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Abstract: Bayesian models allow us to investigate children’s belief revision alongside physiological
states, such as “surprise”. Recent work finds that pupil dilation (or the “pupillary surprise response”)
following expectancy violations is predictive of belief revision. How can probabilistic models inform
the interpretations of “surprise”? Shannon Information considers the likelihood of an observed
event, given prior beliefs, and suggests stronger surprise occurs following unlikely events. In
contrast, Kullback–Leibler divergence considers the dissimilarity between prior beliefs and updated
beliefs following observations—with greater surprise indicating more change between belief states
to accommodate information. To assess these accounts under different learning contexts, we use
Bayesian models that compare these computational measures of “surprise” to contexts where children
are asked to either predict or evaluate the same evidence during a water displacement task. We find
correlations between the computed Kullback–Leibler divergence and the children’s pupillometric
responses only when the children actively make predictions, and no correlation between Shannon
Information and pupillometry. This suggests that when children attend to their beliefs and make
predictions, pupillary responses may signal the degree of divergence between a child’s current beliefs
and the updated, more accommodating beliefs.

Keywords: Bayesian inference; cognitive development; learning; prediction; pupil dilation; science
learning; surprise

1. Introduction

It is not surprising that understanding the process of belief revision is of great interest
and has a rich history in many fields, including philosophy, psychology, education, and
computer science (e.g., [1–4]). Psychological and philosophical work suggests that two
interrelated components of human intelligence are the ability to deploy abstract, causal,
and “intuitive theories” to support inference and the ability to revise these theories in light
of evidence [3,5,6]. Contemporary approaches in the Cognitive Sciences align empirical
work with computational implementations, typically finding that Bayesian models can
provide a framework with which to understand human inference from and learning of
causal beliefs [7–11]. These models provide an account of how learners can draw rich
inferences relatively rapidly even when data are limited or ambiguous and have been
extended to account for the ways in which learners form and revise more abstract intuitive
theories as well [12–18]. However, until recently, less work has investigated epistemic
emotions and physiological expressions as they relate to rational models of human learning,
despite the well-established connection between these arousal states and learning [19,20].
In fact, Bayesian models provide a means to not only understand how humans draw rich

Entropy 2023, 25, 211. https://doi.org/10.3390/e25020211 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6333-9250
https://orcid.org/0000-0002-6830-8728
https://doi.org/10.3390/e25020211
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020211?type=check_update&version=2


Entropy 2023, 25, 211 2 of 24

inferences from limited data and revise intuitive theories, but also to compare human
physiological responses to competing computational theories of surprise and learning.

A large body of literature highlights the importance of affective and physiological
states for learning and cognition in general. Physiological states, such as pupil dilation,
are often accompanied by phenomenological affective states, such as surprise [21,22]. This
is why many researchers studying the effects of surprise on cognition rely on objective
physiological measures—such as pupil dilation—as a proxy for surprise [23–28]. However,
how these physiological states relate to learning via belief revision remains less well under-
stood. This challenge of determining what factors are closely linked to concept learning
and how they affect learning is critical to address, as understanding these specific factors
themselves provides multiple positive outcomes for research. Thus, conducting research
computationally may improve our understanding of belief revision while also improving
our ability to design human-inspired learning agents.

In the current study, we look to extend Bayesian learning models for investigating the
potential relationships between the physio-emotional experience of surprise (as indexed
by pupil dilation) and learning. Specifically, we contrast two predictive models related
to learning: “Shannon Surprise” and “Kullback-Leibler divergence” belief updating. By
building specific predictive models and relating them to children’s physiological responses
(via pupil dilation), we can better understand the mechanisms that underlie learning in
different contexts. Specifically, we investigate correlations between these two models
and children’s pupillary surprise response as they perform belief revision during a water
displacement learning task under different conditions. In one condition, children are asked
to predict outcomes prior to observing events (engaging their prior beliefs), and in another,
children make post hoc evaluations of the same evidence. By evaluating these different
types of models and their fit to physiological behavior in these two conditions, we can
better understand how different contexts might engage the interplay between cognitive
and physiological mechanisms that support learning.

In what follows, we discuss the measure of pupil dilation and what pupil dilation
indicates. Next, we describe scenarios where pupil dilation may most likely be elicited
and more strongly linked to belief revision, namely when making predictions. Then, we
investigate two candidates for computationally estimating the pupillary surprise response
based on empirical findings and their theoretical interpretations. First, Shannon Information
is investigated as a data-driven surprise response, and second, Kullback–Leibler divergence
is investigated as a belief-driven surprise response. Thus, we aim to examine the specific
challenge of understanding how pupil dilation response as a cognitive-behavioral response
relates to learning via belief revision in our tasks.

The Pupil Dilation Response, Attention, and Learning

Pupil dilation holds a special status among multiple connected fields, such as psy-
chology, cognitive science, neuroscience, biology, and computer science. This is because
pupil dilation has for a long time been considered a reliable instrument for identifying
the temporal dynamics of arousal [29–32]. More recently, pupil dilation has been con-
sidered a physiological response that represents an integrated readout of an attentional
network containing multiple contributing factors [33,34]. Within this attentional network,
recent work suggests that pupil dilation in this network may occur as a result of an in-
teractive cascade among various components, including low-level (e.g., light and focal
distance; [35,36]), intermediate-level (e.g., alerting and orienting; [37–39]), and high-level
factors (e.g., physio-emotional responses, inference, and executive function; [25,33,40]).
Overall, accounts of pupil dilation as an attentional indicator highlight that pupillometry
can broadly be attributed to either directed attention or higher-level sensory operations for
processing the content that the observer is currently perceiving.

However, it remains unclear whether these discussed attentional factors and their
related processes are what pupil dilation is expressing specifically in relation to learning. If
so, whether some, none, or all of these factors are being expressed in the same fashion or to
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the same degree during belief revision. That is, we know quite a bit about what might elicit
pupil dilation during learning scenarios (e.g., violations of expectations; [25,26,28,41]), but
less about what the processes coupled with pupil dilation actually are and the implications
of said processes. Thus, we propose designing computational Bayesian models of learning
that can potentially estimate the degree of surprise experienced by learners, relative to their
pupil dilation measurements, during a learning task.

With these Bayesian models, we will contrast two broader accounts of “surprise” that
may help to clarify the relevance of this physiological marker of belief revision. The first
candidate, originating from research on information theory (i.e., Shannon Information; [42]),
posits that surprise (and thus, pupil dilation) correlates with objective expectations of
the data and how informative it is given the data’s likelihood. The second candidate
highlights divergence and dissimilarity (i.e., Kullback–Leibler divergence; [43]) between
what is originally believed by a learner and what revised beliefs the learner expects to
better accommodate the incoming data; it quantifies the degree of belief change needed
to correctly represent the actual outcome of a given event by transforming the prior belief
into an appropriate posterior belief.

In fact, recent work has looked into disentangling the pupillary surprise response
as separable, distinct processes that can be represented computationally by Shannon In-
formation and Kullback–Leibler divergence. One study by O’Reilly and colleagues [44]
performed a combined brain imaging and pupillometry study where participants com-
pleted a saccadic eye movement response task. Here, the participants needed to use their
prior knowledge about a spatial distribution to locate a target (a colored dot) before return-
ing to a fixation cross. The findings showed that there were separate, specific neural signals
associated with pupil dilation acting as temporal indicators of surprise (within the posterior
parietal cortex) and belief revision (within the anterior cingulate cortex). Specifically, less
likely events were considered more surprising via Shannon Information and elicited pupil
dilation. Meanwhile, the authors found that the Kullback–Leibler divergence was related
to when pupil diameters decreased on those trials when belief updating might be occur-
ring. This work provides an important demonstration of the dissociable roles of Shannon
Information and Kullback–Leibler divergence in computationally capturing surprise and
belief updating, respectively, using a Bayesian framework.

Similarly, Kayhan et al. [45] investigated pupillary surprise and learning among 18-
month-old infants and 24-month-old toddlers. Here, young children completed a statistical
learning task that measured their pupil dilation as they viewed movies where an agent
sampled five colored balls from a transparent bin containing multiple balls of two colors.
These bins depicted the distribution of the ball colors inside of it (e.g., a majority of yellow
balls (80%) and a minority of green balls (20%)). Critically, the 24-month-olds’ (but not the
18-month-olds’) pupillary responses followed a pattern similar to the prediction error of a
causal Bayesian model, calculated as the Kullback–Leibler divergence between prior and
updated probability distributions.

Thus, inspired by these exciting results, we designed a study that let us explore the
further nuances of how different contexts (asking children to predict vs. post hoc evaluate
outcomes) might engage the cognitive mechanisms associated with these two different
accounts of surprise. This provides a means to explore the relationship between behavioral
results that find differences in learning via different interactions with the physiological
response and the potential cognitive mechanisms (surprise vs. belief updating) that might
underlie them.

In what follows, we first describe these two potential mechanisms of pupil dilation and
highlight key theoretical differences between their interpretations and implementations.
Then, we describe specific contexts where these proposed mechanisms of pupil dilation may
be most prevalent, via model-based prediction, as highlighted by a significant amount of
recent empirical research. Next, we provide a brief description of the probabilistic Bayesian
model used and what metrics we have investigated using it. Finally, we compare the two
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estimates of surprise—Shannon Information and Kullback–Leibler divergence—based on
their correlations with children’s pupil dilation during a water displacement learning task.

2. Competing Accounts of Surprise: Shannon and Kullback–Leibler
2.1. Estimating Pupil Dilation as Data Driven via Shannon Information

Shannon Information is a well-known metric in information theory and describes how
informative an outcome is [42,46–49]. It is largely found in machine learning literature
to describe computational “surprise”—quantifying how meaningful incoming data are
relative to a specific target despite other unwanted, noisy interferences. When interpreted
with respect to learning (via Bayesian inference), Shannon Information can be used to
describe the “unexpectedness” of incoming data, given the prior beliefs of the learner.
Computationally, Shannon Information can be calculated as the negative log likelihood
of some data’s probability, p(d), given some beliefs over models of the world (H), where
Shannon Information Surprise (Equation (1)) is calculated as follows:

Shannon In f ormation = −log(p(d)). (1)

Shannon Information for some incoming data given an inferred model is typically
quantified as a “signal” of information. Information theory captures this intuition as
simply the negative log probability of the data. Note that this is computationally the same
as marginalizing out hypotheses by considering the probability of the data given each
hypothesis in space H, weighed by the prior probability of each hypothesis, h. One might
interpret Shannon surprise psychologically as a violation of expectation, which depends on
comparing the observation to a prior prediction of outcome likelihoods, given the weighted
set of prior beliefs.

If Shannon Information correlates more strongly with children’s pupillometry com-
pared to its competitor, the Kullback–Leibler divergence, then we posit that perhaps the
pupillary surprise response may be more “objective” or “external-focused”, acting as a
reaction to acknowledge the unexpectedness of an event that has occurred and draw atten-
tion to it. Specifically, “surprise as information” would represent an attentional mechanism
homed in on the incoming data—emerging as a sign to alert the learner and re-orient (or
heighten) their attention; this is a process of an “intermediate-level” of complexity among
cognitive responses (according to a recent review of pupillometry research [34]). Thus,
finding that Shannon Information best fits pupil responses may indicate a response akin
to prediction error, which is typically associated with surprise during the violation of
expectation events.

2.2. Estimating Pupil Dilation as Belief Driven via Kullback–Leibler Divergence

In contrast, other computational accounts describe pupil dilation and surprise in
regard to how effectively the new data “transforms” a learner’s prior beliefs into their
posterior beliefs [50,51]. Here, the summed Kullback–Leibler divergence is considered
the second candidate for estimating surprise, measuring the summed dissimilarity or
relative entropy between a learner’s distributions of prior and posterior beliefs, given the
observation of some new data [43,52]. Computationally, the Kullback–Leibler divergence
for models considering multiple, competing hypotheses is calculated (Equation (2)) as the
weighted log-odds ratio between a posterior belief, p(h|d), and prior belief, p(d), which is
summed across the hypotheses within the set of hypotheses considered (hεH):

Kullback− Leibler Divergence = ∑
hεH

p(h|d) log
[

p(h|d)
p(h)

]
. (2)

As mentioned, Kullback–Leibler divergence calculations describe not simply a distance
between distributions, but also a measure of dissimilarity between them. Thus, when
describing belief revision processes, Kullback–Leibler divergence can be considered as
how much “work” is needed to affect an initial probability distribution (e.g., one’s prior
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beliefs) in a way that changes it into another (e.g., updated posterior beliefs). Here, if we
find that Kullback–Leibler divergence relates to learning responses, then we believe that
pupil dilation may be a more “subjective” physiological marker of learning that follows
from the belief updating process. A symmetric (and finite value) form of Kullback–Leibler
divergence (Jensen–Shannon) can also be used to similarly compute “distance”. In the
computational analyses that follow, we apply the standard Kullback–Leibler divergence
(in Equation (2)), but the results are not qualitatively different if the Jensen–Shannon
divergence is used instead.

Central to our empirical question, this computational approach will allow us to
contrast different models of “surprise” when learning. Specifically, Shannon Information
quantifies the probability of the data accumulated by the learners trial by trial. Here,
Shannon Information might be depicting pupil dilation as a temporal indicator of when
children may be alerted to an unexpected, highly “informative” outcome that the child
should orient themselves toward. Meanwhile, Kullback–Leibler divergence quantifies
the dissimilarity between a child’s prior beliefs and what inferred models of the world
would best explain the potential outcomes. This means that Kullback–Leibler divergence
presents pupil dilation as a physiological signal of the amount of effort needed to update
one’s beliefs (given the learner’s current belief distribution and the to-be posterior belief
distribution that best explains the new data).

2.3. Model-Based Learning through Prediction

Asking learners to generate predictions is a popular method for improving children’s
learning. Studies investigating prediction generation (or “hypothesis generation”) in
children tend to find that explicitly predicting an outcome before seeing it improves
learning (e.g., of physics; [53–55]). The benefits of making predictions have been connected
to successful activation of prior knowledge when learning new material, but less is known
about the specific mechanisms by which predicting affects learning success, in particular
when it comes to theory revision [56]. Understanding the cognitive processes that are
engaged during prediction generation can help us understand how, why, and when these
interventions are likely to be successful.

Experiments that investigate pupil dilation and learning when making predictions find
that actively generating a prediction compared to making a post hoc evaluation increases
the degree of pupil dilation, particularly when faced with events that are incorrectly
predicted [25,57]. Furthermore, previous work has found a positive relationship between
the degree of pupil dilation and successful belief revision [27,28,40]. An enhanced pupillary
surprise response after a violation of expectations may be due to children activating some
task-relevant prior knowledge when they generate a prediction (i.e., leveraging their prior
beliefs). Furthermore, if the outcome following a prediction is different from what the
learner expects, then conflict awareness may be heightened and increase the subjective
value of the outcome’s informativeness, which facilitates belief revision.

We hypothesize that, with all other things being equal, making a prediction may
give children an “edge” over their peers and promote their learning by engaging the
cognitive mechanisms associated with surprise. Assessing this prediction depends on two
measures. First, it requires building models for individual learners that computationally
predict when surprise is highest, given the learners’ beliefs and the observed evidence.
Relating these model predictions to physiological markers, such pupillometry, helps us
understand the computational and potentially mechanistic basis for pupil-marked surprise
in learning. It also allows us to contrast competing computational markers of surprise under
different learning contexts. Second, we can relate the degree to which individual children’s
physiological states are correlated with these quantitative models and predict that children
who have better “alignment” between the physiological and model-based surprise may
also be more “optimal” learners, in the sense that their learning behavior is better matched
to the idealized learning models. That is, if a heightened, “rational surprise” response leads
to more efficient learning, then children who experience surprise when a rational model
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(e.g., a probabilistic Bayesian model) would expect them to may also be better simulated
by said rational model as well. Thus, further investigation via computational models of
these potential individual differences may reveal whether children whose pupillometric
measures are better fitted to the model estimates are also more strongly represented by
the simulated behaviors of an ideal learner, as depicted by an Ideal Bayesian learning
model [11].

3. The Current Study

As described, the main hypothesis of this paper is that children who engage more with
a learning task by making predictions will have stronger correlations between their pupil di-
lation measurements and the model estimates of the pupillary surprise response, compared
to their peers who only make post hoc evaluations (specifically regarding the modeled
data to be described below). However, two non-exclusive outcomes are considered here
regarding which of the model estimates fit the children’s pupil responses. Recent inter-
pretations of prediction suggest that actively making a prediction entails leveraging one’s
prior beliefs and extrapolating potential outcomes, given those beliefs (e.g., [11,27,28,40]).
Both the Shannon Information and Kullback–Leibler divergence accounts are consistent
with this proposal because they both leverage prior beliefs when making predictions. How-
ever, they differ in the mechanism and the (potential) implications of leveraging those
beliefs. If the pupil measurements for children making predictions are better matched
by the Shannon Information metric, then this suggests that pupil dilation may indicate
more robust engagement with the feedback they receive. In particular, good performance
of the Shannon Information estimate may represent children’s heightened attention to
evidence that violates their beliefs (e.g., [47–49]). Such a heightened response could support
later learning by increasing arousal and, thus, improve the encoding of surprising data,
but the Shannon response does not reflect the learning in the moment. However, if the
Kullback–Leibler divergence performs better than Shannon Information, we would find
support for physiological responses capturing belief updating in the moment, suggesting
that children may be performing an effortful computation that captures the degree of belief
change. Critically, assessing the performance of these candidate metrics of quantifiable
pupillary surprise—both in general and in competition with one another—helps us better
understand the role of surprise during belief revision. Does surprise simply serve to guide
attention to relevant outcomes? On the contrary, does it aid learners by highlighting their
beliefs and informing their integration of new information?

We modeled the data from an experiment that investigated elementary school (six-
to nine-year-old) children’s theories of water displacement for the current model (experi-
mental procedure, data, and empirical results are those found in [40]. The children’s causal
beliefs of water displacement were chosen as children frequently have the misconception
that water displacement depends on the weight of an object or a combination of weight
and size rather than on its size only (e.g., [58]), thus providing an appropriate domain for
the investigation of variability across individual children’s beliefs, as well as their impact
on children’s subsequent learning. Furthermore, previous work has modeled these exper-
imental data for an investigation of children’s learning during a belief revision task [11]
and found very strong fits between the “optimal” Bayesian learning and the children’s
performance on the task.

The to-be-modeled experiment’s design in [40] entailed a Pretest phase, a Learning
phase, and a Posttest phase. A total of 94 six- to nine-year-old children (MAge = 8.00
years, SDAge = 0.96; 46% female) participated in the experiment and were randomly
assigned to one of two experimental conditions—a Prediction or a Postdiction Condition.
Before beginning the Pretest phase, all children first viewed a familiarization clip of an
experimenter demonstrating how water got displaced by pressing a sphere underwater,
where, importantly, the experimenter stressed that the spheres throughout the experiment
were assumed to be held underwater by a rigid pole. This familiarization was performed to
avoid the chance that the children would evaluate buoyancy instead of water displacement.
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On each trial, the children (regardless of assigned condition) were presented with two
spheres of varied features (e.g., in size, material, and/or weight) that were side by side
(see Figure 1 for a trial example). Then, the children stated which sphere they thought
would displace the most water (between two identical containers). These judgments were
assessed using a 5-point scale (e.g., (1 = certainly the left sphere, 2 = maybe the left sphere, 3 =
equal amounts of water for both, 4 = maybe the right sphere, 5 = certainly the right sphere). During
the Pretest and Posttest phases, the children did not see the outcomes of the trials to allow
for a clean initial assessment of beliefs (prior to learning) and final learning. The children
were only provided feedback during the Learning Phase of the experiment according to
condition. The children in the Prediction condition were asked to provide a response
prior to seeing the outcome; responses were given values from 1 to 5 and the children stated
their expectation (and confidence) about which sphere displaced more water. In contrast,
the children in the Postdiction condition first saw the results of the presented trial, and
then they were asked to state what their expectations had been (prior to the evidence). The
measures in this study and others reveal that children are honest about their responses in
these postdiction conditions.
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Figure 1. An overview of a trial’s procedure during the original experiment (Theobald and Brod,
2021). Children were randomly assigned to one of two experimental conditions (between-subjects):
the Prediction or Postdiction condition, which differed in the timing of the children’s response (gray
background) and the timing of related feedback. Specifically, the children in the Prediction condition
first provided a response—stating their expectation about which sphere displaced more water—
before the results of the event and related feedback were presented to them. In contrast, the children
in the Postdiction condition first saw the results of the presented trial, and then they stated their
expectations by providing an evaluation. Here, the correct response for the trial example is option
“5—Right Wins”, noted by the “+” symbol under the Results Phase columns. However, this feedback
is provided as evidence to support learning either following the children’s response (Prediction
Condition) or preceding their response (Postdiction Condition). Children with the correct “Size”
rule would have accurately selected “5” (or “4”) here and seen the confirming feedback. However,
because, in this trial, the metal ball is made of a much heavier material than the styrofoam ball, despite
its smaller size, children with the incorrect Material or Mass beliefs may incorrectly respond 1, 2, or 3
in their predictions or postdictions, and potentially be surprised by the evidence (that 5 “wins”).

The children’s pupil dilation measurements were taken during the Learning phase
for both conditions. Pupillometry was collected using an eye-tracking camera (Eye-Link
1000; SR Research, Osgoode, Ontario, Canada). A “Pupil Baseline Phase” was included
750 ms prior to the “Results Phase” (see Figure 1). This was done to allow for comparisons
of children’s pupil size changes between the prediction and postdiction conditions. The
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duration (750 ms) was kept short to (a certain degree) prevent the children in the postdiction
condition from generating a prediction as well (see [25,57]). Throughout the whole trial
sequence, a fixation cross was presented to guide the children’s view to the center of the
screen between the phases. Additional details regarding the lengths of each sub-phase of
the Learning Phase trials can be found in Figure 1.

3.1. Bayesian Model of the Pupillary Surprise Response

The Ideal Bayesian learning model that we employed for our investigations builds on
a recent investigation of individual differences in children’s belief revision (the Optimal
Bayesian model described in [11]). Here, the Bayesian model constructs computational
representations of the children’s beliefs based on their task responses. Doing so highlights
the importance of individual differences in prior beliefs during learning, while further
demonstrating the impact of multiple, competing beliefs that guide inferences, as the
Bayesian model’s correlations to children’s behavioral responses are significantly stronger
than competing frameworks for the entire subject pool (Bayesian Correlations > 0.8; Di-
rectional accuracy > 90%). Additionally, this model finds that the children in the exper-
iment’s Prediction condition are better simulated by the model than the children in the
Postdiction condition.

For the Ideal Bayesian learning model [11], a computation of the children’s prior
beliefs is motivated by the findings from prior research that justify the characterization
of three specific (“Size”, “Material”, and “Weight”) competing theories (and specifically
basing children’s intuitions on just these three) when reasoning about water displacement,
(e.g., [58]) with implications of how they may influence one another. Based on this theo-
retical foundation, three modeling stages are performed to mathematically represent the
children’s belief states and the probability of an event occurring. The first modeling stage
entails capturing representations of the children’s possible prior beliefs by evaluating the
probability of the children holding each mental model, given their responses on the pretest.
The second modeling stage captures the process by which these representations evolve
throughout the learning phase of the experiment. The third modeling stage describes
our method for computing the trial-by-trial Shannon Information (based on the proba-
bility of the outcomes on each trial, given each child’s individualized prior beliefs) and
Kullback–Leibler divergence (based on the “dissimilarity” between a child’s prior beliefs
and posterior beliefs for each trial). The details pertaining to Stages 1 and 2 can be found in
Appendix A as well as [11]. Stage 3 is described below.

3.2. Estimating Children’s Trial-by-Trial Surprisal

We build upon the Bayesian model’s simulations for estimating the children’s pupil
dilation measurements during the original experiment. Specifically, we look at the Bayesian
trial-by-trial surprise predictions for individual children. The children’s estimated beliefs
are based on their responses during the pretest and follow Bayesian posterior updating
during the test trial observations (p(ht|dt) ∀ htεHt). Surprisal (whether Shannon or Kullback–
Leibler divergence) for each trial depends on an individual child’s expected belief state,
given the evidence for that trial.

The children’s beliefs about how much water will be displaced by different objects
have been identified in past literature (e.g., by Burbules and Linn, 1978 [58]), falling into
relatively simple causal rules for predictions: a rule based on the size of the objects, one
based on the material of the objects, one based on the mass of the objects (a mixture of size
and material), and one reflecting random responding. Thus, in our model, the children’s
beliefs are represented computationally as a distribution across these four possible beliefs
(“Size” (S), “Material” (M), “Mass” (W), and finally “Random” (R)). Each child’s “model”
(p(Ht|dt); Equation (3)) of water displacement on a given trial (t) could be represented as
the posterior probability over just four rules (S, M, W, and R):

p(Ht|dt) = [p(hst = S|dt), p(hmt = M|dt), p(hwt = W|dt), p(hrt = R|dt)]. (3)
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3.2.1. Calculating Shannon Information

From Equation (1), we derive the model’s trial-by-trial SI surprise estimates in Equa-
tion (4). That is, on some trial (t), we determine the likelihood (p(dt|Ht)) of that trial’s new
data (dt) observed by the child, given their currently inferred model (Ht):

SI = −log(p(dt)). (4)

Here, Equation (5) describes how our model calculates the probability of the data (p(dt))
on a given trial (t), as marginalizing over the four competing beliefs at time t, (hi = h(w,m,w,r)),
which is the summation over the likelihood and prior for each model:

p(dt) = ∑h,i ε Ht
p(dt|ht,i)p(ht,i). (5)

The likelihood of the evidence on trial t, p(dt|h) is computed for each hypothesis h (S,
M, W, and R rules). The likelihood is then weighed by the strength of belief for each model
p(h) under this summation. Thus, the evidence that is less likely under more strongly held
beliefs will contribute more to surprise than when the evidence is unlikely under a weakly
held belief (See Figure 2 for illustration).

3.2.2. Calculating Kullback–Leibler Divergence

From Equation (2), we derive trial-by-trial Kullback–Leibler divergence as a surprise
estimate in Equation (6). For some trial (t), we calculate the relative entropy for each
considered belief (hypothesis ht,i) within the child’s currently held distribution of prior
beliefs (p(ht,i|dt) ∀ ht,iεHt) with its respective posterior belief, p(ht + 1, i|dt + 1). Kullback–
Leibler divergence (KLD) is taken as the sum of these relative entropies between the prior
and the posterior beliefs, capturing the shift in distributions between time (t) and after
observing the data at time (t + 1):

KLD(Ht+1|| Ht) = ∑
ht,iε Ht

p(ht+1, i|dt+1) log[
p(ht+1, i |dt+1)

p(ht, i |dt)
]. (6)

Here, on a trial (t), the data have not yet been observed and capture the distribution
of the beliefs prior to observing the evidence, whereas trial t + 1 captures the posterior
distribution. Kullback–Leibler divergence is simply capturing the relative change between
the prior and the posterior beliefs, given some observations (See Figure 3 for illustration).

Both the Kullback–Leibler divergence and Shannon Entropy are calculated given a
prior belief at time t for each child, for each trial. As noted in Appendix A.2, initial priors
are computed independently for each child, given the responses the children provide in the
Pretest phase. Because the test trials provide fixed evidence and the likelihood is weighed
by this evidence, the Bayesian model has no free parameters. Thus, the Kullback–Leibler
divergence and the Shannon Entropy that depend on these computations similarly have
no free parameters. Assessing the performance of these candidate metrics of quantifiable
pupillary surprise—both in general and in competition with one another—provides a means
to explore the implications of different learning responses to the data at the individual
level in a trial-by-trial manner. If the Shannon Information (SI) estimates better correlate
with the children’s pupil dilation, then this may suggest that pupil dilation is an indicator
of robust engagement with the incoming data, particularly when it is of low likelihood
and is highly “informative”. If the Kullback–Leibler divergence (KLD) correlates more
strongly with pupil dilation, then this may suggest that pupil dilation is an indicator of
belief updating “in-the-moment”. Assessing these correlations under different contexts
(prediction vs. postdiction) allows for an exploration of potentially different mechanisms
engaged by different types of learning interventions.
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Figure 2. Example of the procedure for calculating Shannon Information, given the current model’s
simulations, as formally described by Equation (4) and Equation (5). Columns (A–C) display three
different examples of the typical kinds of profiles of children’s prior beliefs captured in graph and
numeric form (Row 1). Given some incoming data (e.g., the example trial from Figure 1; a Small Metal
ball vs. a Large Styrofoam ball), the likelihood of the observation (that event “5—Right Wins” occurs)
is estimated for all four models (Row 2). Then, a posterior probability is calculated by weighing the
individual child’s prior beliefs against the likelihood (Row 3). Shannon Information is calculated
by summing over (marginalizing out ht,i) these posteriors and taking the negative log likelihood
of the final summed total. Thus, there is an inferred negative relationship between data likelihood
(p(dt) and model surprise according to the Shannon Information account (Row 4). That is, when the
weighted likelihood of data is low, the model surprise is high; similarly, when the likelihood of data
is high, the model surprise is low.
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Figure 3. Example of the procedure for calculating Kullback–Leibler Divergence (KLD), given the
current model’s simulations, as formally described by Equation (6). Columns (A–C) display three
different examples of the kinds of typical profiles of children’s prior beliefs captured in graph and
numeric form (Row 1). Given some incoming data (e.g., observing option “5” = right side wins for
the example trial in Figure 1; a Small Metal ball vs. a Large Styrofoam ball) and the prior beliefs of the
learner (Belief Distributions, Ht), we consider the posterior belief distribution that best accommodates
the observed data (e.g., p(Ht|“5”)), which is, again, captured in graph and numeric form (Row 2).
Then, the Kullback–Leibler divergence (Row 3) is calculated as the sum of relative entropies between
the prior probability and the posterior probability between each of the individual competing beliefs
(ht,i). Thus, there is an inferred positive relationship between the degree of dissimilarity between
distributions (divergence between the prior beliefs and the posterior beliefs) and model surprise
according to the Kullback–Leibler divergence account. That is, when the prior and the posterior
beliefs are dissimilar, the model surprise is high; conversely, when the prior and the posterior beliefs
are similar, the model surprise is low.
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4. Results
4.1. Assessing Fit of Model Estimates

The analyses performed for assessing each of the surprise estimates, Shannon Informa-
tion and Kullback–Leibler divergence, use direct correlations between the model predictions
of and the children’s pupil dilation responses recorded during the experiment. Bonferroni
correction is performed where needed for conservative analyses and interpretation, with
correlation p-values tested against a Bonferroni-corrected alpha (Condition [Prediction,
Postdiction] × Estimate [SI, KLD], α = 0.05/4 = 0.0125. All correlations discussed in the
Results section are additionally compiled in Table A1 for ease of comparison.

4.1.1. Condition: Combined Analyses

When looking at the full dataset (2890 trials across 94 children), we found no signifi-
cant correlation between either the Shannon Information (r(2889) = 0.01, p = 0.49) or the
Kullback–Leibler divergence model (r(2889) = 0.02, p = 0.12) and the children’s pupillomet-
ric measurements. As noted, our primary question involves assessing the models while
accounting for two different response modalities (prediction and postdiction) to assess the
potential differences between these interventions.

4.1.2. Condition: Separate Analyses

We first explored the differences in the children’s pupillometric response as related
to Shannon Information. The Shannon Information estimate did not correlate with the
pupillary response for either the Prediction (r(1437) = 0.03, p = 0.20) or Postdiction (r(1461)
= 0.01, p = 0.62) condition. In contrast, exploring the differences in the children’s pupil-
lometric response as related to the Kullback–Leibler divergence did reveal differences.
The Kullback–Leibler divergence estimate was significantly correlated with the children’s
pupillary response within the prediction condition (r(1437) = 0.07, p = 0.004 < α). There
was no correlation between the pupillary response and Kullback–Leibler divergence for the
children in the Postdiction condition (r(1461) = −0.003, p = 0.90). The difference between
the strength of the Kullback–Leibler divergence and Shannon Information correlations
within the Prediction condition was also significant, (z = 2.98, p = 0.0014); similar results
were found for a bounded version of the Kullback–Leibler divergence measure, the Jensen–
Shannon divergence [59,60]. These results can be found in Appendix B. The correlations
between Kullback–Leibler divergence and pupillary response were also significantly dif-
ferent between the Prediction and Postdiction conditions (Fisher’s r-to-z transformation;
z = 2.11, p = 0.0174).

4.1.3. Exploratory Analysis with Data Subsets

Sources of noise, such as individual differences in prior beliefs, and an identified criti-
cal learning period (both highlighted in previous modeling work; [11]) might have affected
the correlation between the model estimates and pupillary surprise. Therefore, we looked
to control for two additional sources of noise in our data via follow-up analyses. First, not
all of the children in the study were still “learners”, as a subset of the participants began the
Learning Phase with the correct Size belief. Applying the same method as above, we looked
at just the children who did not have beliefs based on the correct theory of water displace-
ment at the beginning of the experiment (19 children had the correct theory already, leaving
n = 75 of 94 children who began with an incorrect theory, approximately equally between
conditions). Re-analyzing the data with this subset replicated the results above. There was
no significant correlation between Shannon Information and the children’s pupillometry for
this subset of “learners” (overall r(2259) = 0.02, p = 0.29; Prediction, r(1142) = 0.04, p = 0.11;
Postdiction, r(1116) = 0.01, p = 0.54). Meanwhile, while the Kullback–Leibler divergence had no
significant correlation with the entire “learner” subset (r(2259) = 0.036, p = 0.08), there were
significantly stronger correlations between Kullback–Leibler divergence and the pupil dilation
response for the learners within the Prediction condition (r(1142) = 0.08, p = 0.002 < α),
compared to the Postdiction condition (r(1116) = −0.002, p = 0.93; comparing conditions:



Entropy 2023, 25, 211 13 of 24

Fisher’s r-to-z transformation; z = 2.15, p = 0.0158). The Kullback–Leibler divergence did not
have a significantly stronger correlation than Shannon Information for the “learners” in the
Prediction condition (z = 0.99, p = 0.16) for this subset, as would be expected by the small
sample size and the fact that the children with the correct theory would have predicted low
surprise for the trials across the full study. None of these correlations were significant when
looking at the subset of “already-knowers” (overall for SI, r(639) = −0.05, p = 0.20; for KLD,
r(639) = −0.02, p = 0.58), and when looking between the Prediction (for SI, r(294) = −0.07,
p = 0.19; for KLD, r(294) = 0.01, p = 0.79) and Postdiction conditions (for SI, r(344) = −0.03,
p = 0.52; for KLD, r(344) < 0.01., p = 0.99).

Our second subset analysis explored only trials where “learning” was likely to take
place. Previous modeling of the children’s learning over the course of the study revealed
that most children converged onto the correct Size belief by trial 19 based on their choice
behavior (where the 19th trial was the 75th percentile of when the children in the study
seemed to have “learned” the Size belief according to the model; discussed in more detail
in [11]). The sharp-then-plateaued learning rate was likely because the initial trials (n = 9)
in the Learning Phase provided no differentiation between the competing belief models
(Size, Material, and Mass). They were selected to be “congruent” with all theories and, thus,
offered no “surprise” for any model or opportunity for learning. Following a handful of
incongruent evidence (trials 10–19), the majority of children revised their beliefs and began
responding consistently with the correct Size belief. This design (no conflicting evidence
to support learning initially, nor learning after the correct beliefs are settled) might have
artificially created “noise” in our pupillometric correlations. This is because variability in
the responses on the pupillometric measures caused by other artifacts could temper with
the correlations due to a relatively large number of trials where the Shannon Information
and Kullback–Leibler divergence estimates were both very low. Thus, we also looked at
“critical learning trials”—those that started with the first incongruent trial (trial 10, where
data would be differentiated by the competing beliefs) and extended to trial 19 where
almost all children (n = 74 of 94 children) had learned the correct belief (size dictates water
displacement) as measured by Bayes Posterior Odds. For these “critical learning trials”, we
again replicated the overall pattern of results. The Shannon Information did not correlate
overall during these critical trials (r(858) = 0.04, p = 0.24), nor did it correlate within either
condition (Prediction condition: r(431) = 0.05, p = 0.26; Postdiction condition: r(426) = 0.06,
p = 0.18). Again, the Kullback–Leibler divergence did not correlate for all children across all of
the “critical” trials, (r(858) = 0.04, p = 0.24). However, (replicating the other analyses) there
was a significant correlation between the Kullback–Leibler divergence estimate and pupillary
response within the Prediction condition (r(431) = 0.12, p = 0.013 < α), while no correlation
was found in the Postdiction condition (r(426) = −0.003, p = 0.90). These correlations were
significantly different between the Prediction and Postdiction conditions for Kullback–Leibler
divergence (Fisher’s r-to-z transformation; z = 2.11, p = 0.0174). The difference between the
Kullback–Leibler divergence and Shannon Information for the Prediction condition yielded
a significant difference as well (z = 2.98, p = 0.0014) during these “critical” trials. This
suggests that the pupillary surprise response reflects something like belief updating, but
only in conditions when children are actively engaged in prediction (a point we will return
to in the Discussion).

4.2. Modeling Individual Differences

We were also interested in relating pupillary response and modeled surprise to learn-
ing. Thus, we looked at how, at the individual level, the degree of fit between the phys-
iological response and the model response related to the degree to which the children’s
responses reflected Bayesian “optimal” learning. That is, we correlated two correlations.
Specifically, for this investigation, we looked at the correlation between the children’s
behavioral answers (1–5) and the Bayesian model predictions of those answers as one set of
correlations, and the children’s pupillary response performance and our models of surprise
as the second set of correlations. If the pupillary response related to learning, we might
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expect to see that those children whose pupillary responses were more aligned with the
model predictions were also the same children who learned more “optimally”. Indeed, we
found that the correlation of individual children’s pupil response to the Kullback–Leibler
divergence correlated significantly with the correlation of those children’s answers and
ideal Bayesian learning (r(88) = 0.27, p = 0.007). In contrast, the correlations based on
the children’s pupil response and Shannon Information did not correlate to this learning
measure (r(88) = 0.05, p = 0.58). The difference between the correlation coefficients was
marginally significant (z = 1.49, p = 0.06).

4.3. Understanding Differences between Shannon Information and Kullback–Leibler Divergence

Overall, we found that Kullback–Leibler divergence best aligned with the children’s
behaviors in the Prediction condition, and that Shannon Information measures did not align
with the children’s responses in either condition. This result might seem surprising given
that, overall, Shannon Information and Kullback–Leibler Divergence might be predicted to
significantly overlap. Indeed, the exploratory analysis revealed a significant correlation
between both measures within the entire dataset (r(2988) = 0.38, p < 10−97), and separately
within the Prediction (r(1436) = 0.37, p < 10−47) and Postdiction (r(1460) = 0.38, p < 10−51)
conditions. However, there exist instances where the computed Shannon Information
and Kullback–Leibler Divergence make different predictions (e.g., one example shown by
comparing the “Material-” and “Mass-Dominant” belief distributions in Figure 2 and 3).
Despite being calculated for the same child on the same trial (and thus being based on the
same data), Shannon Information might predict “higher” surprise than Kullback–Leibler
Divergence, or vice-versa. The exploratory analysis of our data revealed the strongest
divergence between the predictions of these two models for trial events that provided
belief-disambiguating evidence to children who were still transitioning between models.
Whether Shannon Information was relatively greater than Kullback–Leibler divergence, or
vice versa depended on the shape of the children’s beliefs (because Shannon Information
and Kullback–Leibler divergence operate over different ranges of possible values, the
exploratory analysis reported here compares values that are normalized to a 0–1 range
within each approach). Specifically, when a child had a very strong belief in the Mass
model (nearly zero weight across the other models), and a mild conflict trial was presented,
Shannon Information predicted higher surprise and Kullback–Leibler divergence predicted
lower surprise due to the overwhelming pull of the prior beliefs, limiting a distributional
shift. In contrast, when the children’s beliefs were slightly more evenly distributed (es-
pecially between Mass and Size models), Shannon Information predicted lower surprise
and Kullback–Leibler divergence predicted higher surprise. The children’s pupillometric
scores best aligned with the Kullback–Leibler divergence for these models and the evidence-
contrasting trials in the Prediction Condition in particular, further supporting the idea that
the children’s eye dilation was related to key moments of engaged learning triggered by
generating predictions.

5. Discussion

This paper describes one of the first computational investigations of the links between
children’s pupillary surprise response and their science concept learning, as related to
the contextual effects of engaging in an explicit prediction or postdiction. We modeled
data, including pupillometric responses, collected from elementary school children who
provided predictions or postdictions in a water displacement learning task. By modeling
individual children’s beliefs and learning over trials, we could capture two different forms
of “surprise”: Shannon Information and Kullback–Leibler divergence. Overall, we find that
the children’s pupillary surprise response is related to the Kullback–Leibler divergence,
but only in cases where children have generated an explicit prediction prior to observing
the potentially surprising events. Furthermore, given the details of how the Ideal Bayesian
model performs, it should be clear that both the Shannon Information and the Kullback–
Leibler Divergence rely on children’s prior beliefs (and subsequent posterior beliefs) for
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their computations. The Shannon Information is computed based on the likelihood of
an event, given some set of prior beliefs at the moment of the observed evidence, while
the Kullback–Leibler divergence is calculated as the dissimilarity between the children’s
prior and posterior beliefs when facing the same event. This difference is important to
consider, as we found that children whose pupillometric data are best estimated by the
Kullback–Leibler divergence also tend to be the children whose behavioral response data
(from an experiment on learning water displacement via belief revision) are best fitted
to an ideal Bayesian learning model, but that this same correlation is not found for the
children’s computed Shannon Information. This further supports the notions that pupil
dilation may be linked to “higher-level” mechanisms being engaged during learning in
our task, as compared to “intermediate-level” factors typically associated with Shannon
Information. We return to this point further below.

Our findings fit well with the theory described at the intersection of cognitive, emo-
tional, and physiological research (e.g., [33,34]), with particular links to recent work investi-
gating the role of prediction in belief revision (e.g., [25,27,40,57,61,62]). Our findings also
converge with other related research. Like Kayhan and colleagues [45], we found a relation-
ship between pupil dilation and the Kullback–Leibler divergence. Both this previous work
and the current investigation find that the calculated divergence may affect belief revision
in regard to the amount of updating needed to adjust current beliefs. However, there are
two key differences between our modeling work and that of Kayhan et al. [45] which are
important to note. First, the current paper investigates children’s pupillary surprise under
different contextual conditions. The current results find that the relationship between the
modeled surprise (via Kullback–Leibler divergence) and the children’s pupillary surprise
response may only occur when the children are actively making predictions—but not when
they are passively observing and evaluating. This highlights that there are instances where
pupillary surprise might be more likely to occur when making predictions, as proposed to
the results of other recent empirical works (e.g., [28]). Second, in line with the original paper
that we draw our model from [11], the current model accounts for individual differences
among the children’s prior beliefs and the processes by which they update. In the study by
Kayhan et al. [45], children’s behaviors are modeled to all follow the same inferred compu-
tational model. Understandably, we acknowledge the limitations of Kayhan et al.’s [45]
investigation given the population being studied. Specifically, Kayhan and colleagues
faced the challenge of investigating this domain in 18-month-old infants and 24-month-old
toddlers. Thus, acquiring explicit measures to inform computational representations of
prior beliefs might have been difficult or not plausible. In contrast, we formalize the prior
beliefs that children may have at the individual level, as informed by their past behavior.

Like other work investigating surprise during learning, we found a relationship
between the Kullback–Leibler divergence and the pupillary surprise response (e.g., [44,45]).
However, unlike O’Reilly and colleagues [44], we did not find a relationship between
likelihood-based Shannon Information and pupil dilation. One potential reason for this
divergence is that there are differences in the degree of complexity of the learned “concept”
of each study and in the number of hypotheses considered. Specifically, the previous work
entailed a task that only required reasoning about one variable (the angle that the target
appeared at on a screen; [44]); however the angle of the target might have taken many
different values. In contrast, the currently modeled task might require reasoning about
more complex, causal beliefs (e.g., whether an object’s size, material, or weight determines
the amount of water displaced and how each of these features generates displacement; [40]),
but only consider a few possible hypotheses. It is of course likely that the children were
entertaining a more varied set of potential causal beliefs about displacement than the four
considered here. The responses in the pretest aligned well across these four and previous
work had focused on these, but we are open to there being a more complex space of
beliefs in this domain as well. Indeed, as learners consider more complex interactions (e.g.,
buoyancy, water-permeable materials such as sponges), the space will balloon. Thus, one
particular reason for the significant relationship in previous work between pupil dilation
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and Shannon Information (or likelihood-based prediction error), and the poorer fit with
children’s pupillometry in the Prediction condition of the current dataset, may relate to
either differences in the complexity of the concept being inferred or differences in the size
of hypothesis space being considered.

A second difference between our results and the results of O’Reilly and colleagues’ [44]
is that we found a positive correlation between pupil dilation and the Kullback–Leibler
divergence during prediction, whereas a negative correlation was found in this past work.
Our task differed in both the types of beliefs being considered and whether children were
actively engaged in prediction. If beliefs are already engaged in this process (as they likely
were for our participants following the explicit prediction prompt), then a relatively instan-
taneous pupillary growth response to the observed outcome is feasible. In our task, the
number of options being considered and “simulated” by the children is bounded, with chil-
dren only deciding among five options (really three directional outcomes). Additional anal-
yses investigating a bounded divergence measure, the Jensen–Shannon divergence [59,60],
were also performed and are described in Appendix B. Importantly, the Jensen–Shannon
divergence performs almost identically to the Kullback–Leibler divergence in terms of its
correlations with the children’s pupillometry. One possibility is that the positive dilation
we observed in the prediction condition captured the amount of mental effort generated by
explicitly considering the outcomes over more complex hypotheses. It has been suggested
that when the necessary “work” appears unexpectedly “large”, more mental effort may be
exerted to accommodate the new information (e.g., to reduce the “work”; [63,64]), and this
is reflected by increases in children’s pupil dilation—similar to findings linking reduction
of uncertainty to the presence of signals from neuromodulators (e.g., acetylcholine and
norepinephrine; [65,66]). Of course, we do not have enough evidence to confirm that pupil
dilation actually accompanies a more “effortful” mental process (e.g., like those found
by [29,67]), only that the found correlations indicate a relationship between pupil dilation
and the amount of “work” needed to update beliefs.

5.1. Understanding Potential Cognitive Mechanisms

Both the Shannon Information and Kullback–Leibler divergence accounts of pupillary
surprise have support in the literature exploring cognitive mechanisms. Specifically, these
proposed computational interpretations align with the attentional network described in
previous work and are not necessarily exclusive. Shannon Information has been suggested
to relate more to the “intermediate-level” factors, addressing what it is externally that a
learner might be trying to process when pupil dilation occurs (e.g., [37–39]). Similarly,
Kullback–Leibler divergence has been suggested to represent “higher-level” factors relating
to internal processes and state-like fluctuations that the learner might be experiencing
(e.g., [25,33,40]). Thus, support for either the Shannon Information or the Kullback–Leibler
divergence accounts (or potentially both) in estimating children’s pupillometry would have
fit with various findings and interpretations of pupil dilation as some form of attentional
network activation (for a thorough review, see [34]).

If these accounts of Shannon capturing “intermediate-level” factors and Kullback–
Leibler divergence capturing “higher-level” features are correct, our results provide support
for “higher-level” factors being engaged in our task—at least when children are explicitly
making predictions. Perhaps when making predictions, children are orienting their atten-
tion toward their beliefs. That is, pupil dilation in our task may be an indicator of children’s
online assessment of their current models of the world and what the implications would be
(how much effort is needed to change these models), given the potential outcomes of an
upcoming event.

Why might Kullback–Leibler divergence capture greater attention or cognitive effort?
As described earlier, Shannon Information quantifies a single signal of data informativeness
against only the current hypothesis space [42,46–49]. In contrast, Kullback–Leibler requires
a computation over two hypothesis spaces—the prior and the posterior beliefs. In this way,
Kullback–Leibler divergence might reflect more effortful cognitive processes.
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5.2. Limitations and Future Work

The implications of this work highlight key investigations that future work should
pursue. Specifically, one such avenue entails empirically and computationally capturing
a “construct” of surprise that accounts for its emotional, cognitive, and physiological
components. Next, future work may also be interested in further refining our understanding
of the “higher-level” processes that our results suggest as being associated with surprise—
that is, the interactions between prediction, planning, and other executive functioning.

5.2.1. The Noisiness of Pupillometric Measurements

We acknowledge the impact of noise within the original experiment’s pupillometric
data, which could be due to many possible reasons. First, both the children and the
model seemed to “quickly” learn the scientific concept (that size determines the amount
of displaced water). Thus, opportunities for experiencing pupillary surprise might have
been in short supply as the misconceptions of water displacement were not held onto for
long. In response to this, we also analyzed subsets of the data to account for potential noise
due to learning dynamics: whether children had already “known” the Size principle at
Pretest, and the “critical” trials where learning would be most likely to happen. Doing
so did lead to improvements in the fit between the Kullback–Leibler divergence when
estimating surprise, but it did not affect the lack of fit with the Shannon Information. The
second reason that noise might have been prevalent is that despite the best efforts to ensure
careful task administration and data collection, there do exist drawbacks when collecting
the pupillometric measures. For example, a careful preparation of the study’s location is
needed. When collecting the modeled data ([40]), great efforts were made to prepare the
study location at a local science museum. For example, the experimenters used a room with
no windows, allowing only for artificial light to keep the light levels as consistent as possible,
as low-level issues such as light levels and focal distance do affect fluctuations in pupil
size [34–36]. This is important to acknowledge, as many interpretations of pupillometry
entail an assessment of the average change in pupil size within a timeframe. Additionally,
previous work investigating the influence of low-level factors, such as light levels, finds that
pupil dilation can be oscillatory with respect to fluctuations in the luminance of objects and
their environments [68]. This may lead to a pupillary surprise response with a short latency
(relative to the measured timeframe), but particularly strong amplitude being washed out
by the constriction of the pupil (whether by nervous system relaxation or slight light level
variance) during the timeframe when the measures are averaged.

Finally, following the acknowledgment of the potential sources of noise, we also
acknowledge the relative strength of the found correlations (e.g., in order of the Results
section, the significant correlations showed Pearson’s correlation coefficients of r = 0.07,
0.08, 0.12). However, these correlations were found to be significant even when performing
the analyses conservatively (via Bonferroni correction). To the best of our knowledge,
this work seems to be the first to find significant correlations between pupillometry and a
computational model estimate during science concept learning.

5.2.2. Capturing Pupillary Surprise across Modalities

Notably, we found no correlations between either the Shannon Information or Kullback–
Leibler divergence and the pupillometric measures of the children in the Postdiction condi-
tion. As described in the previous section, this might be partially due to noise leading to
underpowered detection. However, it might also suggest that perhaps another mechanism
(and thus another model surprise metric) needs to be considered and investigated in future
work regarding when (or even, if) pupillary surprise occurs in different response modali-
ties. The current work highlights that, when making predictions, pupil dilation may be
indicating the performance of higher-level, learning-effort estimates. However, we did not
find significant correlations between the pupillary response and model predictions in the
postdiction condition despite the fact that, over the course of the experiment, these children
also learned. Indeed, pupil dilation did occur at times during the original study for the
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children in the Postdiction condition—just not in a way that correlated with the models of
surprise. Thus, future work should investigate whether other response modalities indicate
that such processes are being performed when pupil dilation is elicited, with theory-based
metrics for computationally estimating said pupillometry.

5.2.3. Empirically Measuring Surprise

In contemporary work on surprise, the physiological measure of pupil dilation is com-
monly collected as a proxy or a marker that signals an individual’s experience of surprise
(e.g., [22]). This tends to be proposed due to the occurrence of pupil dilation following a
violation of one’s expectations—often inducing heightened attention, physiological arousal
(e.g., the release of noradrenaline and norepinephrine), and increased activity in brain
areas (e.g., within the brainstem) related to monitoring uncertainty [23,30,69]. However,
as with most emotions, special care needs to be taken when discussing the measures and
expressions of affective states. In particular, surprise has received considerable research
attention since the mid-20th century, which still informs the theoretical concerns regarding
what surprise actually is, and has connected the (less so recently) disparate fields that inves-
tigate surprise (see [19,20,70]). Importantly, these conceptualizations and implementations
of surprise only relate to the physiological instances of surprise’s attentional capacities.
Thus, future research that looks to finely define surprise not only in terms of its proposed
physiological markers but also its subjective experiential phenomena could also collect self-
reported measures of experienced surprise as an additional correlate to further substantiate
claims surrounding the physiological measures of surprise.

5.2.4. Investigating Modalities That Potentially Leverage Prior Beliefs

Future work may want to consider investigating science concept learning by revisiting
interview methods of past studies to further understand children’s subjective prior beliefs
and what processes children (propose that they) may have employed to revise them
(e.g., as in earlier water displacement studies; [58]). In fact, recent work highlights that
thought experiments—imagining outcomes of an event and revising assumptions—can
be beneficial for learning in both adults [71] and young children (six-year-olds; [72]).
Thus, future work may tackle the integration of key experimental design aspects from the
currently modeled data (the role of prediction and pupillometry) and research on other
learning-by-thinking methods, such as thought experiments. Doing so may help determine
whether such planning is being implemented by children. However, such approaches
should be conducted carefully and interpreted cautiously, as meta-cognitive awareness
and performance of thought experiments may be difficult to investigate, and work that
focuses explicitly on whether people (especially children) typically benefit from thought
experiments (compared to original work relying on allusions to scientific revolutionaries
such as those made by Galileo, Kepler, and Einstein) is relatively new to the field [73].

5.2.5. Potential Roles of Executive Function

Recent advances in research on attention highlight that top-down regulation and
executive control are vital for processing and awareness of relevant information in the
environment (extensively reviewed in [33,34]). Specifically, executive function is important
for the guidance of intermediate-level attentional processes (e.g., alerting and orienting) for
sensory operations. Here, we propose that future work should perform further computa-
tional investigations centered on incorporating measures of executive function. Modeling
the relationships among theory change, prediction, pupillary response, and executive func-
tion skills (such as inhibition and cognitive flexibility; [74,75]) may provide further insight
into other relevant mechanisms that support science concept learning. Such modeling
would highlight whether executive function affects model performance straightforwardly,
where higher executive function measures might correlate with better model performance.
Additionally, future work may entail the design of Bayesian models that account for various
executive function skills. For example, would a model that has the ability to inhibit incorrect
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prior beliefs perform better? Moreover, would a model that flexibly switches focus toward
updated, “more correct” theories be plausible and sufficiently capture children’s behavior?

6. Conclusions

Here, we have identified a candidate computational measure that may capture the
pupillary surprise response in a quantifiable way when children are making predictions
during science learning. Specifically, we found that when children make predictions, their
pupil dilation in response to the observed outcomes may be a temporal indicator of the
children leveraging their initial prior beliefs and extrapolating the implications of those
outcomes, given said prior beliefs. The current work contributes to our knowledge of
what pupil dilation may be an expression of during the learning process. Specifically,
by identifying contexts where pupillometry can be estimated computationally via the
Kullback–Leibler divergence, we have also identified candidate mechanisms and processes
that children may be performing when pupil dilation is elicited. That is, since the Kullback–
Leibler divergence typically describes dissimilarity, or the amount of “work” needed to
transform one probability distribution into another, the current findings have highlighted
that explicit prediction may elicit the pupil dilation response as a physiological marker
of children’s belief revision—estimating how much “work” is needed to move from the
prior to the posterior beliefs. This behavior was not found for children who were only post
hoc evaluating, suggesting a privileged role for prediction in engaging learning-relevant
physiological responses. This computational modeling investigation, alongside recent ex-
periments centered on prediction, provides some initial insight into why engaging children
to generate predictions may support learning more effectively than other interventions.
Such a simple manipulation may differently engage affective states and impact children’s
learning; that is perhaps most surprising of all.
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Appendix A.

The Ideal Bayesian model [11] employed for the main analyses of this paper investi-
gated children’s scientific learning in the late elementary school years as a rational process
of integrating prior beliefs and new evidence step by step. Specifically, the model and
its components were designed to explore how actively making predictions in learning
scenarios, as opposed to passively observing and evaluating the same outcomes, may better
support children’s learning of difficult scientific concepts. This was accomplished via two
modeling stages. First, computational models were designed to construct mathematical
representations of the children’s prior beliefs at the individual level based on their behavior.
Second, these representations of children’s prior beliefs were utilized for Bayesian Posterior

https://osf.io/wqnf2/?view_only=fba98d3304bc4a759e4346eaa7df3332
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updating, where an Idealized Bayesian model was designed to approximate the children’s
belief revision trial by trial.

Appendix A.1. Computing a Space of Children’s Prior Beliefs When Learning about
Water Displacement

In the first modeling stage, we constructed an individualized hypothesis space dis-
tribution for each child based on the children’s behavior during the Pretest phase of the
original experiment. These distributions describe the probability of four different, compet-
ing theories that may be guiding children’s beliefs and behavior, based on object-feature
variance that the literature has typically identified in children in the early elementary school
years (e.g., see [58]). The first three of these theory-based models (one based on the size of
the objects, one based on the materials the objects are made of, and one based on the weight
or “mass” of the objects) generate responses based on their respective feature values, such
that objects with the “higher” value within the respective feature will “win” and displace
more water (e.g., the correct Size theory will almost always predict that the larger object
will displace more water). A fourth “random” guessing model generates predictions from
a uniform distribution, placing equal weight on each of the five potential outcomes of
each trial.

Given these four generative theory models, trial performance was simulated by per-
forming pairwise object comparison based on the features of the two objects shown on each
trial. First, feature weights were assigned to each object being compared. For example,
for all trials, two different balls were compared in regard to how much water they might
displace. Here, three key features of the balls were evaluated by their respective theory
model, where a ball’s Size (Small, Medium, and Large) and Material (Polystyrene (Styro-
foam), Wood, and Metal) were assigned possible feature values from one to three based
on their relative feature (e.g., a Medium-sized Metal ball has a Size of two and Material of
three). Then, a ball’s Mass was assigned as the product of its Size and Material values (e.g.,
the Medium-Metal ball has a Mass of six).

After determining the feature values of each object, perceptual noise was simulated
when discriminating the trial’s two objects. This was accomplished by incorporating
Weber’s Law [76] as a cause of perceptual noise. This noise was added to the perceptual
task by multiplying the values being compared (e.g., a “Size” of one versus a “Size” of
two) by 0.22. This parameter (0.22) is motivated by past research on the Weber’s ratio
for children in this age range [77]. Importantly, recent research has found that perception
as affected by Weber’s Law tends to be similar across features and modalities (e.g., time,
space, and quantity; [78]). Thus, each belief model can potentially make errors (choosing
the wrong answer despite a clear winner) and generate computational representations of
uncertainty (the ability to claim a tie, or that both options displace equal amounts of water)
when this object discrimination is performed. A total of 1000 pairwise comparisons were
performed for each trial, with two random samples taken from normal distributions. The
normal distribution’s parameters are defined based on the specific trial’s feature values,
where the feature value of the object being sample (e.g., a “Size” of one versus a “Size” of
two) is taken as the mean, and the feature value affected by the Weber’s ratio is taken as
the standard deviation (SD), where

SD = Feature Value ×Weber’s Ratio = 2 × 0.22. (A1)

The samples would either “win”, “lose”, or “tie” with one another, based on the
overlap of the two distributions. Then, a final tally was taken of the comparison results,
generating a new distribution analogous to the children’s confidence ratings (from one to
five). For the Random Guessing model, a Uniform Distribution is used instead, such that
each potential choice (one to five) holds equal weight:

∀ c ε [1,5], p(Choice c|Random Guessing) = 0.2. (A2)
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This was performed trial by trial to simulate the behavior during the Pretest Phase
(eight trials) and fit to each child’s behavioral responses for each of the four competing
theories (Size, Material, Mass, and Random). This procedure evaluates the probability
of the observed pattern of independent responses in the Pretest for each child, given the
predictions of each theory model. The responses are treated as independent due to the
absence of feedback on each trial. Thus, for each trial, the probability of the choice made by
the child according to each of the competing theory model’s predictions of the outcomes of
each trial is calculated as follows:

p(Size Theory| Child’s Decision c on Trial t) (A3)

with the product of these eight trials calculated as the overall probability for each belief. The
probabilities of the four theoretical model fits are taken as their individualized probabilistic
belief distributions following the Pretest, “Trial 0”, for use as their simulated priors on Trial
1 of the Learning Phase.

Appendix A.2. Performing Belief Revision and Assessing Trial Observations

The second modeling stage entailed trial-by-trial learning and included each indi-
vidual child’s computed prior distribution of beliefs over the four described competing
prior theories (Size, Material, Mass, and Random), starting with the beliefs collected in
the first modeling stage during the Pretest. Across the 34 trials of the Learning Phase,
the children’s belief distributions were updated trial by trial using traditional Bayesian
Posterior Updating. We calculated an updated posterior probability on a given trial t + 1 as

p(hi|dt + 1) = p(dt + 1|hi)p(hi|dt) ∑hiεH p(hi|dt + 1), (A4)

for each of the four competing belief models (hi = Size, Material, Mass, or Random) after
some number of trials (t) with observations of data (dt), given a prior probability of said
theory and prior data p(hi|dt), where at p(hi|dt = 0) = p(hi), the distribution is from the
Pretest. As with the Pretest Phase, the probability distributions for each of the possible
outcomes (from “picking 1” to “picking 5”) for each of the four competing belief models
(Size, Material, Mass, Random) were constructed for the 34 trials in the Learning Phase.
This collection of 35 individualized belief distributions (“Trial 0” from the Pretest, and
the 34 trials of the Learning Phase) were utilized for calculations relating to the Kullback–
Leibler Divergence in the main text.

After generating the posteriors of each trial (and thus the priors for the following
trial), estimations of the likelihood that each possible outcome could occur (observing
the outcome of the water displacement comparison; choosing among options one to five)
were simulated trial by trial at the individual level. Model predictions are generated as
follows: First, on a trial (t), the probability (pt(dt)) of the model predicting some outcome
(dt = [1, 5]), given one of the four competing beliefs (h), is pt(hi)pt(dt|hi) for each possible
outcome dt. This generates a 5 × 4 (belief h X outcome d) table for each trial for each child,
detailing the possible outcomes given each potential belief. Then, to consider the influence
of multiple competing beliefs on the children’s decisions, the probability of an outcome
being observed, given some set of prior beliefs, is taken as the marginalized probabilities
of the data, given each of the four different beliefs (H = [Size, Material, Mass, Random]).
That is, the probability that some outcome (c) on a trial (t) is expected to occur, given
the distribution of prior beliefs (pt(hεH)), is taken as the summation of each of the four
competing belief probabilities,

p(dt) = ∑hεH p(dt|hi). (A5)

Thus, for each outcome c, a summed probability that considers the weight of each of
the competing theories is computed. In the main manuscript, the negative log likelihood of
this summed probability was used for the analyses regarding Shannon Information.
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Appendix B.

Table A1. Correlations between the children’s pupillometric measurements and each of three com-
putational estimates of pupillary surprise: Shannon Information, Kullback–Leibler Divergence,
and Jensen–Shannon Divergence. Values in boldface formatting highlight significant correlations
following Bonferroni correction among the three measures (α = 0.05/3 = 0.1667 ).

Shannon
Information

Kullback–Leibler
Divergence

Jensen–Shannon
Divergence

Condition Prediction Postdiction Prediction Postdiction Prediction Postdiction

All
Trials

Combined
r(2889) = 0.01, p = 0.49

Combined
r(2889) = 0.028, p = 0.12

Combined
r(2886) = 0.029, p = 0.11

r(1437) = 0.03
p = 0.20

r(1461) = 0.01
p = 0.62

r(1437) = 0.07
p = 0.004

r(1461) =
−0.003
p = 0.90

r(1435) = 0.07
p = 0.005

r(1459) = 0.01
p = 0.59

Learners
Only

Combined
r(2259) = 0.02, p = 0.29

Combined
r(2259) = 0.036, p = 0.082

Combined
r(2259) = 0.04, p = 0.056

r(1142) = 0.04
p = 0.11

r(1116) = 0.01
p = 0.54

r(1142) = 0.08
p = 0.002

r(1116) =
−0.002
p = 0.93

r(1142) = 0.09
p = 0.002

r(1116) = 0.01
p = 0.70

“Already
Knowers”

Combined
r(639) = −0.05, p = 0.20

Combined
r(639) = −0.02, p = 0.58

Combined
r(636) = −0.01, p = 0.76

r(294) = −0.07
p = 0.19

r(344) = −0.03
p = 0.52

r(239) = 0.01
p = 0.79

r(344) = 0.01
p = 0.99

r(292) = −0.01
p = 0.82

r(342) = 0.10
p = 0.054

Critical
Trials

Combined
r(858) = 0.04, p = 0.17

Combined
r(858) = 0.039, p = 0.24

Combined
r(858) = 0.04, p = 0.18

r(431) = 0.05
p = 0.26

r(426) = 0.06
p = 0.18

r(431) = 0.11
p = 0.013

r(426) = −0.01
p = 0.72

r(431) = 0.10
p = 0.03

r(426) = 0.02
p = 0.60
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