
 

1 

 

 
An Operational Radiometric Landsat Preprocessing 

Framework for Large-Area Time Series Applications 

 
David Frantz1*, Achim Röder1, Marion Stellmes1 & Joachim Hill1 

Affiliations: 
1Environmental Remote Sensing & Geoinformatics, Faculty of Spatial and Environmental Sciences, Trier 

University, 54296 Trier, Germany. 

 
*Corresponding Author: 

David Frantz, e-Mail: frantz@uni-trier.de 

 

 

  

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for resale 

or redistribution to servers or lists, or reuse of any copyrighted component of this work in 

other works. 

 

Reference: 

D. Frantz; A. Röder; M. Stellmes; J. Hill, "An Operational Radiometric Landsat Preprocessing 

Framework for Large-Area Time Series Applications," in IEEE Transactions on Geoscience 

and Remote Sensing , vol. PP, no. 99, pp.1-16. 

 

DOI: 10.1109/TGRS.2016.2530856 

Online available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7426833 

 

The PDF document is a copy of the final version of the accepted manuscript. The paper has 

been through peer review, but it has not been subject to copy-editing, proofreading and 

formatting added by the publisher (so it will look different from the final version of record, 

which may be accessed following the DOI above depending on your access situation). 



 

2 

 

Abstract—We developed a large area pre-processing framework for multi-sensor Landsat data, 

capable of processing large data volumes. Cloud and cloud shadow detection is performed by a 

modified Fmask code. Surface reflectance is inferred from Tanré’s formulation of the radiative 

transfer, including adjacency effect correction. A pre-compiled MODIS water vapor database provides 

daily or climatological fallback estimates. Aerosol optical depth (AOD) is estimated over dark objects 

that are identified in a combined database and image-based approach, where information on their 

temporal persistency is utilized. AOD is inferred with consideration of the actual target reflectance 

and background contamination effect. In case of absent dark objects in bright scenes, a fallback 

approach with a modelled AOD climatology is used instead. Topographic normalization is performed 

by a modified C-correction. The data are projected into a single coordinate system and are organized 

in a gridded data structure for simplified pixel-based access. We based the assessment of the produced 

dataset on an exhaustive analysis of overlapping pixels: 98.8% of the redundant overlaps are in the 

range of the expected ±2.5% overall radiometric algorithm accuracy. AOD is in very good agreement 

with AERONET sunphotometer data (R²: 0.72 to 0.79, low intercepts and slopes near unity). The 

uncertainty in using the water vapor fallback climatology is approximately ±2.8% for the TM SWIR1 

band in the wet season. The topographic correction was considered successful by an investigation of 

the non-relationship between the illumination angle and the corrected radiance. 

Index Terms—Atmospheric correction, cloud detection, Landsat, large area, multitemporal, 

southern Africa, surface reflectance, topographic correction. 

 

I. Introduction 

ANDSAT data are one of the most valuable resources for earth observation [1] due to their long term data 

continuity [2] and their optimal resolution to monitor processes at the landscape level [3]. With the advent 

of open data policy [4], accompanied by technical progress in terms of processing, storing and 

transmission infrastructure and the increasing availability of automated processing routines (e.g. [5]), the 

usage of Landsat data changed fundamentally [6]. Historically, analyses were either based on a few images 

and large areas [7] or on small areas and shorter time steps [8]. Now, it has become feasible to make use of 

the full depth of the Landsat archive, as well as covering very large areas at the same time. Nevertheless, 

Landsat data are still provided in the traditional Worldwide Reference System 2 (WRS-2) framework [9], 

where the image footprints vary from acquisition to acquisition. This involves several obstacles for the end 

user, e.g. the integrated usage of data from different paths requires the reprojection to a unique coordinate 

system, which simplifies the adequate usage of the data-rich orbital overlap area. Even in the case of using 

only one WRS-2 footprint, all images have to be cropped to the same extent. This is even mandatory if 

sophisticated follow up applications like time series analyses (TSA) or the derivation of pixel based 

composites (PBC) [10] are to be addressed. The usage of these dense time-series applications requires the 

data of a given location to be easily and quickly accessible, regardless of their initial path and row designation, 

projection, acquisition time or sensor. Therefore, pre-processed imagery in a gridded data structure represents 

a more suitable structure for TSA or PBC applications [9], as demonstrated by the Web-enabled Landsat 

Data (WELD) project [11]. 

Existing large area production systems [9] or similar pre-processing architectures [11] most often do not 

include a full and integrated radiometric treatment, i.e. accounting for atmospheric and topographic effects 

simultaneously. Topographic variation even has a greater impact on the remotely sensed data than 

atmospheric effects [12], thus topography should be accounted for if the area of interest is not merely flat. 

More sophisticated analyses of large amounts of data like spectral unmixing or the quantitative derivation of 

biomass indicators (e.g. in support for monitoring systems in a Reducing Emissions from Deforestation and 

forest Degradation (REDD) in developing countries context) for several or many time steps also requires 

more sophisticated radiometric corrections, i.e. surface reflectance products. [9] recently published an 
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overview of several Landsat data processing systems for large area monitoring, whereby the corrections range 

from Top-of-Atmosphere (TOA) reflectance to surface reflectance, some of them including topographic 

and/or directional effects. Most systems only correct the data to TOA reflectance [9]. The widely-used 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [13] produces surface reflectance 

by utilizing radiative transfer modelling, though the system does not account for topography. Of note is the 

Eastern Australia pre-processing framework [14] that minimizes atmospheric, topographic and bi-directional 

effects, though their integrated BRDF correction might not allow the direct transfer to areas that suffer from 

low data availability. 

 

Large area generation systems that apply a terrain normalization and provide gridded surface reflectance 

products of multi-sensor Landsat data are still scarce or require input data that may not be available in each 

part of the world. As such, we chose a sufficiently elaborate method set that minimizes the amount of input 

data, in order to provide a processing framework that may even be applied in areas where the general data 

availability is still low and where specific environmental settings preclude the usage of specific processing 

strategies, e.g. in our study area in southern Africa. We here present an operational approach that processes 

all available multi-sensor Level 1T (L1T) Landsat Digital Number (DN) data to surface reflectance and stores 

the processed data in a gridded tile structure as known from the MODIS land products. The generated 

products are tailored for applications that require rapid and easy data access, make use of a large amount of 

data across space and time and demand radiometrically normalized data. The processing scheme includes 

modules for cloud masking, atmospheric and topographic correction, reprojection and gridding. 

II. Study Area 

The method was developed in southern Africa, entirely including the countries of Angola, Zambia, 

Zimbabwe, Botswana and Namibia (ca. 3.7 Mio. km²). The area was designated because nation-wide and 

cross-national wall-to-wall mapping of forest and ecosystem related parameters are to be targeted in the 

future, thus the inclusion of whole countries. For example, any REDD+ assessment should monitor 

deforestation and forest degradation rates at the national level to avoid leakage to unobserved spots [15]. In 

addition, the countries themselves were chosen because their national territory partially falls into the 

Kavango-Zambezi Transfrontier Conservation Area (KAZA TFCA), which is planned to be centered on the 

Caprivi-Chobe-Victoria Falls area. Thus, the area is a highly interesting spot for any kind of cross-boundary 

studies regarding a wide variety of ecological and social questions. The area is climatically diverse, especially 

owing to the latitudinal precipitation gradient, mainly as a consequence of the Intertropical Convergence 

Zone (ITCZ) [16]. The vegetation cover ranges from dense Miombo forests in Angola to sparse xerilic 

savanna ecosystems in the Kalahari, and also includes more extreme surface types like swamps, salt pans and 

deserts [17]. The seasonal cycle is closely tied to seasonal changes in large scale air movement and solar 

configuration, which results in three hygrothermal seasons that spatially and annually differ in timing and 

length due to the variability in precipitation [18]: (i) hot wet season (~ November to April), (ii) cool dry 

season (~ May to August) and (iii) hot dry season (~ September to October). The study area is displayed in 

Fig. 1. Nonetheless, the presented pre-processing scheme is not bound to this area and can be ported 

elsewhere. 

 

Please place Fig. 1 approximately here. 
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III. Data 

A. Landsat data 

All available intersecting Landsat images from 194 WRS-2 frames were acquired from the U.S. Geological 

Survey archive (USGS). We downloaded even very cloudy images of up to 70 % cloud coverage because the 

Automated Cloud Cover Assessment (ACCA) system occasionally fails to estimate the cloud coverage with 

sufficient precision [5]. We discarded images that were not corrected with the Level 1 Product Generation 

System (LPGS) to L1T precision, as a reliable co-registration among images was considered to be of major 

importance for TSA and PBC follow-up applications. At the time of writing, we acquired and processed 

58,731 L1T images with a total data volume of nearly 15 TB (see table I for details). 

Fig. 1 displays the total number of available images for each WRS-2 frame. The data availability is quite low 

when compared to other areas such as the United States. There is a pronounced North-South gradient where 

data availability is extremely low in northern Angola due to the characteristic regional rainfall patterns where 

the north-western part of the study area is already located in the tropics. 

Fig. 2 displays all available Landsat images for each year (top) and each month (bottom). The data availability 

is unevenly distributed among the years, e.g. due to satellite (de-) commissioning, changes in acquisition 

strategies, technical failure, climatic reasons and so forth. There is a seasonality in data availability with more 

data during the dry season and less data during the wet season. 

The Landsat Global Archive Consolidation effort [19] is currently still in progress, and we might expect up 

to 200 additional Landsat images per frame [20] which will significantly foster the applicability of subsequent 

analyses approaches– provided that each image is of sufficient quality to be processed to L1T precision. 

 

Please place table I approximately here. 

Please place Fig. 2 approximately here. 

 

B. Digital Elevation Model 

Recently, the USGS publicly released the 1-arc-Second (~30 m) Digital Elevation Model (DEM) derived by 

the Shuttle Radar Topography Mission (SRTM) [21]. We pre-compiled an elevation mosaic generously 

covering all of sub-equatorial Africa. DEM data are used for the topographic correction and for applying an 

elevation correction to the optical depths. 

C. Precipitable Water Vapor 

MODIS water vapor data are used for the physically based correction of water vapor absorption in the earth’s 

atmosphere. We use the MOD05 and MYD05 products, as well as the MOD03 and MYD03 geolocation 

tables, which are automatically downloaded from the Level 1 and Atmosphere Archive and Distribution 

System (LAADS) at NASA’s Goddard Space Flight Center. We use data that were derived from the near 

infrared water vapor algorithm [22], which relies on water vapor attenuation of the NIR radiation. The column 

water vapor amount is determined from radiative transfer theory on basis of ratios between water vapor 

absorbing and atmospheric window bands. The product is obtained at 1 km spatial resolution and the temporal 

resolution is up to one day if considering both Aqua and Terra observations. 

IV. Methods 

The presented framework for processing Landsat data from L1 DN values to a gridded surface reflectance 

product is schematically shown in Fig. 3. The download of Landsat and SRTM data, as well as the mosaicking 

of the DEM are performed rather manually in advance. The core functionality of the framework is enclosed 

in the solid box, where the main modules are the identification of clouds and cloud shadows (B), the 

radiometric processing (C) and geometric modules for the finishing of the data (D). The radiometric 

correction combines methods for atmospheric (C.2) and topographic corrections (C.3), which rely on the 
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computation of the angular scene parameters, the derivation of topographic information and an elaborated 

scheme for retrieving AOD in a joint database-, image- and object-based approach (C.2-b). The gaseous 

transmission is accounted for by a MODIS derived water vapor database, that is scheduled operationally 

(C.2-a). Table II defines the mathematical symbols used in this paper. 

A. Implementation 

The code is able to process Landsat images from the Thematic Mapper (TM), Enhanced Thematic Mapper 

(ETM+) and Operational Land Imager (OLI) sensors. For the sake of dataset consistency we opted for 

processing only the traditional six reflective bands. Thus we omit the ultra blue and cirrus bands of the OLI 

sensor. We also do not make use of the Landat-8 quality layer for the same reason as well as not using the 

cirrus band in Fmask, as opposed to [23]. 

Detailed processing information of the key modules are appended to the metadata in order to enable the user 

to gauge the quality of the processed images. 

The framework is entirely implemented with Open Source software and is written in C. The Geospatial Data 

Abstraction Library [24] API is used for reading data in GeoTiff and HDF format, as well as for reprojection 

purposes. The cURL API is used for the automatic download of MODIS data. The GNU Scientific Library 

is used for optimization procedures. On-node and across-node parallelization is achieved by using GNU 

parallel [25] where one processor is fed with one image at a time. The processing chain is streamlined in 

RAM such that the data is only read once and only the very final output is written to disc. 

Several modules can be disabled or enabled in any possible combination, e.g. the topographic correction, 

reprojection and/or tiling modules. The atmospheric correction can also be switched off, in which case TOA 

reflectance is produced. Instead of using the dark object database retrieval options, externally derived AOD 

values can be passed to the algorithm. More advanced processing options can also be modified, e.g. the 

environmental correction can be disabled and either the multiple scattering or the simpler single-scattering 

approximation can be employed.  

 

Please place Fig. 3 approximately here (page-wide). 

 

B. Cloud and cloud shadow detection 

We integrated a modified version of the Fmask algorithm [5] and we implemented the modifications 

described by [26], i.e. the discarding of the termination criterion for shadow matching and the inclusion of 

an additional darkness filter, as well as most of the Fmask updates [23]. In addition, we modified the match 

similarity metric for matching the clouds with their shadows. In the original Fmask code [5], a cloud is shifted 

along a projected search path and a match between this projected shadow and potential cloud and cloud 

shadow layers is computed. The original cloud is excluded from the match. Nevertheless, if there is a big 

cloud in the search path, the match similarity is maxed out, because the projected shadow is completely 

contained in the bigger cloud. Thus, the shadow matching often “runs” into the next big cloud and the actual 

shadow is missed. Therefore, we only match the projected shadow with the potential shadow layer, which 

provides good results when combined with the disabling of the termination criterion [26]. 

Rather than buffering the cloud and cloud objects, we calculate the distance to the next cloud or cloud shadow 

[27] for each pixel. This approach increases the flexibility of this dataset regarding varying demands of 

different follow-up applications: the user can decide on how large the buffer should be for his specific 

application or can make use of the full distance information; e.g. [10] used the cloud distance in a PBC 

application to score the usability of a given observation by using a transfer function. We append the 

cloud/shadow pixel distance as 7th layer to the processed data (spectral information is stored in the first 6 

bands). 
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In order to increase the computational performance, we implemented two full-stop criteria where the 

processing of an image is terminated after or within (before the costly shadow matching) the cloud detection 

module if the scene cloud coverage exceeds a given user-defined threshold. We set this threshold to 25% 

unbuffered cloud and cloud shadow cover. 

 

C. Radiometric Processing 

Following Tanré’s formulation for radiative transfer [28] and by adding a topographic correction factor A 

[12, 29], the surface reflectance ρ can be expressed as [30]: 

 

𝜌 = 𝐴 ∙
𝜌∗/𝑇𝑔(𝜇𝑠,𝜇𝑣)∙[1−〈𝜌〉∙𝑠]−𝜌𝑝∙[1−〈𝜌〉∙𝑠]−𝑇(𝜇𝑠)∙𝑡𝑠(𝜇𝑣)∙〈𝜌〉

𝑇(𝜇𝑠)∙𝑡𝑑(𝜇𝑣)
 (1) 

 

where ρ* is the at-satellite reflectance, ρp is the path reflectance and <ρ> is the background contribution to 

the apparent target reflectance. μs and μv are the cosines of the sun and view zenith angles ϴs and ϴv. T(μv), 

td(μv) and ts(μv) are the total, direct and scattered (i.e. diffuse) upwelling transmittances, respectively; 

downward transmission terms are indicated by their dependence on μs. Tg(μs,μv) is the total gaseous 

transmission and s denotes the spherical albedo. Most of the variables in eq. 1 and the following equations 

are wavelength-dependent; we omitted the wavelength subscript λ for the sake of simpler equations. 

The adjacency effect is accounted for by the background contribution <ρ>, which is derived from the 

weighted sum of the measured apparent reflectance around the target and from the target itself (see [30, 31] 

for details). 

A simplified schematic workflow for the radiometric correction module is shown in Fig. 4. 

 

Please place Fig. 4 approximately here. 

 

 

1) DN-to-TOA-reflectance conversion 

The TOA reflectance ρ*of a tilted surface is computed by [32] 

 

𝜌∗ = 𝜋 ∙ 𝑑2 ∙ 𝐿∗ (𝐸𝑆𝑈𝑁 ∙ 𝜇𝑠)⁄ . (2) 

 

The at-satellite radiance L* is derived from the calibrated DNs by applying the rescaling factors which are 

included in the metadata [32]. The mean solar exo-atmospheric spectral irradiance ESUN was derived by 

applying sensor-specific relative spectral response (RSR) functions to the Thuillier solar spectrum [32, 33]. 

ϴs and the solar azimuth angle Φs, as well as the Earth-Sun distance d [34] are computed by using the date 

and location from the metadata. Though it is generally accepted to only use the sun position at the scene 

center [9], we compute sun positions for square blocks of 333 Landsat pixels, which results in a roughly 

10 km spaced sun position grid; the view zenith ϴv and azimuth angles Φv are computed likewise. 

 

2) Atmospheric correction 

a) Gaseous Transmittance 

In our current implementation, we focus on the transmittance of water vapor absorption as first 

approximation. Amongst the radiance-modifying gases, water vapor is the most variable agent. The gaseous 

transmittance term in eq. 1 then simplifies to: 

 

𝑇𝑔(𝜇𝑠, 𝜇𝑣) = 𝑇𝑤(𝜇𝑠) ∙ 𝑇𝑤(𝜇𝑣), (3) 
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where the down-welling water vapor transmittance function is computed by [35]: 

 

𝑇𝑤(𝜇𝑠) = exp⁡(−
0.2385∙𝑎𝑤∙𝑊∙𝑀(𝜇𝑠)

[1+20.07∙𝑎𝑤∙𝑊∙𝑀(𝜇𝑠)]0.45
), (4) 

 

which is dependent on the relative air mass M, on spectral water vapor absorption coefficients aw and on the 

precipitable water vapor W (measured in centimeters). The relative air mass M is defined as [35]: 

 

𝑀(𝜇𝑠) = 1 [𝜇𝑠 + 0.15 ∙ (93.885 − 𝜃𝑠)
−1.253]⁄ . (5) 

 

The up-welling water vapor transmittance is calculated by using ϴv and μv instead of ϴs and μs. We derived 

hyperspectral aw values from the high-resolution transmission molecular absorption database (HITRAN) [36] 

with the Landsat RSR functions. 

Precipitable water estimates W are provided by a previously generated MODIS water vapor database. 

Therefore, we implemented an operational module for automatic data acquisition and processing of MODIS 

data. For each WRS-2 frame in continental sub-equatorial Africa, day-specific water vapor loadings are 

derived if possible. We determine spatial averages from all cloud- and sun-glint-free pixels within the WRS-2 

footprints, separately for the Terra and Aqua granules. If estimates from both sensors are available, we choose 

the one with the larger number of valid pixels, which in most cases is Terra for Landsat-7 (99.4%) and Aqua 

for Landsat-5/8 (99.2%) due to orbital characteristics. If there are less than 10% of valid pixels, the average 

is expected to be unreliable and we fall back on an alternative parameterization, which applies for missing 

data of any kind, including the pre-MODIS era, coverage gaps between the swaths, sensor outages and the 

like. Southern African climate is dominated by a stable and pronounced seasonality into a dry and wet season. 

Therefore, W is replaced by an average seasonal proxy derived from a statistical analysis of the complete 

MODIS water vapor data sequence - if necessary. This fallback climatology was used in 100% of all cases 

before 2000, 25.3% in 2000, 2.2% in 2001, 2.8% in 2002 and less than 0.4% thereafter, which reflects the 

phased commissioning of the Terra and Aqua platforms. Exemplary water vapor data are plotted in Fig. 5 for 

WRS-2 Path/Row 177/072 with daily values in the top panel and the fallback climatology below. Water vapor 

follows a seasonal cycle with low values in the dry season and high values in the wet season. The standard 

deviation is higher in the wet season, which could indicate that the error in using the fallback values is smaller 

during the dry season during which Landsat data availability is higher. In order to document the usability of 

this approach across the study area, we appended additional examples in the supplemental material section 

of this article. We chose the Landsat frames with the highest monthly average and standard deviation. The 

seasonal and annual variability is higher in the latter example (compared to Fig. 5), but a seasonal pattern is 

evident nonetheless. In addition, we provide maps of the fallback climatology (as shown in Fig. 5 bottom for 

one frame) for complete sub-equatorial Africa in the supplemental material section. 

 

Please place Fig. 5 approximately here. 

 

b) Aerosol optical depth 

(1) Radiative Transfer Theory 

All remaining unknown parameters in eq. 1 can be derived from aerosol optical depth τa [37],[30], by either 

using the single scattering approximation [38] or by also considering multiple scattering processes [39]. 

Equations 6-19 provide the derivation of these atmospheric scattering terms from τa using the multiple 
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scattering approach (refer to [37] for the simpler single scattering approximation). The practical estimation 

of τa is outlined in the next chapters (2-4). 

The path reflectance ρp is defined by an exact treatment of first order scattering and an approximate solution 

for higher order scatterings: 

 

𝜌𝑝 = 𝐴𝑝𝑙 + [3(1 + 𝑔)𝜇𝑣𝜇𝑠 − 2(𝜇𝑣 + 𝜇𝑠) + 𝑃] ∙ [1 − exp(𝜏 𝜇𝑣⁄ − 𝜏 𝜇𝑠⁄ )] [4(𝜇𝑣 + 𝜇𝑠)]⁄ . (6) 

 

The plane albedo Apl is given by [40]: 

 

𝐴𝑝𝑙 = 1 −
𝑅(𝜇𝑣)∙𝑅(𝜇𝑠)

4+3(1−𝑔)𝜏
, (7) 

 

where the reflectance functions R(µs) (replace µs with µv to obtain R(µv)) are given by [40]: 

 

𝑅(𝜇𝑠) = 1 + 3
𝜇𝑠

2
+ [1 − 3

𝜇𝑠

2
] ∙ 𝑒𝑥𝑝(−𝜏 𝜇𝑠⁄ ) (8) 

 

with the asymmetry factor [41] 

 

𝑔 = [𝛼 ∙ (𝑔1 + 𝑔2) − 𝑔2] ∙ 𝜏𝑎 𝜏⁄ . (9) 

 

The total optical depth 

 

𝜏 = 𝜏𝑎 + 𝜏𝑟 (10) 

 

is the sum of τa and the molecular optical depth τr for a standard Rayleigh atmosphere [42]: 

 

𝜏𝑟 = 0.0088 ∙ 𝜆−4.15+0.2𝜆. (11) 

 

The total phase function 

 

𝑃 = 𝑃𝑎 ∙ 𝜏𝑎 𝜏⁄ + 𝑃𝑟 ∙ 𝜏𝑟 𝜏⁄  (12) 

 

for the backscattering angle 

 

𝜓_ = cos−1{−𝜇𝑣𝜇𝑠 − [(1 − 𝜇𝑣
2)(1 − 𝜇𝑠

2)]0.5 cos(𝜙𝑣 − 𝜙𝑠)} (13) 

 

is obtained from the phase functions for molecular [43] 

 

𝑃𝑟 = 0.75 ∙ (1 + 𝑐𝑜𝑠2𝜓_) (14) 

 

and aerosol scattering Pa. The aerosol scattering equation is approximated by a two-term Henyey-Greenstein 

(TTHG) function with g1 = 0.836, g2 = 0.537 and α = 0.968, representing a continental aerosol model [41]: 

 

𝑃𝑎 =
(1−𝑔1

2)∙𝛼

[1+𝑔1
2−2𝑔1 cos𝜓_]

1.5 +
(1−𝑔2

2)∙(1−𝛼)

[1+𝑔2
2+2𝑔2 cos𝜓_]

1.5. (15) 

 

The down-welling total scattering transmittance 
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𝑇(𝜇𝑠) = exp(−(0.52𝜏𝑟 + 0.167𝜏𝑎) 𝜇𝑠⁄ ), (16) 

 

the direct portion 

 

𝑡𝑑(𝜇𝑠) = exp(−𝜏 𝜇𝑠⁄ ), (17) 

 

and the scattered portion 

 

𝑡𝑠(𝜇𝑠) = 𝑇(𝜇𝑠) − 𝑡𝑑(𝜇𝑠) (18) 

 

are readily computed (the up-welling terms are retrieved by replacing μs with μv). The spherical albedo s, 

viewed from the ground, is given by: 

 

𝑠 = exp(−(𝜏𝑟 + 𝜏𝑎)) ∙ (0.92𝜏𝑟 + 0.333𝜏𝑎). (19) 

 

Thus, solving eq. 1 only requires a robust estimation of τa,, which - in the absence of measurements – is 

commonly derived from the image itself with dark target techniques, assuming that candidate objects exist 

in every image (e.g. [37]). 

(2) Dark Object Database 

For the practical implementation of this concept, we utilize a partially image-based approach by using a pre-

compiled Dark Object Database (DODB). The DODB is created from the complete data series of each pixel 

and guarantees that the dark objects (DOs) are estimated from the same pixels for all bands and that preferably 

the temporally more persistent ones are used for estimating τa. This prevents that temporary dark objects (like 

flood water, burned areas or cloud shadows) are used in some images while completely different DOs are 

used in other images that do not contain such objects. 

The generation of the DODB is a prerequisite for our pre-processing algorithm, thus we based the generation 

of the DODB on an analysis of the DNs of every available image. DOs are identified in each image by using 

the red and near infrared band histograms (see next paragraph). After all the individual images are analyzed, 

the dark object persistency DOP (with DOP = [0,100], i.e. the percentage of the time a pixel is dark) is derived 

for each pixel in the study area. In order to account for potential land cover change during the past 30+ years, 

we compiled 3 decadal databases, i.e. [1984,1995], [1996,2005] and [2006,2015]. The DODB is designed 

such that newly acquired data can be simply integrated into the database by updating the DOP score. Fig. 6 

displays a subset of the DOP, as well as two examples of Landsat false color images for an area that is 

characterized by varying water levels (more water during the late wet season, middle) and the presence of 

burn scars (more likely during the course of the dry season, bottom). The use of the most persistent DOs 

effectively prevents the usage of the transient dark features, in this case the flood plains and the burned areas, 

which were also marked as DO in some images (b/w tones in the top panel). 

 

Please place Fig. 6 approximately here. 

 

We identify DOs in the red and near infrared bands for each processed image. The NIR band is utilized 

because of (i) the decreasing scattering effect at longer wavelengths [44] which increases the darkening effect 

of shadowed pixels [5] and because (ii) most surface features are bright and thus maximize the contrast to 

shadowed areas [5]. The red band is used to reject highly turbid water bodies. For both bands, the DOs are 

retrieved from the lower bounds of the band histograms.  
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(3) Image-based estimation of AOD 

Based on the persistent DOs, we employ an object-based approach where it is attempted to derive τa for each 

non-transient dark object on a physically sound basis, implicitly including the adjacency effect. During the 

actual radiometric processing, the DOP is available to the algorithm and is used in combination with the ρ* 

image under consideration. We only use pixels with consecutively decreasing ρ* for all bands, which 

represents an important property of an ideal DO as it should follow a λ-x relation [45]. Objects with less than 

10 valid pixels or that are in close proximity to clouds (<10 px) are discarded. The object reflectance ρ*
o, 

environment reflection ρ*
e and target radius r are directly inferred from the image, the target altitude is 

considered by adjusting τr [42] and the objects are separated into water and topographic shadow targets based 

on the illumination situation. If ρ*
e is smaller than ρ*

o, the object is rejected. 

Our approach builds on the method of [46], where ρ*
o is matched with the spectral reference reflectance ρ*

s 

of a typical dark object. In case of water, the surface reference reflectance is given by: 

 

𝜌𝑠 = 𝜌𝑤 + 𝜌𝑓𝑡𝑠(𝜇𝑠) 𝑇(𝜇𝑠)⁄ , (20) 

 

with ρw being the volumic water reflectance that is obtained from a spectral reference library (see below). 

The Fresnel surface specular reflectance ρf  is computed as a function of the incidence angle i [47], assuming 

that water surfaces are flat. Aerosol optical depth is determined in a bandwise iterative procedure by gradually 

adding atmospheric scattering to ρs, thus simulating the reference reflectance ρ*
s as it would be sensed at the 

top of the atmosphere (solve eq. 1 for ρ* with A = 1 while increasing τa, starting with a pure Rayleigh 

atmosphere, i.e. τa = 0). This process terminates once ρ*
s and ρ*

o match; see [46] for a detailed description. 

In the case of cast shadow, we use a modified version of this approach where ρf  is ignored but the topographic 

correction factor A (see topographic correction) is included in order to model the shaded ρ*
s. The procedure 

is outlined in Fig. 4 in simplified form. 

In order to (i) obtain a more physically coherent set of the wavelength dependent τa, (ii) reduce measurement 

dependent variations [30] and (iii) to have an instrument for gauging the quality of the estimation (R²) [46], 

we perform a logarithmic regression between τa and λ. A second-order polynomial fit is employed (eq. 21), 

which enables the modelling of the inherent ln τa curvature of biomass burning and desert dust aerosols as a 

consequence of accumulation mode dominating aerosol size distributions [48]. If unsuccessful (e.g. if the 

Ångström exponent a1 > 0), the simpler linear Ångström relation [49] is tried in a second step, where the 

second order term in eq. 21 is ignored (a2 = 0). If the fit to the Ångström equation is also unsuccessful (e.g. 

if a1 > 0), the object is rejected. 

 

ln 𝜏𝑎 = 𝑎0 + 𝑎1 ∙ ln 𝜆 + 𝑎2 ∙ (ln 𝜆)
2. (21) 

 

Due to the profound variability of naturally occurring water bodies / land surfaces, we pre-compiled spectral 

reference libraries (for a range of possible conditions) using spectral modelling software. The water color 

simulator WASI [50] and the leaf optical properties + canopy bi-directional reflectance model PROSAIL 

[51] are used for the water and cast shadow targets, respectively. For each object, each reference spectrum ρs 

is tested and the corresponding τa estimate that yields the best R² in the logarithmic regression is retained; if 

the best R² is smaller than 0.1, the object is rejected. 

As dark targets are not abundantly available across the images in our study area [52], we compute a τa scene 

average from all available targets, weighted by the R² of the logarithmic regressions while considering the 

individual target altitudes [42]. Once τa is retrieved, the governing equation (eq. 1) can be solved by 

computing all parameters as described in chapter (1) using eq. 6-19. We introduce some scene fidelity by 

using coarsely gridded (333 px) sun-target-view angle dependencies that allow the scattering equations to 
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vary over the scene. In addition, τa and τr are adjusted for the pixel’s altitude [42] in order to approximate the 

elevation dependency on the optical depths. 

(4) Fallback strategy 

The African savanna landscape is often bright [53] and a substantial number of Landsat footprints do not 

contain dark targets (all objects were rejected, see previous section) in which case we cannot retrieve τa and 

consequently employ an alternative fallback strategy in a second step. 

We implemented a backdoor-interface, where externally generated τa values can be passed to the algorithm. 

In this case, the image-based estimation of τa is skipped and the external values are used instead. We made 

use of this possibility for the images where we could not identify any valid dark target and re-processed these 

images with modelled τa values. This applied to ~14% of the images and especially occurred in the bright 

landscapes of southern Namibia and Botswana. 

We used the τa values of all the images where the above presented method worked well and modelled the 

climatic seasonal course of τa with a dependence on geolocation: we used a multivariate regression model 

described by the geolocation and the acquisition day-of-years of the available τa values to estimate a set of 

spatio-temporal τa fallback values with a revisited version of [52] (direct modelling of τa instead of ρp). 

 

3) Topography correction 

Topography correction is done by applying a modified C-correction [12], which is a physically based 

correction of topography, amended by an empirically derived extra parameter C [54]. The topographic 

correction factor in eq. 1 is determined for every image, band and pixel: 

 

𝐴 = (cos 𝜃𝑠 + 𝐶 ∙ ℎ0
−1) (cos 𝑖 +𝐶 ∙ ℎ0

−1ℎ)⁄ . (22) 

 

The illumination angle cos i is computed by [55] 

 

cos 𝑖 = cos 𝜃𝑠 cos 𝜃𝑛 + sin 𝜃𝑠 sin 𝜃𝑛 cos(𝜙𝑠 − 𝜙𝑛). (23) 

 

The topographic slope ϴn and aspect Φn are computed with the Horn method [56] from the DEM that was 

warped to the extent and resolution of the Landsat image under consideration. The h-factor describes the 

portion of the sky dome which contributes to the diffuse illumination, where h0 is the h-factor at cos i = 0 

[12]. The C-factor is estimated from a linear regression between cos i and the spectral radiance from an 

inclined surface L*. The empirically-derived C-factor is then the ratio of intercept b and slope m: 

 

𝐶 = 𝑏 𝑚⁄ . (24) 

 

The main focus of attention in computing the A-factor is to derive this C-factor. Because of the image-based 

nature of this correction, we were in need to incorporate several stabilizing constraints in order to estimate 

the C-factor in a robust manner for preferably all images: 

 The results of the C-correction can be improved if the C-factor is not derived for the entire Landsat 

image, but separately for different land cover classes [12]. Thus we split the image pixels into two 

classes based on an arbitrary Normalized Differenced Vegetation Index (NDVI) threshold of 0.4 [54]. 

 If there is no equal abundancy of differently illuminated pixels, the regression-based correction often 

fails to be representative for all topography classes and results in significant under/overcorrection. 

[54] used a threshold of 2° slope angle for excluding rather flat pixels. We found that this method 

worked in many cases, but depending on image-content, this constraint is often not sufficient for 

Landsat frames with unequally mixed and complex terrain. In our operational setting, we found it 
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very effective to also stratify the image with 5° slope classes. Thus, we estimate the C-factor for each 

land cover and slope class separately. 

 If the coefficient of determination R² is less than 1 % in a given class, we assume that the C-correction 

did not perform well and we fall back on a simple Minnaert Correction [29] with a fixed Minnaert 

coefficient of 0.8. This simplifies the A-factor to 

 

 𝐴 = (cos 𝜃𝑠 cos 𝑖⁄ )0.8. (25) 

 

The relationship between L* and cos i is in general not very high; [12] reported R² values between 

5 % and 30 % for the different bands of their testing image. Such high R² values are not always given 

if the image is not entirely mountainous, thus we set the threshold to 1 % to test if there is at least any 

evidence of a relation. The class-dependent topographic correction approach implies that one image 

may be corrected with different methods, giving precedence to the more advanced C-correction as it 

commonly comes off as winner in comparative topographic studies, e.g. [54].  

D. Reprojection and Gridding 

Once the Landsat data are radiometrically corrected, they are reprojected into the output coordinate system 

using bilinear resampling and second order polynomial warping. For our study data, we chose a Lambert 

Azimuthal Equal Area (LAEA) projection with its origin in the centroid of southern Africa. After 

reprojection, the data are organized in smaller arbitrary tiles. Therefore, a grid in the target projection is 

created. The grid originates at a custom point Ogrid and a new tile is created each ngrid pixels. For our study 

area, we chose the arbitrary grid to origin at Ogrid = 0°/0° in Lat/Lon and ngrid was chosen to be 1000 px in 

the LAEA projection. In order to avoid confusion about nomenclature, we hereby define the term 

 'grid' as an arbitrary sub-division with square units in the target coordinate system,  

 'tile' as an entity of the grid with a unique tile identifier, e.g. X0003_Y0002 and  

 'chip' as the individual gridded images that are affiliated with the tile. 

 

The disintegration of the classical Landsat WRS-2 data structure into a new, gridded tile representation has 

several benefits: (1) easy and rapid pixel based data access, (2) simple co-registration among images – 

regardless of their initial path and row designation, and thus (3) exploiting the full depth of the Landsat 

archive, as well as (4) easier ordering of data for study areas that commonly match imperfectly with WRS-2 

frames. 

V. Results 

A. Processing stats 

We processed 58,731 Landsat images of 194 WRS-2 frames with the presented method. 41,762 images were 

fully processed; 16,876 images were terminated in an early stage because the cloud contamination exceeded 

the maximum allowable cloud cover threshold and 90 images were so far not processed because of a recent 

failure in the TIRS calibration. The processed images were partitioned into 4,524 tiles and 1,912,733 chips, 

resulting in a total data volume of 27.86 TB. The core processing was finished in less than 4 days on a 

moderately sized processing cluster (2 nodes à 56 CPUs). Fig. 7 displays the number of processed chips per 

tile. The data availability – corrected for redundant data - is highest in the overlap region between two orbits. 

 

Please place Fig. 7 approximately here. 
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B. Spectral consistency in overlap regions 

Our gridded data structure enables us to analyze the spectral consistency within three types of overlapping 

image regions: 

 LPGS generates redundant data in the overlap region of adjacent WRS-2 frames that were captured 

in the same orbit. Thus, any difference in this redundant overlap should be caused exclusively by the 

implemented processing chain and enables the exploration of the inherent systematic 

errors/uncertainties. 

 The revisit overlaps between two adjacent orbits, are captured 7 days apart by the same Landsat 

system. The data might vary somehow due to different atmospheric situations and oppositional 

viewing directions, which we assume to have the greatest impact. In addition, rapid phenology 

processes, as well as process-based change like changing water levels, burned areas or active fires 

might add to the difference. 

 The observation frequency reduces to 1 day in the cross-sensor overlaps if data from several sensors 

are considered, though the viewing aspect angle is still substantially different. A comparison between 

the 1 day and 7 day differences might be useful to differentiate between the cross-sensor uncertainties 

and differences that are caused by surface processes. 

The assessment is based on an exhaustive analysis of all overlapping chips. The spectral consistency for 

every chip pair was assessed by the spectral RMSE of the 6 reflective bands b, averaged over all overlapping 

pixels p (eq. 26). In order to avoid situations with unlike atmospheric conditions, we omitted pixels that are 

located within a 10 km radius from clouds or cloud shadows. 

 

𝑚𝑒𝑎𝑛𝑅𝑀𝑆𝐸 =
1

𝑛
∑ √

1

6
∑ [𝑐ℎ𝑖𝑝1𝑝,𝑏 − 𝑐ℎ𝑖𝑝2𝑝,𝑏]

26
𝑏=1

𝑛
𝑝=1 . (26) 

 

Fig. 8 displays histograms of this assessment for the three overlap types. Quantiles are drawn in colors. The 

differences in the redundant overlaps are smallest: the mean of the revisit (cross-sensor) overlaps is 0.70% 

(0.84%) larger than in the redundant overlaps. The error in the cross-sensor overlaps is usually larger than in 

the revisit overlaps (0.14% difference in the mean), though the 99% quantile is slightly smaller. The expected 

accuracy of the full radiometric processing chain is in the order of ± 2.5% reflectance [57]. 98.8% of all 

redundant chip pairs are within this range. Considering the orbital overlaps, still 92.8% (91.0%) of the revisit 

(cross-sensor) chip pairs are enclosed. 

 

Please place Fig. 8 approximately here. 

 

C. Aerosol optical depth 

Sunphotometer data from the Aerosol Robotic Network (AERONET) [58] are commonly considered the 

most accurate terrestrial τa measurements, and as such, we derived Landsat-equivalent τa from all available 

AERONET data in our study area with eq. 21. The relationship (R²) between the satellite-based and the 

coinciding ground-measured τa is between 0.72 and 0.79 for all bands (see Fig. 9), intercepts are in the order 

of 0.02-0.03 and the relationship is very close to the 1-to-1 line. The colors represent different AERONET 

sites (blue colors: Zambia, red colors: Namibia, green colors: Botswana, no stations for the remaining 

countries) and the point sizes indicate the mean DOP of the dark targets. The majority of the observations is 

from the two Mongu sites (23.15°E, 15.25°S) which are drawn as rectangles. 

The fallback surface, i.e. the spatio-temporal aerosol climatology was modelled from all available τa estimates 

across the whole study area; see [52] for details. Regarding the quality of the aerosol climatology, [52] found 

that the modelled seasonal aerosol cycle matches well with an average seasonal cycle derived from the 
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AERONET Mongu station. An updated assessment of this relationship is included in the supplemental 

material section of this article with R² between 0.81 and 0.84 for all bands. 

Please place Fig. 9 approximately here. 

 

D. Uncertainty in climatic water vapor database 

If daily water vapor values are not available, we rely on a fallback climatology. In order to better understand 

the potential error and document the uncertainty in using this method, we simulated the potential effect of 

varying water vapor concentrations. The effect of water vapor absorption is albedo-dependent. Therefore, we 

picked a Landsat frame which includes both bright and dark surface elements. The Etosha pan is a large salt 

pan without drainage. The pan is normally very bright but it can be partially flooded after heavy rain and the 

water can be retained during the course of the dry season. The analysis is based on Landsat-5 data since the 

TM is the most water vapor impacted Landsat sensor because of its spectral configuration. We chose two 

cloud-free images that captured a partially flooded pan, one in the dry (08/10/2008) and one in the late wet 

season (03/22/2009). 

We corrected each image with the retrieved daily water vapor values (DV) and with the corresponding 

climatic average (CA) which would be used in case the daily value would not be available. In addition, we 

also increased and decreased the climatic average by one and two standard deviations (see table III). We base 

our analysis on the resulting difference in surface reflectance between the DV and the climatic variants, see 

Fig. 10. The impact of water vapor is small on the NIR and SWIR2 bands but clearly evident in the SWIR1 

band; the VIS bands are hardly affected and thus not displayed here. The effect is more pronounced for very 

bright surfaces. The daily water vapor estimate of the dry season image is very similar to the climate average, 

whereas the daily estimate in the wet season is approximately 1.5 standard deviations smaller than the climate 

average. Thus, the corrected reflectance differs by 0.53% (4.8%) between the DV and CA for the dry (wet) 

season image for extremely bright features (100% reflectance). The effect is less pronounced for grey objects 

(50% reflectance): 0.29% (2.6%) difference. For the SWIR1 wet season images, the difference in corrected 

reflectance between the CA+ (CA++) and the CA- (CA--) variants is approximately 3% (6.2%) for grey 

objects. In the dry season, the differences are 2.6% and 5.6%, respectively, thus the uncertainty in the wet 

season is slightly higher. 

 

Please place table III and Fig. 10 approximately here. 

 

E. Topographic correction 

Fig. 11 illustrates the implemented topographic correction for an illustrative sample area. The depicted 

images were captured over the mountainous Huila province (southern Angola) in the middle of June (winter 

solstice) under low illumination conditions (sun elevation: 41°). The elevation ranges between 534 m and 

1532 m. Topographic effects were substantially reduced and the corrected image appears to be rather flat. 

Fig. 12 demonstrates the effectiveness of the topographic correction by averaging the NIR reflectance 

(separately for both land cover classes) with dependence on the topographic aspect. The illumination 

direction (sun azimuth: 37°) is clearly visible in the uncorrected image (red), whereas the effect is 

substantially reduced in case of the C-correction (green). In order to show the advantage of our method over 

the simpler fallback option, we also corrected this image with the Minnaert correction (blue), which has a 

tendency for overcorrection. 

The topographic correction was quantitatively evaluated by comparing the R² of the relationship between 

cos i and L, before and after the radiometric correction. Fig. 13 displays histograms of the difference in R². 

All images with more than 10% of sloped terrain (> 5°) were used to derive the histograms. The R² usually 

decreases after the correction. The strength of the decrease is different for the six spectral bands. The R² of 
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the blue band occasionally increases after the correction and the decrease is more apparent in the infrared 

bands. 

 

Please place Fig. 11, Fig. 12 and Fig. 13 approximately here. 

 

VI. Discussion 

A. Dataset consistency 

We mainly based the quantitative assessment of the dataset on an exhaustive analysis of all overlapping chip 

pairs which enables us to gauge the processing consistency. The differences between processed redundant 

data are attributed to our processing chain. These differences are usually very small and 98.8% of all overlaps 

were within the expected 2.5% algorithm accuracy [57]; 99.4% differ by less than 3%. The differences 

between the chips are likely to be caused by the image based methods, where different image content can 

cause different AOD retrievals. As such, we conclude that the AOD estimation strategy worked reasonably 

well (see also next chapter) and we expect our processing chain to be of sufficient quality for any following 

pixel-based compositing or time series analysis application. 

The revisit and cross-sensor overlaps are captured on different dates and inhibit different orbital 

characteristics, different atmospheric states and potentially also land surface change. We presume that 

opposite view angles have the greatest impact since we do not correct for BRDF. The differences are indeed 

greater than in the redundant overlaps. Therefore, we assume that the part of the BRDF, attributed solely to 

the different viewing geometry (which we partially account for by considering the varying sun-target-view 

geometry in the atmospheric scattering terms), is in the dimension of this difference, i.e. < ~1% reflectance. 

As the sun geometry does not change significantly during this time period, we are not able to assess the actual 

combined effect of BRDF with the performed overlap analysis, though the impact on our dataset is likely to 

be significantly larger as recently documented by [59]. Accounting for BRDF effects is complex and not yet 

a standard correction for Landsat data. An optimal BRDF correction would estimate pixel-based bi-

directional parameters by using many observations within a short time period [60] – an approach which is 

not applicable to Landsat data alone [14]. In addition, the parameter estimation with high temporal and coarse 

spatial resolution data is also problematic in arid areas during the wet season [61]. Thus, the transfer from 

MODIS-based bidirectional parameters to Landsat data (e.g. [62]) is also restricted in such environments due 

to the insufficient angular sampling in parts of the year. One notable and promising approach is to infer a 

globally applicable set of bi-directional parameters by implementing a sampling design, where pixels from a 

broad range of differently sloped and illuminated pixels in the Landsat orbital overlaps and in different land 

cover classes are selected [14]. Nevertheless, a-priori knowledge about the land cover, a confident guess 

about the spectral stability over time and sufficient input data is needed – demands that are still not met 

everywhere. 

Based on a comparison of the two orbit overlap variants, we might be able to differentiate between the cross-

sensor introduced error and changes that are attributed to surface change processes (e.g. green flush events, 

fire or flooding), because the probability of surface change is higher in the revisit case. In general, the cross-

sensor overlap differences were larger than the ones in the revisit overlaps. Thus, we conclude that surface 

change has less impact than cross-sensor calibration errors on average. As an exception to this, the 99% 

quantile was larger in the revisit overlaps, which could point to surface change. This implies that surface 

change happens rarely (within 7 days), but if it does, it has a large impact on the differences of overlapping 

data. The cross-sensor errors might be amplified by the slightly different spectral configuration of the OLI 

sensor – compared to the TM and ETM+. [63] recently found that the error in surface reflectance is around 

2%, which also partially conforms to our results. The mean cross-sensor error is 1.64%, though the errors 

between overlapping Landsat-7 and Landsat-5 (1.67%) / Landsat-8 (1.60%) chips do not differ significantly 
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in our case and the OLI-to-ETM+ error is even slightly smaller than the TM-to-ETM+ error. This might be 

due to the improved radiometric characterization of the OLI sensor, compared to the TM, or presumably 

another yet unexplored factor. 

B. Aerosol optical depth 

The estimation of AOD in bright landscapes is a difficult task and the absence of dark objects on a large scale 

might preclude the usage of image based assessments [64]. [14] mitigated this problem by using a fixed AOD 

for Eastern Australia. Whilst this is a sound strategy if the AOD is expected to be rather low, errors are 

inevitably included if the actual aerosol content is high [65]. The AOD in southern Africa is particularly 

variable [52] due to the accumulation (washout) of aerosols during the dry burning (wet rain) season [66] 

and regularly assumes large values (see Fig. 9). Therefore, we developed a method where the image-based 

dark object retrievals were amended by temporal information on the persistency of dark objects. This 

approach supports the use of the temporally more persistent dark objects, which helped to increase the quality 

of the AOD retrievals in an environment where few dark objects exist. Transient dark objects like burned 

areas were thus successfully rejected.  

We used AERONET data to gauge the quality of our AOD estimation strategy. Unfortunately, few 

AERONET sites exist in the study area; the majority of the stations is confined to Zambia, there also exist 

three (two) stations in Namibia (Botswana) but no station in Angola and Zimbabwe. In addition, most of the 

stations also have very few high quality Level 2 data. Most of the data is constrained to the two sites in 

Mongu, Zambia. Fortunately, this location is relatively central in the study area. 

It was shown that our physically-based AOD estimation on basis of radiative transfer theory is in very good 

agreement with available AERONET data (Fig. 9): R² range between 0.72 and 0.79, intercepts are low and 

slopes are near unity. Despite being mainly driven by the Mongu observations (square signatures), the few 

observations from the other stations (point signatures) also fit reasonably well (Fig. 9). We therefore expect 

that the calibrated AOD retrievals are reasonably accurate in areas with similar climate and landscape 

composition as the sites with AERONET coverage, which are especially the wooded and forested regions in 

Angola and Zambia. It cannot be ruled out that the errors in the more arid ecosystems are larger and there is 

still a considerable amount of images (14%) where this strategy did not work due to the high albedo and 

dryness of savannas and deserts. We reasonably accounted for this with the fallback strategy by using 

modelled values [52]. We consider these values as an acceptable guess for the actual AOD in a spatially and 

temporally explicit manner (see [52] and the supplemental material of this article). 

Due to the above mentioned difficulties and environmental constraints, we recognize that AOD might still 

be one of the major uncertainties regarding the quality of our dataset. Nevertheless, we assume the AOD 

estimations and the AOD climatology to be sufficiently precise to give a reasonable characterization of 

atmospheric scattering in this highly variable ecosystem. 

C. Water vapor 

It was shown that the effect of water vapor is small in all but the SWIR1 bands. The TM is the most impacted 

sensor regarding water vapor because the SWIR1 band is substantially influenced by water vapor absorption. 

The OLI sensor in turn is hardly affected by water vapor absorption because the SWIR1 band was 

substantially reduced and was moved well away from the absorption band. It was shown that the difference 

in using a climatically derived water vapor value was approximately 2.6 % reflectance for grey wet season 

objects if the daily value is approximately 1.5 standard deviations smaller than the climatology. It was also 

shown that the uncertainty in using the climatology fallback values is slightly higher in the wet season. The 

corrected reflectance of grey objects in the dry season differed by approximately 2.6% (5.6%) when 

considering the 1 (2) standard deviation range from the average. The 2 standard deviation range is only 

slightly higher than the range of the expected overall algorithm accuracy of ± 2.5% [57]. Therefore we 

consider it important to derive as precise as possible water vapor loadings for the current state of the 
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atmosphere; but if not available, the use of a climatologic seasonal cycle is a tolerable fallback strategy with 

a reasonable uncertainty. It might be worth the effort to improve on the water vapor database, e.g. by filling 

the pre-MODIS era with NOAA AVHRR derived water vapor estimates (e.g. [67]), which would e.g. 

decrease the risk that inappropriate values would be used in significantly wetter, drier, hotter or colder years. 

Yet, this strategy would necessitate a thorough examination of the different methods and sensors with regards 

to the continuity of the estimated values and was not yet implemented. In any case, the presence of a clear 

seasonality in water vapor should be verified for other study areas before using this fallback strategy. 

D. Topographic correction 

It was shown that the topographic correction caused a decrease in the correlation strength between cos i and 

L in most cases, suggesting that topographic effects are substantially reduced [68]. This effect was more 

pronounced in the NIR and SWIR bands due to the stronger darkening effect of topographic shadow in the 

longer wavelength bands [44], where the removal of this effect has a greater impact. Contrary, the blue band 

was occasionally affected by an increase in the correlation strength. The blue band is not the best estimator 

of assessing the topographic effect, because thick haze can completely impede a relationship between cos i 

and L. As such, we tend to not overvalue the R² increases in the blue band. Random manual investigation 

points to a successful topographic normalization, which is also supported by the presented example. In 

addition, it was shown that the implemented topographic correction performed better than the Minnaert 

fallback option. Cosine-based corrections tend to overcorrect areas under low illumination conditions [69] 

and the Minnaert factor’s purpose is simply to dampen the correction strength. One way to optimize the 

Minnaert value would be to estimate it via a linear regression [69] as it is the case for the C-correction. 

Nevertheless, as the Minnaert correction is the fallback option in the case that the regression-based C-

correction did not work, estimating the Minnaert factor would also not work, and as such, a fixed correction 

factor is required for this purpose. 

VII. Outlook and Conclusion 

In a future version of our algorithm, we consider to expand on the radiometric correction module. Further 

atmospheric gases like ozone or uniformly mixed gases are to be included and we also consider to provide a 

more spatially explicit treatment of AOD by interpolating between the dark objects as done by [13]. 

Nevertheless, these strategies will only work if there are plenty of dark objects, which is a severe constraint 

in southern Africa [53]. Therefore, the benefit of any further correction should be evaluated with regards (i) 

to the actual improvement in the corrected reflectance, (ii) to the extra cost in computing time, (iii) to the 

global applicability and (iv) to the global data availability that any new add-on would require. 

The geometric correction of Landsat L1T data is commonly precise; [19] report on a global geometric 

accuracy of ~50 m. Nevertheless, southern African L1T data are occasionally poorly co-registered. In our 

current implementation, we do not account for this potential error source but an additional bulk-image 

registration module could be included in the processing chain. 

We also intend to prepare and adapt our framework for new Landsat-like systems like any upcoming Landsat-

9+ spacecraft or the soon-to-be-available Sentinel-2 data. We consider our approach to be sufficiently 

transferable to similar medium-resolution data as we are already processing data from all available Landsat 

systems with the same algorithm, which is e.g. not employed in LEDAPS. The gridded data structure, the 

sensor-specific water vapor absorption coefficients and exo-atmospheric irradiances will facilitate the 

incorporation of other data, though specific adaptations will surely be necessary. For Sentinel-2 data, it will 

be mandatory to include a full BRDF treatment because of the larger swath width. Fortunately, the observing 

geometry and acquisition frequency of Sentinel-2, combined with Landsat, will also facilitate to obtain BRDF 

parameters from the data itself, which is very difficult with Landsat data alone. 

As already highlighted by [9], the development of (i) higher level products, (ii) from multi-sensor data, (iii) 

provided in arbitrarily – but regularly – divided tiles is a key component in enabling end-users to make the 
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best use of medium resolution data, both across space and time. Currently, these demands are not fully met. 

Landsat standard products lack systematic gridding; higher-level Sentinel-2 products are currently not 

planned; and Landsat-legacy, Landsat-8 and Sentinel-2 data are not processed with the same algorithm. As 

such, we specifically developed our processing strategy to derive gridded surface reflectance and 

cloud/shadow products from multi-sensor data – potentially also Sentinel-2 or similar data in the near future. 

Gridded higher level products will significantly simplify the application of pixel-based algorithms and will 

also allow a broader range of end-users to perform such analyses. We chose sufficiently elaborate methods 

with as few as possible input data. As such, we presume that the presented processing framework may even 

generate consistent and high qualitative data in areas where the general data availability is still low, which 

we demonstrated for southern Africa. As such, we preferred image-based solutions where applicable, e.g. for 

aerosol estimation and topographic correction and opted to not account for BRDF effects until the general 

applicability to medium resolution data without any pre-knowledge of the study area has become more 

feasible. 
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Figures 

 

 
Fig. 1.  Location of the study area and number of available L1T images per Landsat frame. 

 

 

 
Fig. 2.  Number of available L1T images per year (top) and month (bottom). 
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Fig. 3.  Schematic workflow of the pre-processing framework. B, C and D refer to the subchapters of the 

methods section. 
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Fig. 4.  Workflow for the radiometric processing. The subsections of this chapter are grouped in boxes. 
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Fig. 5.  Visualization of the water vapor database for WRS-2 Path/Row 177/072 (19.71°E, 17.35°S). Top: 

daily values and 15-day running mean; bottom: average seasonal cycle and standard deviation on monthly 

basis. 
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Fig. 6.  Visualization of a section of the dark object database and two example images (25.06°E, 17.79°S). 

Top: Dark object persistency; middle: false-color image of a late wet-season image; bottom: false-color 

image of a dry-season image. The same stretch was applied to both images with R/G/B = NIR/red/green. 

 

 
Fig. 7.  Number of processed chips per arbitrary tile, corrected for redundant overlaps. 
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Fig. 8.  Histograms of the spectral consistency assessment of overlapping chip pairs. The histogram bin width 

was set to 0.25% reflectance. The y-axis is drawn logarithmic. Quantiles are drawn in colors. 

 

 
Fig. 9.  Linear regression between image-based Landsat and terrestrial AERONET AOD measurements for 

all stations and all coinciding observations. The colors represent different AERONET sites; blue to purple: 

Zambia, red/orange: Namibia, green: Botswana. The majority of the data is from the Mongu sites, Zambia. 
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Fig. 10.  Potential errors in using climatically derived water vapor estimates instead of daily values. The 

analysis was performed with two dry/wet season TM images of the Etosha Pan. Both images were corrected 

with different water vapor values (Table III). The figure displays the difference in surface reflectance (in %) 

between the correction with day-specific values and the correction with climatically derived variants. 
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Fig. 11.  Illustration of the topography correction for a mountainous Landsat-8 image in Huila, Angola 

(13.39°E, 15.86°S; 1000 m elevation range) under low illumination conditions (sun elevation: 41°, azimuth: 

37°). Top: no topography correction; middle: topographically corrected; bottom: digital elevation model. The 

same stretch was applied to both images with R/G/B = NIR/SWIR1/red. 

 

 
Fig. 12. Average aspect-dependent NIR reflectance for the image (full frame) shown in Fig. 11 for the 

vegetated (top) and bare (bottom) classes. The image was processed with the implemented C-Correction 

(green), the Minnaert correction (blue) and with disabled topography correction (red). Flat curves point to a 

successful topographic normalization. 
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Fig. 13.  Topographic correction evaluation. The histogram bin width was set to 0.01 R². The correction was 

quantitatively evaluated by differencing the R² of the relationship between cos i and L, before and after the 

radiometric correction. A decrease in R² points to a reduction of topographic effects. 
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Tables 

 

TABLE I 

ACQUIRED L1T LANDSAT IMAGES 

 Number Size Start End 

L4 TM 225 0.03 10/22/1987 03/27/1993 

L5 TM 24,204 3.34 04/12/1984 11/17/2011 

L7 ETM+ SLC-On 7,166 1.83 06/30/1999 05/28/2003 

L7 ETM+ SLC-Off 20,816 4.44 07/22/2003 12/31/2014 

L8 OLI 6,332 5.53 04/11/2013 12/31/2014 

Number, compressed data volume in TB and time range of the acquired images. 

 

 

 

TABLE II 

MATHEMATICAL SYMBOLS 

Symbol Meaning 

λ Wavelength 

ρ, ρ
*, ρp Surface reflectance, at-satellite reflectance, path reflectance 

<ρ> Background contribution to the apparent target reflectance 

ϴs, ϴv Sun and view zenith angles 

Φs, Φv Sun and view azimuth angles 

μs, μv Cosine of ϴs and ϴv, indicating downwelling and upwelling terms, respectively 

T, td, ts Total transmittance, direct transmittance, scattered (diffuse) transmittance 

Tg, Tw Total gaseous transmittance, water vapor transmittance 

aw, W, M Water vapor absorption coefficient, precipitable water vapor, relative air mass 

L*, d, ESUN At-satellite radiance, Earth-Sun distance, mean solar exo-atmospheric irradiance 

Apl, R, g Plane albedo, reflectance functions, asymmetry factor 

τ, τa, τr Total, aerosol and molecular optical depth 

P, Pa, Pr Total, aerosol and molecular phase functions 

Ψ_, s Backscattering angle, spherical albedo 

g1, g2, α Asymmetry parameters of the TTHG function 

ρ*
o, ρ

*
e, r Dark object reflectance, environment reflectance and target radius 

ρs, ρw, ρf Reference reflectance, volumic water reflectance, Fresnel reflectance 

a0, a1, a2 Coefficients of the logarithmic τa vs. λ regression 

A, C Topographic A- and C-Factors 

i, cos i Incidence angle, illumination angle 

b, m Intercept and slope of linear regression between cos i and L* 

h, h0 Portion of the sky dome which contributes to the diffuse illumination (h0: h at cos i = 0) 

ϴn, Φn Topographic slope and aspect 

Definition of the mathematical symbols used in this paper. 
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TABLE III 

PRECIPITABLE WATER VALUES 

Water vapor variant  
Dry season 

08/10/2008 

Wet season 

03/22/2009 

Daily value DV 1.02 2.32 

Climatic average - 2 sd CA-- 0.29 1.96 

Climatic average - 1 sd CA- 0.70 2.85 

Climatic average CA 1.12 3.74 

Climatic average + 1sd CA+ 1.53 4.63 

Climatic average + 2sd CA++ 1.95 5.52 

Precipitable water value variants (in cm) used for simulating the effect of climatic averages on the corrected 

reflectance of different land surface types.  

 


