sampling with the help of a search engine or a crawler might introduce a
bias. The queries, which need to be executed for the calculation of the
features, can be executed efficiently with current technology [25]. Ontological
background knowledge can be integrated in different ways. First, one might
perform complete or partial materialization, which would derive statements
from reasoning prior to training. Recall that total materialization is only
feasible with less expressive ontologies. Second, since the ontology is part
of the RDF-graph, features can be defined including ontological concepts of
a statistical units, respecting the subclass restrictions. This has effectively
been employed in [31]. It is conceivable that the trained statistical models
could be added to an extended “probabilistic” ontology, indicated by the
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arrow at the bottom of Figure 2. In addition, the statistical models derive
probabilistic statements about the truth values of triples. For example, if
—based on a trained model— it can be derived that a person has a high
IQ, this information could be added to the SW [6]. An option is a weighted
RDF-triple, the weight reflecting the likelihood that the statement is true.
Moreover, if it was found that particular features generated during learning
are valuable, one could define corresponding statements and add those to
the SW as “invented predicates”. The same is true for the latent variables
introduced in a cluster analysis or in a principle component analysis (PCA).
We should emphasize again that statistical inference strictly speaking is only
applicable within the experimental setting of a particular statistical unit,
population and sampling approach. Thus if a statistical model allows the
conclusion that statement X is true with 90% probability, this is only valid in
a particular statistical context. Experiments have shown, for example, that
predictive performance can depend to some degree on the object selected as
statistical unit. An interesting aspect is that the results from a number of
statistical models could be combined in a committee machine [32].

Feature generation is nontrivial and might exploit prior knowledge that
is partially available in the domain ontology. For example it is relevant that
a person only has exactly one age, exactly one mother, but zero or more
children. In fact it would be desirable that the ontological information could
be exploited in a way such that the statistical framework is automatically
constructed requiring a minimum of additional domain background knowl-
edge from the user. A problem with less expressive ontologies might be that
one cannot express negation. Consider the example of gene-gene interactions
where the literature primarily reports positive results, i.e., positive evidence
for gene-gene interactions. Evidence that two genes do not interact would
be important to report but might be difficult to represent in less expressive
ontologies.

Maybe the most important issue in SW learning concerns missing or in-
complete data. We can make a closed-world assumption and postulate that
the world only exists in as much as it is represented in the SW: besides the
statements that are known to be true or can be derived to be true, all state-
ments are assumed false. Naturally, in many cases we are really interested to
perform inference in the real world and it is more appropriate to assume that
the truth values of some statements are unknown. Here we should distin-
guish, first, the case that statistical units are missing and, second, the case
that due to missing information features cannot be calculated or features are
biased. The first case is not a problem if statistical units are missing at ran-
dom, e.g., if some of the students at a university are unknown. The situation
is more complex if the fact that a statistical unit is missing is dependent on
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features of interest, e.g., if only smart students are in the data base. Then
the missing data mechanism should be included in the statistical model. For
the second case consider that the age of a person’s father is an important
feature that is not available: Either the age of a person’s father might be
unknown or a person father’s ID might be unknown. Another example is
that if the number of transactions is an important feature, the feature might
be biased if not all transactions are recorded. If a closed-world assumption is
not appropriate, one could deal with missing features using the appropriate
procedures known from statistics [33]. Again, the missing data mechanism
should be included in the statistical model. Also note that ontological infor-
mation can be quite relevant for dealing with missing data. For example if
we know that a person has brown eye color we know that all other statements
about eye color must be false, since a person has only one eye color. Note
that there are statistical models that can easily deal with missing data such
as naive Bayes, many nearest neighbor methods, or kernel smoothers.

Naturally there are cases where simple missing data models are not ap-
propriate, since missing data can render the independent sample assumption
invalid. Consider objects of type Person and the properties friendOf and
income and age. Furthermore assume that from the age of a person and from
the income of a person’s friends we can predict the income of a person with
some certainty. If all features are available, then training an appropriate
classifier is straightforward. If in training and testing the income of a person
and of a person’s friends are partially unknown, we have the situation that
the income prediction for one person depends on the income prediction of
the person’s friends. The situation, where for the prediction of features of a
statistical unit (here a person’s income) the same features of linked statistical
units are required, is typical for data defined on networks. In the analysis of
social networks, this situation is referred to as a collective classification prob-
lem and a mechanism is added to propagate information using, e.g., Gibbs
sampling, relaxation labeling, iterative classification or loopy belief propa-
gation. Recent overviews are presented in [34, 35]. One of the first papers
demonstrating the benefits of collective classification in social networks is [36]
and some important contributions are described in [37, 38, 39, 40]. It is likely
that collective classification will also concern SW applications. Interestingly,
many social networks have been shown to exhibit homophily, which means
that objects with similar attributes (e.g., persons with similar income) are
linked (e.g., are friends). In networks exhibiting homophily, simple propaga-
tion models, for example based on Gaussian random field models employed
in semi-supervised learning [41], give very competitive results. Collective
classification is highly related to the relational graphical model approaches
described in Section 6, in particular dependency networks [42, 43]. Note, that
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in collective classification, features for different statistical units are not inde-
pendent and a statistical analysis becomes more involved. Also recall, that
we assumed previously that statistical units were selected randomly from the
population. In contrast, in collective classification problems the statistical
units (for both training and test) would typically be defined by the complete
RDF-graph or a connected RDF-subgraph (compare Section 6).

4 Inductive Logic Programming

Inductive logic programming (ILP) encompasses a number of approaches
that attempt to learn logical clauses4 In the view of the discussion in the last
section, ILP uses logical (binary) features derived from logical expressions,
typically conjunctions of (negated) atoms. Recent extensions on probabilistic
ILP have also address uncertain domains.

4.1 ILP Overview

This section is on “strong” ILP, which covers the majority of ILP approaches
and is concerned with the classification of statistical units and on predicate
definition5. Strong ILP performs modeling in relational domains that is some-
what related to the approach discussed in the previous section. Let’s consider
FOIL (First Order Inductive Learner) as a typical representative [45]. The
outcome of FOIL is a set of definite clauses (a particular if-then rule) with
the same head (then-part).

Here is an example (modified from [44]). Let the statistical unit be a
customer with ID CID. VC = 1, indicates that someone is a valuable cus-
tomer, GC = 1 indicates that someone owns a golden credit card and SB = 1
indicates that someone would buy a sailboat. The first rule that FOIL might
have learned is that a person is interested in buying a sailboat if this person
owns a gold card. The second rule indicates that a person would buy a sail-

4A (logical) literal is either an atomic sentence or a negated atomic sentence, li ∈
{ai,¬ai}. A clause is a disjunction of literals: l1 ∨ l2 . . . ∨ ln. In a definite clause exactly
one literal is positive. A definite clause can be written as an implication (if-then rule):
(a1 ∧ a2 ∧ . . . ∧ an−1) ⇒ an where ln = an was assumed to be the positive literal in the
clause. A definite clause without a body is a fact. To the left of the implication sign is
the rule body and an is the rule head. A Horn clause has at most one positive literal. A
function free definite clause is a datalog. A program clause can contain negative literals
in the body. A goal (also called a query) is a Horn clause with no positive literals. All
definitions can be found in [44].

5A predicate definition is a set of program clauses with the same predicate symbol in
their heads.
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boat if this person is older than 30 and has at least once made a credit card
purchase of more than 100 EURO:

sailBoat(CID, SB = 1) ← customer(CID,GC = 1) (1)

sailBoat(CID, SB = 1) ← customer(CID, Age)

∧ purchase(CID, PID, Value, PM)

∧ PM = credit-card ∧ Value > 100 ∧ Age > 30.

In rule learning FOIL uses a covering paradigm. Thus the first rule is derived
to correctly predict as many positive examples as possible (covering) with a
minimum number of false positives. Subsequent rules then try to cover the
remaining positive examples. The head of a rule (then-part) is a predicate
and the body (the if-part) is a product of (negated) atoms containing con-
stants and variables.6 Naturally, there are many variants of FOIL. FOIL
uses a top down search strategy for refining the rule bodies, PROGOL [46]
a bottom up strategy and GOLEM [47] a combined strategy. Furthermore,
FOIL uses a conjunction of atoms and negated atoms in the body, whereas
other approaches use PROLOG constructs. The community typically dis-
cusses the different approaches in terms of language bias (which rules can
the language express), search bias (which rules can be found) and validation
bias (when does validation tell me to stop refining a rule). An advantage
of ILP is that also non-grounded background knowledge can be taken into
account (typically in form of a set of definite clauses that might be part of
an ontology).

In view of the discussion in the last section, the statistical unit corre-
sponds to a customer, and FOIL introduces a binary target feature (1) for
the target predicate sailBoat(CID, SB). The second feature (2) is one if the
customer owns a golden credit card and zero otherwise. Then a view is gener-
ated with attribute CID. A CID is entered in that view each time the person
has made a credit card purchase of more then 100 EURO, but only if that
person is older than 30 years. The third feature (3) is binary and is equal to
one if the CID is present in the view at least once and zero otherwise. FOIL
then applies a very simple combination rule: if feature (2) or feature (3) is
equal to one for a customer, then the target feature (1) is true.

4.2 Propositionalization, Upgrading and Lifting

ILP approaches like FOIL can be decomposed into the generation of binary
features (based on the rule bodies) and a logical combination, which in case

6FOIL learning is called learning from entailment in ILP terminology.
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of FOIL is quite simple. As stated before, ILP approaches contain a com-
plex search strategy for defining optimal rule bodies. If, in contrast, the
generation of the rule bodies is performed as a preprocessing step, the pro-
cess is referred to as propositionalization [48]. Instead of using the simple
FOIL combination rule, other feature-based learners are often used. It has
been proven that in some special cases, propositionalization is inefficient [49].
Still, propositionalization has produced excellent results. The binary features
are often collected through simple joins of all possible attributes. An early
approach to propositionalization is LINUS [50].

The inverse process to propositionalization is called upgrading (or lift-
ing) [51] and turns a propositional feature-based learner into an ILP learner.
The main differences to propositionalization is that the optimization of the
features is guided by the improvement of the performance of the overall
system. It turns out that many strong ILP systems can be interpreted as
upgraded propositional learners: FOIL is an upgrade of the propositional
rule-induction program CN2 and PROGOL can be viewed as upgrading the
AQ approach to rule induction. Additional upgraded systems are Induc-
tive Classification Logic (ICL [52]) that uses classification rules, TILDE [53]
and S-CART that use classification trees, and RIBL [54] that uses nearest
neighbor classifiers. nFOIL [55] combines FOIL with a naive Bayes (NB)
classifier by changing the scoring function and by introducing probabilistic
covering. nFoil was able to outperform FOIL and propositionalized NB on
standard ILP problems. kFoil [56] is another variant that derives kernels
from FOIL-based features.

4.3 Discussion

ILP algorithms can easily be applied to the SW if we identify atoms with
basic statements. ILP fits well into the basically deterministic framework
of the SW. In many ways, statistical SW learning as presented in Section 3
is related to ILP’s propositionalization; the main difference is the principled
statistical framework of the former. Thus most of the discussion on scalability
in Section 3 carries over to ILP’s propositionalization. When ILP’s complex
search strategy for defining optimal rule bodies is applied, training time
increases but is still proportional to the number of samples. An interesting
new aspect is that ILP produces definite clauses that can be integrated,
maybe with some restrictions, into the Semantic Web Rule Language. ILP
approaches that consider learning with description logic (and clauses) are
described, for example, in [57, 58, 14, 15, 16, 17]. An empirical study can be
found in [59].
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5 Learning with Relational Matrices

Another representation of a basic statement (RDF-triple) is a matrix entry.
Consider the triple (User, buys, Item). Recall that a standard relational
representation would be the table buys with attributes User and Item. A
relational adjacency matrix on the other hand has as many rows as there
are users and as many columns as there are items and as many matrix en-
tries as there are possibly true statements. A matrix entry is equal to one
if the item was actually bought by a user and is equal to zero otherwise.
Thus SW data can be represented as a set of matrices where the name
of the matrix is the property of the relation under consideration. Matrix
decomposition/reconstruction methods, e.g., the principle component anal-
ysis (PCA) and other more scalable approaches have been very successful
in the prediction of unknown matrix entries [60]. Lippert et al. [61] have
shown how several matrices can be decomposed/reconstructed jointly and
have shown that this increases predictive performance if compared to single
matrix decompositions. By filling in the unknown entries via matrix decom-
position/reconstruction, the approach has an inherent way of dealing with
data that is missing at random. Care must be taken if missing at random is
not justified. In [61], one type of statement concerns gene-gene interactions
where only positive statements are known. Reconstructed matrix entries can,
as before, be entered into the SW, e.g., as weighted triples. Scalability of this
approach has not been studied in depth but the decomposition scales approx-
imately proportional to the number of known matrix entries. Note that the
approach performs a prediction for all unknown statements in one global de-
composition/reconstruction step. In contrast, the previous approaches would
learn separate models for each statistical unit under consideration. Other
approaches, which learn with the relational adjacency matrix, are described
in [62] and [63].

6 Relational Graphical Models

The approaches described in Sections 3 and 4 aim at describing the statistical,
respectively logical, dependencies between features derived from SW data. In
contrast the matrix decomposition approach in the last section and the re-
lational graphical models (RGMs) in this section predict the truth values of
all basis statements (RDF-triples) in the SW. Unlike the matrix decomposi-
tion techniques in the last section, the RGMs are probabilistic models and
statements are represented by random variables. RGMs can be thought of
as upgraded versions of regular graphical models, e.g., Bayesian networks,
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Markov networks, dependency networks and latent variable models. RGMs
have been developed in the context of frame-based logical representations, re-
lational data models, plate models, entity-relationship models and first-order
logic. Here, we attempt to relate the basic ideas of the different approaches
to the SW framework.

6.1 Possible World Models on the SW

Consider all constants in the SW (i.e., all objects and literal values) and all
statements that can possibly be true 7. Now one introduces a binary random
variable U for each possibly true statement (grounded atom), where U = 1
if the corresponding statement is true and U = 0 otherwise. In a graphi-
cal model, U would be identified with a node. These nodes should not be
confused with the nodes in the RFD-graph, which represent URIs; rather U
stands for a potential link in the RDF-graph. We can reduce the number
of random variables if type constraints are available and if the truth value
of some statements are assumed known in each world under consideration
(e.g., if object-to-object statements are all assumed known, as in the basic
PRM model in Subsection 6.2). If statements are mutually exclusive, e.g.,
the different blood types of a person, one might integrate several statements
into one random variable using, e.g., multi-state multinomial variables or
continuous variables (to encode, e.g., a person’s height). An assignment of
truth values to all random variables defines a possible world 8. RGMs assign
a probability distribution to each world in the form P (~U = ~u).9 The ap-
proaches differ in how these probabilities are defined and mapped to random
variables, and how they are learned.

6.2 Directed RGMs

The probability distribution in a directed RGM, i.e., relational Bayesian
model, can be written as

P (~U = ~u) =
∏
U∈~U

P (U |par(U)).

U is represented as a node in a Bayesian network and arcs are pointing from
all parent nodes par(U) to the node U . One now partitions all elements of

7We only consider a function-free case.
8RGM modeling would be termed learning from interpretation in ILP terminology.
9Our discussion includes the case that we are only interested in a conditional distribu-

tion of the form P (~U = ~u|~V = ~v), as in conditional random fields [64]
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~U into node-classes. Each U belongs to exactly one node-class. The key
property of all U in the same node-class is that their local distributions are
identical, which means that P (U |par(U)) is the same for all nodes within
a node-class and can be described by a truth-table or more complex rep-
resentations such as decision trees. For example, all nodes representing the
IQ-values of students in a university might form a node class, all nodes repre-
senting the difficulties of university courses might form a node class, and the
nodes representing the grades of students in courses might form a node-class.
Care must be taken, that no directed loops are introduced in the Bayesian
network in modeling or structural learning.

6.2.1 Probabilistic Relational Models (PRMs):

PRMs were one of the first published RGMs and found great interest in the
statistical machine learning community [65, 19]. PRMs combine a frame-
based logical representation with probabilistic semantics based on directed
graphical models. The nodes in a PRM model the probability distribution
of object attributes whereas the relationships between objects are assumed
known. Naturally, this assumption simplifies the model greatly. In context
of the SW object attributes would primarily correspond to object-to-literal
statements. In subsequent papers PRMs have been extended to also con-
sider the case that relationships between objects (in context of the SW these
would roughly be the object-to-object statements) are unknown, which is
called structural uncertainty in the PRM framework [19]. The simpler case,
where one of the objects in a statement is known, but the partner object
is unknown, is referred to as reference uncertainty. In reference uncertainty
the number of potentially true statements is assumed known, which means
that only as many random nodes need to be introduced. The second form
of structural uncertainty is referred to as existence uncertainty, where binary
random variables are introduced representing the truth values of relationships
between objects.

For some PRMs, regularities in the PRM structure can be exploited (en-
capsulation) and exact inference is possible. Large PRMs require approxi-
mate inference; commonly, loopy belief propagation is being used. Learning
in PRMs is likelihood based or based on empirical Bayesian learning. Struc-
tural learning typically uses a greedy search strategy, where one needs to
guarantee that the ground Bayesian network does not contain directed loops.
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6.2.2 More Directed RGMs:

A Bayesian logic program is defined as a set of Bayesian clauses [66]. A
Bayesian clause specifies the conditional probability distribution of a random
variable given its parents on a template level, i.e. in a node-class. A special
feature is that, for a given random variable, several such conditional proba-
bility distributions might be given. As an example, bt(X) | mc(X) and bt(X) |
pc(X) specify the probability distribution for blood type given the two differ-
ent dispositions mc(X) and pc(X). The truth value for bt(X) | mc(X), pc(X)
can then be calculated based on various combination rules (e.g., noisy-or). In
a Bayesian logic program, for each clause there is one conditional probability
distribution and for each Bayesian predicate (i.e., node-class) there is one
combination rule. Relational Bayesian networks [67] are related to Bayesian
logic programs and use probability formulae for specifying conditional prob-
abilities. Relational dependency networks [42] also belong to the family of
directed RGMs and learn the dependency of a node given its Markov blanket
using decision trees.

6.3 Undirected RGMs

The probability distribution of an undirected graphical model or Markov
network can be written as

P (~U = ~u) =
1

Z

∏
k

gk(uk)

where gk(.) is a potential function, uk is the state of the k-th clique and Z is
the partition function normalizing the distribution. One often prefers a more
convenient log-linear representation of the form

P (~U = ~u) =
1

Z
exp

∑
k

wkfk(uk)

where the feature functions fk can be any real-valued function and where
wi ∈ R.

We will discuss two major approaches that use this representation: Markov
logic networks and relational Markov models.

6.3.1 Markov Logic Networks (MLN):

Let Fi be a formula of first-order and let wi ∈ R be a weight attached to
each formula. Then a MLN L is defined as a set of pairs (Fi, wi) [68] [69].
One introduces a binary node for each possible grounding of each predicate
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appearing in L (i.e., in context of the SW we would introduce a node for each
possible statement), given a set of constants c1, . . . , c|C|. The state of the node
is equal to 1 if the ground atom/statement is true, and 0 otherwise (for an
N-ary predicate there are |C|N such nodes). A grounding of a formula is an
assignment of constants to the variables in the formula (considering formulas
that are universally quantified). If a formula contains N variables, then there
are |C|N such assignments. The nodes in the Markov network ML,C are the
grounded predicates. In addition the MLN contains one feature for each
possible grounding of each formula Fi in L. The value of this feature is 1 if
the ground formula is true, and 0 otherwise. wi is the weight associated with
Fi in L. A Markov network ML,C is a grounded Markov logic network of L
with

P (~U = ~u) =
1

Z
exp

(∑
i

wini(~u)

)

where ni(~u) is the number of formula groundings that are true for Fi. MLN
makes the unique names assumption, the domain closure assumption and the
known function assumption, but all these assumptions can be relaxed.

A MLN puts weights on formulas: the larger the weight, the higher is the
confidence that a formula is true. When all weights are equal and become
infinite, one strictly enforces the formulas and all worlds that agree with the
formulas have the same probability.

The simplest form of inference concerns the prediction of the truth value
of a grounded predicate given the truth values of other grounded predicates
(conjunction of predicates) for which the authors present an efficient algo-
rithm. In the first phase, the minimal subset of the ground Markov network
is returned that is required to calculate the conditional probability. It is es-
sential that this subset is small since in the worst case, inference could involve
alle nodes. In the second phase Gibbs sampling in this reduced network is
used.

Learning consists of estimating the wi. In learning, MLN makes a closed-
world assumption and employs a pseudo-likelihood cost function, which is
the product of the probabilities of each node given its Markov blanket. Op-
timization is performed using a limited memory BFGS algorithm.

Finally, there is the issue of structural learning, which, in this context, de-
fines the employed first order formulae. Some formulae are typically defined
by a domain expert a priori. Additional formulae can be learned by directly
optimizing the pseudo-likelihood cost function or by using ILP algorithms.
For the latter, the authors use CLAUDIAN [70], which can learn arbitrary
first-order clauses (not just Horn clauses, as many other ILP approaches).
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6.3.2 Relational Markov Networks (RMNs):

RMNs generalize many concepts of PRMs to undirected RGMs [40]. RMNs
use conjunctive database queries as clique templates. By default, RMNs
define a feature function for each possible state of a clique, making them ex-
ponential in clique size. RMNs are mostly trained discriminately. In contrast
to MLN, RMNs, as PRMs, do not make a closed-world assumption during
learning.

6.4 Latent Class RGMs

The infinite hidden relational model (IHRM) [71] presented here is a directed
RGM (i.e., a relational Bayesian model) with latent variables.10 The IHRM
is formed as follows. First, we partition all objects into classes K1, ...K|K|,
using, for example, ontological class information. For each object in each
class, we introduce a statement (Object, hasHiddenState, H). If Object be-
longs to class Ki, then H ∈ {1, . . . , NKi

}, i.e., the number of states of H
is class dependent. As before, we introduce a random variable or node U
for each grounded atom, respectively potentially true basic statement. Let
ZObject denote the random variables that involve Object and H. ZObject is a la-
tent variable or latent node since the true state of H is unknown. ZObject = j
stand for the statement that (Object, hasHiddenState, j).

We now define a Bayesian network where the nodes ZObject have no parents
and the parents of the nodes for all other statement are the latent variables
of the objects appearing in the statement. In other words, if U stands for the
fact that (Object1, property,Object2) is true, then there are arcs from ZObject1

and ZObject2 to U . The object-classes of the objects in a statement together
with the property define a node-class for U . If the property value is a literal,
then the only parent of U is ZObject1 .

In the IHRM we let the number of states in each latent node to be infinite
and use the formalism of Dirichlet process mixture models. In inference, only
a small number of the infinite states are occupied, leading to a clustering so-
lution where the number of states in the latent variables NCi

is automatically
determined during inference.

Since the dependency structure in the ground Bayesian network is local,
one might get the impression that only local information influences predic-
tion. This is not true, since in the ground Bayesian network, common chil-
dren U with evidence lead to interactions between the parent latent variables.
Thus information can propagate in the network of latent variables. Training
is based on various forms of Gibbs sampling (e.g., the Chinese restaurant

10Kemp et al. [72] presented an almost identical model independently.

23



process) or mean field approximations. Training only needs to consider ran-
dom variables U corresponding to statements that received evidence, e.g.,
statements that are either known to be true or known not to be true; ran-
dom variables that correspond to statements with an unknown truth value
(i.e., without evidence) can completely be ignored.

The IHRM has a number of key advantages. First, no structural learn-
ing is required, since the directed arcs in the ground Bayesian network are
directly given by the structure of the SW graph. Second, the IHRM model
can be thought of as an infinite relational mixture model, realizing hierarchi-
cal Bayesian modeling. Third, the mixture model allows a cluster analysis
providing insight into the relational domain.

The IHRM has been applied to recommender systems, for gene function
prediction and to develop medical recommender systems. The IHRM was
the first relational model applied to trust learning [20]. In [31] it was shown
how ontological class information can be integrated into the IHRM.

6.5 Discussion

RGMs have been developed in the context of frame-based logical represen-
tations, relational data models, plate models, entity-relationship models and
first-order logic but the main ideas can easily be adapted to the SW data
model. One can distinguish two cases. In the first case, an RGM learns a
joint probabilistic model over the complete SW or a segment of the SW. This
might be the most elegant approach since there is only one (SW-) world and
the dependencies between the variables are truthfully modeled, as discussed
in Subsection 3.4. The draw back is that the computational requirements
scale with the number of statements whose truth value is known or even the
number of all potentially true statements. More appropriate for large-scale
applications might be the second case where one applies the sampling ap-
proach as described in Section 3. As an example consider that the statistical
unit is a student. A data point would then not correspond to a set of fea-
tures but to a local subgraph that is anchored at the statistical unit, e.g.,
the student. As before sampling would make the training time essentially in-
dependent of SW-size. Ontological background knowledge can be integrated
as discussed in Section 3. First, one can employ complete or partial mate-
rialization, which would derive statements from reasoning prior to training.
Second, an ontological subgraph can be included in the subgraph of a sta-
tistical unit [31]. Also note that the MLN might be particularly suitable to
exploit ontological background information: ontologies can formulate some
of the first-order formulas that are the basis for the features in the MLN.
PRMs have been extended to learn class hierarchies (PRM-CH), which can
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be a basis for ontology learning.
The RGM approaches typically make an open world assumption.11 The

corresponding random variables are assumed missing at random such that
the approaches have an inherent mechanism to deal with missing data. If
missing at random is not justified, then more complex missing data models
need to be applied. As before, based on the estimated probabilities, weighted
RDF-triples can be generated and added to the SW.

7 Unstructured Data and the SW

The realization of the SW heavily depends on (1) available ontologies and (2)
the annotation of unstructured data with ontology-based meta data. Man-
ual ontology development and manual annotation are two well known SW
bottlenecks. Thus learning-based approaches for both tasks are finding in-
creasing interest [2, 9]. In this section, we will concentrate on two important
tasks, namely ontology learning and semantic annotation (for a compilation
of current work on ontology learning and population see, e.g., [73]). A par-
ticulary important source of information for these tasks is unstructured or
semi-structured textual data. Note that there is a close relationship between
textual data and SW data. Textual data describes, first, ontological concepts
and relationships between concepts (e.g., a text might contain the sentence:
We all know that cats are mammals) and, second, instances and relation-
ships between instances (e.g., a document might inform us that: Marry is
married to Jack). However, the input data for ontology learning and seman-
tic annotation will not be limited to textual data; especially once the SW
will be realized to a greater extent, other types of input data will become
increasingly important. Learning ontologies from e.g., XML-DTDs, UML di-
agrams, database schemata or even raw RDF-graphs is also of great interest
[74], but is out of scope here. The outline of this section is as follows: first,
we consider the case, where a text corpus of interest is given and the task is
to infer a prototype ontology. Second, given a text corpus and an ontology,
we want to infer instances of the concepts and their relations.

7.1 Learning Ontologies from Text

Ontology learning, in general, consists of several subtasks. This includes the
identification of terms, synonyms, polysems, concepts, concept hierarchies,
properties, property hierarchies, domain and range constraints and class def-
initions. These tasks can be illustrated as the so-called ontology learning

11There are some exceptions, e.g., MLN make a closed-world assumption in training.
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layer cake [74]. Different approaches differ mainly in the way a concept is
defined and one distinguishes between formal ontologies, terminological on-
tologies and prototype-based ontologies [75]. In prototype-based ontologies,
concepts are represented by collections of prototypical instances, which are
arranged hierarchically in subclusters. An example would be the concept dis-
ease, which is defined by a set of diseases. Since prototype-based ontologies
are defined by instances, they lack definitions and axiomatic grounding. In
contrast, typical examples for terminological ontologies are WordNet and the
Medical Subject Headings (MeSH12). Terminological ontologies are described
by concept labels and both nouns and verbs are organized into hierarchies, de-
fined by hypernym or subclass relationships. For example a disease is defined
in WordNet as an impairment of health or a condition of abnormal function-
ing. Terminological ontologies typically also lack axiomatic grounding. A
formal ontology such as OWL, in contrast, is seen as a conceptualization,
whose categories are distinguished by axioms and definitions [76]. Most of
the state-of-the-art approaches focus on learning prototype-based ontologies.
Work on learning terminological or formal ontologies is still quite rare. Here,
the big challenge is to deal with uncertain and often even contradicting ex-
tracted knowledge, introduced during the ontology learning process. This
is addressed in [77], which presents a system that is able to transform a
terminological ontology to a consistent formal OWL-DL ontology.

Prototype ontologies are often learned based on some type of hierarchi-
cal clustering techniques such as single-link, complete-link or average-link
clustering. According to Harris’ distributional hypothesis [78], semantic sim-
ilarity between words can be assessed via the syntactic context, which they
are sharing in a corpus. Thus most approaches base the semantic relatedness
between words on some distributional similarity between the words. Usu-
ally, a vector-space model is used as input and the linguistic context of a
term is described by, e.g., syntactic dependencies, which the term establishes
in a corpus [79] The input vector for a term to be clustered can be, e.g.,
composed of syntactic expressions such as prepositional phrases following a
verb or adjective modifiers. See [80] for an illustrative example for assess-
ing the semantic similarity of terms. Hierarchical clustering, in its classical
form, distinguishes between agglomerative (bottom-up) and divisive (top-
down) clustering, whereas the agglomerative form is most commonly used
due to its computational efficiency. Somewhat different from hierarchical
clustering is the divisive bi-section-Kmeans algorithm, which yielded com-
petitive results for document clustering [81] and has been applied to the task
of learning concept hierarchies as well [82, 83]. Another variant is the the

12http://www.nlm.nih.gov/mesh/
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Formal Concept Analysis (FCA) [84]. FCA is closely related to bi-clustering
and tries to build a lattice of so-called formal concepts from a vector space
model. FCA thereby makes use of order theory and analyzes the covariance
between objects and their features. The reader is referred to [84] for more
information.

Recently, [74] set up a benchmark to compare the above mentioned clus-
tering techniques for learning concept hierarchies. While each of the methods
had its own benefits, FCA performed better in terms of recall and precision.
All the methods just mentioned, face the problem of not being able to ap-
propriately label the resulting clusters, i.e., to determine the name of the
concept. To overcome this limitation and to guide the clustering process,
[85] either use hyponyms extracted from WordNet or use Hearst patterns [86]
derived either from the corpus under investigation or from the WWW.

Another type of technique for learning prototype ontologies, comes from
the topic modeling community, an active research area of machine learn-
ing [87, 9]. Topic models are generative models based upon the idea that a
document is made of a mixture of topics, where a topic is represented by a
distribution over words. Powerful techniques such as Latent Semantic Analy-
sis (LSA) [88], Probabilistic Latent Semantic Analysis (PLSA) [89] or Latent
Dirichlet Allocation (LDA) [90] have been proposed for the automated ex-
traction of useful information from large document collections. Applications
include document annotation, query answering, document summarization,
automatic topic extraction as well as trend analysis. Generative statistical
models such as the ones mentioned, have been proven effective in address-
ing these problems. In general, the following advantages of topic models
are highlighted in the context of document modeling: First, topics can be
extracted in a complete unsupervised fashion, requiring no initial labeling
of the topics. Second, the resulting representation of topics for a document
collection is interpretable and last but not least, each document is usually
expressed by a mixture of topics, thus capturing the topic combinations that
arise in documents [89, 90, 91]. When applying topic modeling techniques in
an ontology learning setting, a topic is referred to as concept. To satisfy the
hierarchical structure of prototype ontologies, [87] extends the PLSA method
to an hierarchical version, where super concepts are introduced. While yield-
ing already impressive results with this kind of techniques, [87] concentrates
on learning prototype ontologies, where no labeling of the concept is needed.
Furthermore, the hierarchy of the ontology is assumed to be known a pri-
ori. Learning the hierarchical order in topic models is an area of growing
interest. Here, [92] introduced hierarchical LDA, which models the setup of
the tree-structure of the topics as a Chinese Restaurant Process (CRP). As
a consequence, the hierarchy is not fixed a priori, instead it is a part of the
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learning process. To overcome the limitation of unlabeled topics or concepts,
[93] tries to automatically infer an appropriate label for multinomial topic
models. [9] discusses ontology learning based on topic models in context of
the SW.

7.1.1 Ontology Merging, Alignment and Evolution:

In many cases no dominant ontology will exist, which leads to the problem
that several ontologies need to be merged and aligned. In [11] these tasks
have been addressed with the support of machine learning. Another aspect
is that an ontology is not a rigid and fixed construct — ontologies will evolve
with time. Thus, the structure of an ontology will change and new concepts
will be needed to be inserted into an existing ontology. This leads to an-
other task, where machine learning can play a role in ontology engineering:
ontology refinement and ontology evolution. This task is usually treated as
classification task [76]. The reader is referred to [76, 10] for more information.

7.2 Semantic Annotation

Besides ontological support, a second prerequisite to put the SW into prac-
tice, is the availability of machine-readable meta data. Producing human
readable text from SW data is simple since an RDF triple can easily be for-
mulated as a textual statement. However, even though the statement won’t
be powerfully eloquent, it will still serve its purpose. The inverse is much
more difficult, i.e., the generation of triples from textual data. This process is
called semantic annotation, knowledge markup or meta data generation [94].
Hereby, we are following the notion of semantic annotation as linguistic an-
notations (such as named entities, semantic classes, etc.) as well as user
annotations like tags (see the ECIR 2008 workshop on ‘Exploiting Semantic
Annotations in Information Retrieval’13).

The Information Extraction (IE) community provides a number of ap-
proaches for these tasks. IE is traditionally defined as the process of filling
the fields and records of a database from unstructured text and is seen as
precursor to data mining [95]. Usually, the fields are filled with named en-
tities (i.e., Named Entity Recognition (NER)), such as persons, locations or
organizations. IE first populates a database from unstructured text and data
mining then aims to find patterns. IE is, dependent on the task, made up
of five subtasks: segmentation, classification, finding associations and last
but not least normalization and deduplication [95]. Segmentation refers to

13http://www.yr-bcn.es/dokuwiki/doku.php?id=ecir08 entity workshop proposal
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the identification of text phrases, which describe entities of interest. Clas-
sification is the assignment to predefined types of entities, while finding as-
sociations is the identification of relations between the entities (i.e., relation
extraction). Normalization and deduplication describe the task of merging
different text descriptions with the same meaning (e.g., mapping entities to
URIs).

NER is an active field of research and several evaluation conferences such
as the Message Understanding Conference (MUC-6)[96], the Conference on
Computational Natural Language Learning (CoNLL-2003) [97] and in the
biomedical domain, the Critical Assessments of Information Extraction sys-
tems in Biology (BioCreAtIvE I+II14) [98] have attracted a lot of interest.
While in MUC-6 the focus was NER for persons, locations, organizations in
an English newswire domain, CoNLL-2003 focused on language-independent
NER. BioCreAtIvE focused on the recognition of biomedical entities, in this
case gene and protein mentions. The methods proposed for NER vary, in
general, in their degree of reliance on dictionaries, and their different em-
phasis on statistical or rule-based approaches. Numerous machine learning
techniques have been applied to NER tasks such as Support Vector Machines
[99], Hidden Markov Models [100], Maximum Entropy Markov Models [101]
and Conditional Random Fields [64].

An F-measure in the mid-90s can now be achieved for extracting persons,
organizations and locations in the newswire domain [95]. For extracting gene
and protein mentions, however, the F-measure lies currently in the mid-
to high 80s (see the BioCreAtIvE II conference for details). So NER can
provide high accuracy solutions for the SW, but typically only for a small
number of classes, mostly because of a limited amount of labeled training
data. However, when populating an existing ontology, there will often be the
need to be able to extract hundreds of classes of entities. Thus, systems which
are able to scale to a large number of classes on a large amount of unlabeled
data are needed. Also flexible and domain-independent recognition of entities
is an important and active field of research. State-of-the-art approaches try
to extract hundreds of entity classes in an unsupervised fashion [102], but
so far with a fairly low accuracy. Promising areas, which could help to
overcome current limitations of supervised IE systems, are semi-supervised
learning [103, 104] as well as active learning [105].

The same entities can have different textual representation (e.g., ‘Clark
Kent’, ‘Kent Clark’ and ‘Mr. Clark’ refer to the same person). Normalization
is the process of standardizing the textual expressions. This task is usually
also referred to as entity resolution, co-reference resolution or normalization

14http://biocreative.sourceforge.net/biocreative 2.html
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and deduplication. The Stanford Entity Resolution Framework (SERF), e.g.,
has the goal to provide a framework for generic entity resolution [106]. Other
techniques for entity resolution employ relational clustering [107] as well as
probabilistic topic models [108].

Another important task is the identification of relations between instances
of concepts (i.e., the association finding stage in the traditional IE workflow).
Up to now, most of research on text information extraction has focused on
tagging named entities. The Automatic Content Extraction (ACE) program
provides annotation benchmark sets for the challenging task of relation ex-
traction. At ACE, this task is called Relation Detection and Characterization
(RDC). A representative system using an SVM with a rich set of features, re-
ports results for Relation Detection (74.7% F-measure) and 68.0% F-measure
for the RDC task [109]. Co-occurrence based relation extraction is a simple,
effective and popular method [110], but usually suffers of a lower recall, since
entities can co-occur for many other reasons. Other methods are kernel-based
[111] or rule-based [112]. Recently, [113] propose a new method that treats
relation extraction as sequential labeling task. They extend Conditional Ran-
dom Fields (CRFs) towards the extraction of semantic relations. Hereby,
they focus on the extraction of relations between genes and diseases (five
types of relations) as well as between disease and treatment entities (eight
types of relations). The work applies the authors’ method to a biomedical
textual database and provides the resulting network of genes and diseases
in a machine-readable RDF graph. Thereby, gene and disease entities are
normalized to Bio2RDF15 URIs.

8 First Experiments in the Analysis of FOAF-

data

The purpose of the FOAF (Friend of a Friend) project [114] is to create a
web of machine-readable pages describing people, the relationships between
people and people’s activities and interests, using W3C’s RDF technology.
The FOAF ontology is defined using RDFS/OWL and is formally specified in
the FOAF Vocabulary Specification 0.91 [115]. In our study we employed the
IHRM model as described in Section 6. The trained IHRM can, for instance,
recommend new friendships, the affiliations of persons, and their interests
and projects. Furthermore one might want to predict attributes of certain
persons, like their gender or age. Finally, by interpreting the clustering results
of the IHRM one can answer typical questions from social network analysis

15http://bio2rdf.org/
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concerning the relationships between members of the FOAF social system.
In general FOAF data is either uploaded by each person individually

or generated automatically from user profiles of community websites like
Tribe.net, LiveJournal.com or my.opera.com. The resulting network of linked
FOAF-files can be gathered using a FOAF harvester, a so called “scutter”.
Some scutter dumps are readily available for download, e.g., in one large
rdf/xml-file or stored in a relational database.

Even though this use case only covers a very basic statistical inference
problem on the SW, there still are major challenges to meet. First, there
are characteristics of the FOAF-data that need special consideration: For
instance, the actual data is extremely sparse. With more than 100000 users,
there are far more potential links as actual links between persons.

Another typical characteristic of friendship data is that the topology of
the knows-RDF-graph consists of a few barely connected star graphs, cor-
responding to a few active network users with a long list of friends as the
”center” of the stars and the mass of users that don’t specify their friends.
Second, there are prevalent challenges of SW data in general that can also
be observed in a FOAF analysis. For instance, there is a variety of ad-
ditional untested and potentially conflicting ontologies specified by users.
If this information is ignored by only considering data consistent with the
FOAF ontology, most of the information specified by users is ignored. This
also applies to the almost arbitrary use of literals by users. For instance
the relation interest with range Document defined in the FOAF-schema is in
reality mostly used with a literal instead. Consequently, this results in a loss
of semantic information. To still make use of this information one would,
e.g., need to use automated semantic annotation as described in Section 7.
Another preprocessing step that needs to be considered in practice is the ma-
terialization of triples, which can be inferred deductively. For example there
might be an instance of the relation holdsAccount with domain Person in the
data, which is not given in the schema. However, from the ontology it can
be inferred that Person is a subClassOf Agent which in turn has a property
holdsAccount. As stated before, total materialization is only feasible in less
expressive ontologies.

Considering these issues, it becomes clear that there are not only theo-
retical but also a large number of interesting practical challenges for learning
on the SW.

31



9 Conclusions

Data in Semantic Web formats will bring many new opportunities and chal-
lenges to machine learning. Machine learning complements ontological back-
ground knowledge by exploiting regularities in the data while being robust
against some of the inherent problems with Semantic Web data such as con-
tradicting information and non-stationarity. A general issue with machine
learning is that the problem of missing information needs to be carefully ad-
dressed in learning, in particular if either the selection of statistical units or
the probability that a feature is missing depend on the features of interest,
which is common in many-to-many relations.

We began with a section on feature-based statistical learning on the Se-
mantic Web. This procedure is widely applicable, scales well with the size
of the Semantic Web and provides a promising general purpose learning ap-
proach. The greatest challenge here is that most feature-based statistical
learning approaches have no inherent way of dealing with missing data requir-
ing additional missing data models. A common situation in social network
data is that features in linked objects are mutually dependent and need to
be modeled jointly. One can expect that this will also often occur in SW
data and SW learning will benefit from ongoing research in social network
modeling.

We then presented the main approaches in inductive logic programming.
Inductive logic programming has the potential to learn deterministic con-
straints that can be integrated into the employed ontology. We presented
a discussion on learning with relational matrices, which is quite attractive
if multiple many-to-many relations are of interest, as in recommendation
systems. We then studied relational graphical models. Although these ap-
proaches were originally defined in various frameworks, e.g., frame-based log-
ical representation, relational data models, plate models, entity-relationship
models and first-order logic, they can easily be modified to be applicable
in context of the Semantic Web. Relational graphical models are capable
of learning a global probabilistic Semantic Web model and inherently can
deal with missing data. Scalability to the size of the Semantic Web might
be a problem for RGMs and we discussed subgraph sampling as a possi-
ble solution. All approaches have means to include ontological background
knowledge by complete or partial materialization. In addition, the ontologi-
cal RDF-graph can be incorporated in learning and ontological features can
be derived and exploited. Ontologically supported machine learning is an
active area of research. It is conceivable that in future ontological standards,
the developed statistical models could become in integral part of the ontol-
ogy. Also, we have discussed that most presented approaches can be used
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to produce statements that are weighted by their probability value derived
from machine learning, complementing statements that are derived form log-
ical reasoning. An interesting opportunity is to include weighted triples in
Semantic Web queries.

We reported about initial work on learning ontologies from textual data
and on the semantic annotation of unstructured data. So far, this concerns
the most advanced work in Semantic Web learning covering ontology con-
struction and management, ontology evaluation, ontology refinement, ontol-
ogy evolution, as well as the mapping, merging and alignment of ontologies.
In addition there is growing work on Semantic Web mining extending the
capabilities of standard web mining, although most of this work needs to
wait for the Semantic Web to be realized on a large scale.

In summary, machine learning has the potential to realize a number of
exciting applications on the Semantic Web and can complement axiomatic
inference by exploiting regularities in the data.
Acknowledgements: We acknowledge funding by the German Federal Min-
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