CodeBasket: Making Developers’ Mental Model
Visible and Explorable

Benjamin Biegel, Sebastian Baltes, Ivan Scarpellini, and Stephan Diehl
Department of Computer Science
University of Trier
Trier, Germany
Email: {biegel,s.baltes,diechl} @uni-trier.de

Abstract—One of software developers’ most important activi-
ties is exploring the broader context of a certain programming
task, which strongly requires navigating source code and working
out a mental model of the collected information. Without tool
support, creating and maintaining this mental model leads to
significant cognitive load because developers have to handle both
relating relevant source code entities to their mental model as well
as remembering already explored search paths. Furthermore,
the opposite direction, that is, recalling relevant facts out of the
mental model, and subsequently, seeking corresponding entities
within the source code, demands similar cognitive efforts. In
this paper, we introduce CodeBasket, an approach for making
developers’ mental model visible and explorable. As for that,
CodeBasket helps developers keeping their mental model per-
sistent by providing a two-dimensional canvas on which they
can freely arrange visual representations of source code entities,
named eggs. Since those eggs are linked to the underlying source
code, eventually, they can be used for navigating directly to
related source code entities. We implemented a first prototype
as a touch-enabled web application that is connected to a
conventional integrated development environment. In order to
get early feedback on our approach, we used CodeBasket within
a formative study.

I. INTRODUCTION

Developers spent plenty of time comprehending software,
which requires extensive searching and navigating within
source code documents [1], [2]. Previously visited source
code entities are revisited frequently [3], [4] and developers’
navigation paths, from one entity to another, are mostly
specified by lexical similarities or structural dependencies [5].
By navigating across source code, in respect to a given
programming task, developers collect facts about relevant
source code entities [6], relate them to previously considered
entities, and finally bring them together in a common task
context [7]. While in theory this procedure seems to be a
simple and very systematic approach, the opposite is true in
practice. Developers mostly keep task contexts in their head,
and thus, creating, maintaining, and recalling such mental
models simultaneously leads to significant cognitive load, is
very time-consuming, and, especially after interruptions, parts
of the model are getting lost [8], [9]. It is not surprising that
developers only put effort in creating new task contexts or
extending existing ones if it is absolutely necessary [10].

Being aware of the previously mentioned cognitive efforts,
it is desirable to provide tools that are capable of externalizing
developers’ mental models, thus making them permanently

available [8]. But in practice, such tools have a low acceptance
and are rarely used [2], [10], [11]. An explanation could be that
developers prefer to use tools that are seamlessly integrated in
the working environment they are familiar with [12], [13].
Alternatively, in order to keep or to built up a mental model,
developers take notes [11], create sketches [14], use the current
dynamic state of the integrated development environment
(IDE) [1], or simply rearrange source code in such a way that
related source code fragments are close nearby, for example,
by grouping dependent or similar methods together [15].
Nevertheless, those techniques still require manually searching
for and navigating to corresponding source code entities.

Motivated by the previously mentioned observations and
findings, we introduce CodeBasket, a novel approach that
addresses both externalizing developers’ mental models into
a visual representation as well as using those representa-
tions as navigation maps for instantly seeking corresponding
source code entities. This not only makes developers’ mental
models visible, but also explorable. In CodeBasket, source
code entities are represented by colored and labeled ellipses,
named eggs, which can be arranged spatially free on a two-
dimensional canvas. Those eggs are permanently connected to
their corresponding source code entities, and thus, can be used
for searching and navigating to entities that are relevant for a
given task context.

II. CONCEPT AND PROTOTYPE IMPLEMENTATION

In this section, we first summarize the iterative process
of creating a mental model. Then, we introduce the general
concept behind CodeBasket, and especially, discuss which
role CodeBasket could take within the process of program
understanding. Finally, we introduce our first prototype im-
plementation and discuss several application scenarios.

A. Creating a Mental Model

In the following, we summarize the model of program
understanding introduced by Ko et al. [1] as a representative
for other models. Before solving a specific programming
problem, developers might have questions or unconfirmed
assumptions about parts of a program. At this point, developers
are forced to start a program understanding cycle, and thus
seek for relevant source code entities that could lead to the
required answers and facts. Ko et al. describe three phases of

Mental Model

(@ mapping

CodeBasket
| o

(®reading

navigating

Source Code

Fig. 1. Externalizing the mental model: The role of CodeBasket within the iterative process of creating task context.

this understanding process that are intrinsically tied to each
other:

1) Search: Developers search for a source code entity
that is relevant for a specific task context. Based on
information given by the IDE, developers try to decide
if the considered entity could be relevant or not. Thus,
the search phase preselects candidates that could be of
relevance.

2) Relate: After preselecting a candidate, developers try
to understand its context, and thus, relate it to other
dependent entities. In general, this step includes lexical
and structural navigation and requires extensive explo-
rations of multiple search paths. Relationships to the
current entity give developers valuable information if
the candidate is relevant and further reveal dependent
entities that could also be important for the task context.

3) Collect: During both previous mentioned phases, devel-
opers permanently try to keep source code entities in
mind that could be important for completing the current
task.

It is possible that further questions or assumptions arise
during an understanding cycle, and developers are forced to
handle multiple understanding cycles at the same time. During
each cycle of program understanding, developers built up
small, abstract, and highly connected models [5]. Instantly,
at the moment developers think they have collected sufficient
information for solving a specific problem, they stop this
process of program understanding.

B. Concept

First, we expose which role CodeBasket could take within
such an understanding process. Since humans are experts
in processing and remembering visual information effi-
ciently [16], we believe that externalizing developers’ mental
model in a visual representation could be a valuable im-
provement. Figure 1 illustrates the integration of CodeBasket
into the process of creating task context. Mapping the mental
model to a visual, thus visible, representation could enable
developers to loop their collected and related information

back to the current understanding cycles, especially for further
refinement, clarifying, keeping an overview, and handling
and maintaining multiple understanding cycles at the same
time. A spatial visual representation could help organizing
relationships of relevant entities more easily without losing
the broader context. Furthermore, an external model can be
made interactive and explorable, and thus, it can be used for
searching and navigating the underlying source code.

Based on those considerations, CodeBasket provides a two-
dimensional canvas, named basket, on which developers can
freely arrange their mental model. Corresponding source code
entities are represented by ellipses, named eggs. A Source
code entity can be a class, a method, or any other code
fragment within a code base. Beside the spatial arrangement
of eggs, users can also color and label them. By using the
same color for different eggs, users are able to visually
express contextual relations. Instead of using specialized visu-
alizations, we believe that simple visual representations give
developers the freedom to create context and relationships that
are not necessarily represented in the source code by lexical
or structural dependencies, for example, methods that could
be responsible for a bug, several parts of a program that have
performance issues, or just a collection of code snippets they
like.

For each understanding cycle, a new basket can be created
and at any time, developers can switch back to previously
created baskets. Baskets are persistent, permanently available,
and thus, can be used among multiple coding sessions and
can be shared with colleagues. The linkage of CodeBasket
and the source code displayed in an IDE enables bidirectional
searching and navigating: On the one hand, developers can
click or tap eggs for instantly navigating to the corresponding
source code entities. On the other hand, within the IDE, linked
source code entities are marked by egg icons and developers
are able to highlight corresponding eggs within the basket by
clicking on those icons. While navigating or selecting code, a
temporary egg is displayed in the current basket. By simple
clicking or tapping the temporary egg, developers can make it
persistent and keep it in the current basket.

‘actor Build Run Tools VCS Window Help CodeBasket
§ [Clopace] P %€ ¥ | @ |8 & | ? | &

&) Entity.java x . c Paddle.java .
}

| £ Ball.java x & Wall.java =

a 1
@ g private void checkPointa{) {
if (ball.goalleft)
scorelelt++;
else if (ball.goalRight)
scoveRight++;

else
return;

initWorld():

public veid run(} [
int speed = 10;
long now, last = System.nanoTime();
while (running) |
updateWorld();
checkCollisicns{);

Qo

httpy//localhost 8084

I;J avaFile:Entity.jav;-il

JavaFile Entityjava

JavaFile:Ball java

JavaFile:World java

JavaFile:Wall java

JavaFile:Paddle java

checkPoints();
| repaint(); .

rename add Label

now = System.nanoTime();

[] [] delete

(a) Linked source code is marked by egg icons on the left.

(b) Pong’s class structure represented in the CodeBasket webview.

Fig. 2. Screenshots from our CodeBasket prototype.

In order to get a better acceptance among developers,
we propose CodeBasket to be displayed in a separate view,
possibly on a tablet besides the desktop, as motivated by
Parnin et al. [17]. This enables developers to use CodeBasket
as an extension of their familiar working environment and is
less invasive than other approaches.

Finally, we discuss to which extent CodeBasket could be
beneficial for each of the previously mentioned phases of the
understanding process:

1) Search: It might be possible that relevant source code
entities in previously created task contexts could also
be relevant for following tasks. Thus, in some cases,
CodeBasket could provide possible candidates that might
be relevant for developers’ current problem.

2) Relate: Since CodeBasket makes the mental model vis-
ible, we believe that relating considered source code
entities to the current task context is much easier. Fur-
thermore, developers have the opportunity to compare
different baskets, and thus, relate different models to
each other.

3) Collect: By making mental models permanently avail-
able, CodeBasket reduces their inherent volatility and
ephemeral nature. When developers are interrupted, the
collected source code entities are not getting lost and
baskets can serve as reminder to help developers finding
quickly back into the task context.

C. Prototype Implementation

Our first prototype supports parts of the concept and was
developed as a touch-enabled web application that has a
permanent WebSocket connection to an IDE. Figure 2 presents

screenshots depicting the integration into the Intelli]' IDE
(2(b)) and the web application itself (2(a)). The IntelliJ plugin
provides the whole infrastructure for communicating with the
webview, especially creating links and enabling bidirectional
navigation. Egg icons beside the source code indicate links
to corresponding eggs in the basket. In the webview, those
eggs are represented as colored ellipses. By default, they are
labeled with the name and the location of the related source
code entity, but that can be changed by developers at any time.
Creating visual connections between eggs is not possible yet.
At top, the name of the current open basket is shown. In the
top left corner, a menu for loading other baskets is placed. In
the bottom, there is a toolbar that provides a predefined color
set for coloring selected eggs, and functions for deleting and
renaming eggs as well as creating labels. These labels can also
be freely arranged on the canvas. In order to avoid using the
keyboard on a tablet for text entry, it is possible to use the
keyboard connected to the computer running the IDE.

D. General Application Scenarios

While designing CodeBasket, we considered several appli-
cation scenarios and asked ourselves which kinds of relation-
ships or contexts could be represented. A first idea was to use
the spatial arrangement for expressing structural dependencies.
CodeBasket could be used, for example, to quickly outline
class hierarchies, similar to classical tree structure representa-
tions, beginning at the top with the super class and putting its
subclasses side by side in the next lower row (see Figure 2(a)).
In contrast, by making call graphs visible, eggs could be
arranged from left to right. Moreover, semantically depen-
dent eggs could be grouped spatially together. Furthermore,

Uhttps://www.jetbrains.com/idea/

colors can be used to express close semantic relationships
between eggs. Besides understanding dependencies between
source code entities, developers could also be interested in
relationships that are not reflected in the source code, for
example, collecting all entities that belong to specific bug
reports, task tickets, or unit tests.

III. FORMATIVE STUDY

To get early feedback on our prototype implementation,
we conducted a formative study with four PhD students, all
involved in software development. After a short introduction
to CodeBasket, one of the authors presented the approach by
explaining the source code of a Pong game developed in the
context of a lecture. The IDE and the CodeBasket webview
were run on two different monitors, the latter being a touch
screen. During this presentation, two different aspects of the
game were explained: first, the inheritance hierarchy of the
involved classes (see Figure 2(b)) and second, the game loop.
After the presentation, we interviewed the PhD students in a
focus group. The interview lasted one and a half hours. In the
following, we describe certain aspects of their responses.

A. Use Cases

One concrete use case for CodeBasket that was mentioned
during the interviews was keeping an overview of important
classes and methods during programming tasks. One partic-
ipant described the baskets as a “collection of bookmarks”,
which he would use while debugging. Another proposed use
case was using CodeBasket in computer science education for
explaining source code. The two-dimensional spatial arrange-
ment of the eggs on a canvas could provide a global overview
for the students or it could show the order in which the source
code artifacts are presented.

B. Feature Requests

One participant posed the question which parts of the
CodeBasket approach could be automated. He was particularly
interested in assistance for filling baskets. For instance, he
mentioned the possibility to add all called methods inside
a method to the basket. Another participant proposed to
generally alter the approach in such a way that the basket is
filled automatically and can be filtered afterwards. Moreover,
it was proposed to automatically generate baskets from source
code navigation paths inside the IDE, adding methods in which
the developer spend a certain amount of time. It was also
noted that eggs could be automatically arranged in the basket
according to the inheritance hierarchy of the involved classes.
Furthermore, it was requested to be able to not only use the
automatically generated links between eggs and source code,
but also to be able to link baskets with each other.

Regarding the appearance of the eggs, several participants
asked for a better visual distinction of different kinds of eggs
(e.g. an egg representing a method or an egg representing a
class). To this end, one could use either different icons or differ
the shape of the eggs. However, to was noted that too many
icons or too many different shapes could lead to visual clutter
on the canvas.

C. Device Setup

At the end of the focus group interview, a discussion about
the preferred device setup emerged. The participants compared
having an additional monitor with or without touch features,
or having a tablet as a second view to the IDE. A disadvantage
of using a normal monitor and a touch screen with the same
computer would be that the mouse cursor would switch to
the touch monitor every time the user taps on it. For a more
or less decoupled second view, a tablet was the preferred
choice. However, for most use cases, the participants preferred
a normal second screen without touch features. They also
mentioned that they would need to test the different setups
themselves, as it is difficult to judge after just seeing a
presentation. One participant said that the setup must fit the
specific workflow.

IV. DISCUSSION AND RELATED WORK

During the focus group interview, participants mentioned
that manually creating eggs could sometimes be cumbersome,
and thus, demanded mechanisms for automatically filling bas-
kets with eggs and then manually filtering them by relevance.
As for that, different application scenarios were discussed, for
example, creating eggs that represent developers’ navigation
paths, complete call graphs belonging to a specific method, or
other lexical or structural dependencies. Obviously, these ideas
require to also provide an automatic layout mechanism. We
plan to implement some of these automatic filling and layout-
ing mechanisms in future work. The Mylyn tool, introduced by
Kersten and Murphy [26], provides such an automatic creation
of working sets with links to relevant source code entities that
belong to a certain task context, based on a degree-of interest
model. With their tool REACHER, LaToza and Meyers [25]
introduced a novel approach for visualizing and navigating call
graphs, which is represented in a separate view besides source
code.

In our focus group interview, participants preferred using a
classical two-screen monitor setup. At first glance, they saw
no immediate advantages in using a touch device compared
to a mouse. Thus, when introducing device setups to extend
developers’ workspace, similar to the proposed setup by Parnin
et al. [17], one has to convince developers of the usefulness of
such setups. In future studies, it has to be investigated in which
application scenarios additional touch-enabled devices could
be beneficial. In previous work, we used an additional view on
a tablet to link parts of a sketch with source code entities [23].
We experienced that mobility and touch interactions, provided
by tablets, fits well in the scenario of collaborative sketching,
for example, within developer meetings.

In academic literature, further approaches for supporting
understanding and navigating software projects were intro-
duced. Tools like TagSEA [21], Pollicino [22], and FEAT [24]
enhance code bookmarks by providing structural organization
with tree-like representations. By using a separate view besides
source code, those approaches influence developers’ working
environment little. Some approaches also offer to share their

bookmarks with colleagues, and thus, enable working collab-
oratively on a common task [21], [22].

Other approaches are much more invasive and introduce
completely novel development environment paradigms. Code
Canvas [18], Code Bubbles [19], and Jasper [27] made use of
spatially arranging source code fragments on a canvas. Since
these approaches avoid using additional views, developers
are forced to give up their familiar working environment,
which could lower their acceptance. Nevertheless, Debugger
Canvas [20] has proven that paradigm shifts can be applied
successfully in practice.

V. CONCLUSION

In this paper, we introduced CodeBasket, a novel approach
for externalizing developers’ mental model, and thus, making
it visible and explorable. We have discussed how CodeBasket
could be integrated in the program understanding process,
and further, to which extent it could be beneficial for this
task, especially, when handling multiple understanding cycles
at once. In order to gain first insights into the general idea
of CodeBasket, we used a prototype implementation in a
formative study. In an interview, the participants gave us
valuable feedback and ideas, that will help us improving
CodeBasket. In future work, we would like to enhance our
concept and implementation, and evaluate CodeBasket in
different application scenarios.

REFERENCES

[1] A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Software Eng., vol. 32,
no. 12, pp. 971-987, 2006.

J. Singer, T. C. Lethbridge, N. G. Vinson, and N. Anquetil, “An
examination of software engineering work practices,” in Proceedings of
the 1997 conference of the Centre for Advanced Studies on Collaborative
Research, November 10-13, 1997, Toronto, Ontario, Canada, 1997,
p. 21.

D. Piorkowski, S. D. Fleming, C. Scaffidi, L. John, C. Bogart, B. E.
John, M. M. Burnett, and R. K. E. Bellamy, “Modeling programmer
navigation: A head-to-head empirical evaluation of predictive models,”
in 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2011, Pittsburgh, PA, USA, September 18-22,
2011, 2011, pp. 109-116.

K. Kevic and T. Fritz, “Towards developer- and task-tailored navigation
models,” in Ist International Workshop on Context in Software Devel-
opment, ser. CSD, Hong Kong,China, November 2014, p. Epub ahead
of print.

T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Briunlich,
“Developers’ code context models for change tasks,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November 16 -
22, 2014, 2014, pp. 7-18.

T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding,” in Proceedings of the 6th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2007,
Dubrovnik, Croatia, September 3-7, 2007, 2007, pp. 361-370.

G. C. Murphy, M. Kersten, M. P. Robillard, and D. Cubranic, “The
emergent structure of development tasks,” in ECOOP 2005 - Object-
Oriented Programming, 19th European Conference, Glasgow, UK, July
25-29, 2005, Proceedings, 2005, pp. 33-48.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 492-501.

[2]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. Parnin, “A cognitive neuroscience perspective on memory for pro-
gramming tasks,” Programming Interest Group, p. 27, 2010.

W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the comprehen-
sion of program comprehension,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 4, p. 31, 2014.

T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
2012, pp. 255-265.

M. Petre, “UML in practice,” in 35th International Conference on
Software Engineering, ICSE 13, San Francisco, CA, USA, May 18-26,
2013, 2013, pp. 722-731.

B. Biegel, J. Hoffmann, A. Lipinski, and S. Diehl, “U can touch this:
touchifying an IDE,” in Proceedings of the 7th International Workshop
on Cooperative and Human Aspects of Software Engineering, CHASE
2014, Hyderabad, India, June 2-3, 2014, 2014, pp. 8-15.

S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China,
November 16 - 22, 2014, 2014, pp. 530-541.

B. Biegel, F. Beck, W. Hornig, and S. Diehl, “The order of things: How
developers sort fields and methods,” in 28th IEEE International Con-
ference on Software Maintenance, ICSM 2012, Trento, Italy, September
23-28, 2012, 2012, pp. 88-97.

S. M. Kosslyn, “Graphics and human information processing,” Journal
of the American Statistical Association, vol. 80, no. 391, pp. 499-512,
1985.

C. Parnin, C. Gorg, and S. Rugaber, “Codepad: interactive spaces for
maintaining concentration in programming environments,” in Proceed-
ings of the ACM 2010 Symposium on Software Visualization, Salt Lake
City, UT, USA, October 25-26, 2010, 2010, pp. 15-24.

R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE
2010, Cape Town, South Africa, 1-8 May 2010, 2010, pp. 207-210.

A. Bragdon, S. P. Reiss, R. C. Zeleznik, S. Karumuri, W. Cheung, J. Ka-
plan, C. Coleman, F. Adeputra, and J. J. L. Jr., “Code bubbles: rethinking
the user interface paradigm of integrated development environments,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape Town, South Africa,
1-8 May 2010, 2010, pp. 455-464.

R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger canvas: Industrial experience with the code bubbles paradigm,”
in 34th International Conference on Software Engineering, ICSE 2012,
June 2-9, 2012, Zurich, Switzerland, 2012, pp. 1064-1073.

M. D. Storey, L. Cheng, J. Singer, M. J. Muller, D. Myers, and
J. Ryall, “How programmers can turn comments into waypoints for
code navigation,” in 23rd IEEE International Conference on Software
Maintenance (ICSM 2007), October 2-5, 2007, Paris, France, 2007, pp.
265-274.

A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. van Deursen,
“Collective code bookmarks for program comprehension,” in The 19th
IEEE International Conference on Program Comprehension, ICPC
2011, Kingston, ON, Canada, June 22-24, 2011, 2011, pp. 101-110.
S. Baltes, P. Schmitz, and S. Diehl, “Linking sketches and diagrams to
source code artifacts,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, (FSE-22),
Hong Kong, China, November 16 - 22, 2014, 2014, pp. 743-746.

M. P. Robillard and G. C. Murphy, “Concern graphs: finding and describ-
ing concerns using structural program dependencies,” in Proceedings of
the 22rd International Conference on Software Engineering, ICSE 2002,
19-25 May 2002, Orlando, Florida, USA, 2002, pp. 406-416.

T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in 2011
IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2011, Pittsburgh, PA, USA, September 18-22, 2011, 2011, pp.
117-124.

M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
ides,” in Proceedings of the 4th International Conference on Aspect-
Oriented Software Development, AOSD 2005, Chicago, Illinois, USA,
March 14-18, 2005, 2005, pp. 159-168.

M. J. Coblenz, A. J. Ko, and B. A. Myers, “JASPER: an eclipse
plug-in to facilitate software maintenance tasks,” in Proceedings of the
2006 OOPSLA workshop on Eclipse Technology eXchange, ETX 2006,
Portland, Oregon, USA, October 22-23, 2006, 2006, pp. 65-69.

