
www.sciencedirect.com

c o r t e x 4 9 ( 2 0 1 3 ) 2 1 6 2e2 1 7 7
Available online at
Journal homepage: www.elsevier.com/locate/cortex
Research report

An electrophysiological investigation of non-symbolic
magnitude processing: Numerical distance effects in children
with and without mathematical learning disabilities
Angela Heine a,*, Jacqueline Wißmann a, Sascha Tamma, Bert De Smedt c,
Michael Schneider d, Elsbeth Stern e, Lieven Verschaffel c and Arthur M. Jacobs a,b

aDepartment of Psychology, Freie Universität Berlin, Germany
bDahlem Institute for Neuroimaging of Emotion (D.I.N.E.), Germany
c Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Belgium
dDepartment of Psychology, Universität Trier, Germany
e Institute of Behavioural Sciences, ETH, Switzerland
a r t i c l e i n f o

Article history:

Received 2 October 2011

Reviewed 22 November 2011

Revised 22 February 2012

Accepted 22 November 2012

Action editor Mike Anderson

Published online 28 November 2012

Keywords:

Non-symbolic numerical compari-

son

Numerical distance effect

Children

Mathematical learning disabilities

EEG
* Corresponding author. Department of Psyc
E-mail address: aheine@zedat.fu-berlin.d

0010-9452/$ e see front matter ª 2012 Elsev
http://dx.doi.org/10.1016/j.cortex.2012.11.009
a b s t r a c t

Introduction: The aim of the present study was to probe electrophysiological effects of non-

symbolic numerical processing in 20 children with mathematical learning disabilities

(mean age ¼ 99.2 months) compared to a group of 20 typically developing matched controls

(mean age ¼ 98.4 months).

Methods: EEG data were obtained while children were tested with a standard non-symbolic

numerical comparison paradigm that allowed us to investigate the effects of numerical

distance manipulations for different set sizes, i.e., the classical subitizing, counting and

estimation ranges. Effects of numerical distance manipulations on event-related potential

(ERP) amplitudes as well as activation patterns of underlying current sources were

analyzed.

Results: In typically developing children, the amplitudes of a late parietal positive-going ERP

component showed systematic numerical distance effects that did not depend on set size.

For the group of children with mathematical learning disabilities, ERP distance effects were

found only for stimuli within the subitizing range. Current source density analysis of

distance-related group effects suggested that areas in right inferior parietal regions are

involved in the generation of the parietal ERP amplitude differences.

Conclusion: Our results suggest that right inferior parietal regions are recruited differentially

by controls compared to children with mathematical learning disabilities in response to

non-symbolic numerical magnitude processing tasks, but only for stimuli with set sizes

that exceed the subitizing range.
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1. Introduction operating prior to the allocation of focal attention, a number of
With a prevalence rate of around 7% (Gross-Tsur et al., 1996;

Shalev, 2007), learning disabilities in the domain of numerical

processing and arithmetic (i.e., mathematical learning dis-

abilities e MLDs) are about as common as disabilities related

to the acquisition of written language. But compared to the

large number of scientific studies on reading impairments,

research on MLDs is still in its infancy. However, approaches

to remediation that focus on the critical conceptual and pro-

cedural underpinnings of MLD (for a review see Butterworth

et al., 2011) can only be developed on the basis of a thorough

understanding of the neurocognitive mechanisms underlying

typical and impaired numerical cognition. This clearly calls

for developmental and cognitive neuroscience to increase

research efforts on both, basic numerical and higher-level

abilities related to typical and atypical numerical processing

functions, and their specific developmental trajectories

(Ansari and Karmiloff-Smith, 2002).

One well-established experimental procedure to tap into

the basic representation systems that can be assumed to un-

derlie higher-level functioning in the domain of number pro-

cessing is non-symbolic numerical magnitude comparison, a task

paradigm that allows for systematic manipulations of quan-

tity differences, i.e., the numerical distance, between the to-be-

compared sets of items such as dot arrays. Originally

described by Moyer and Landauer (1967), the impact of nu-

merical distance manipulations on behavioral measures was

taken to reflect basic characteristics of quantity processing

functions. The most widely accepted model for the observed

systematic increases of response latencies and error rates

related to decreasing numerical differences between choices

is the assumption of more representational overlap between

close compared to far numerical values (Dehaene and

Changeux, 1993; for an alternative model that implies con-

flict primarily at output levels, see Van Opstal et al., 2008). The

fact that numerical distance effects were demonstrated to be

both, format-general and modality-independent (Barth et al.,

2003), and demonstrated not only in humans, but also in

other species (Brannon and Terrace, 2000), was taken as evi-

dence that manipulations of numerical distance tap into a

pre-verbal mental representation of magnitude, i.e., an

approximate number system that is thought to constitute a

crucial start-up mechanism for the acquisition of abstract

numerical knowledge (Butterworth, 2010; Piazza, 2010).

However, in cognitive and developmental psychology there

is a long-standing debate on the existence of qualitative as

opposed to mere quantitative functional differences between

the processing of small and large numerosities (Feigenson

et al., 2004). The majority of empirical evidence in support of

the hypothesis that stimulus arrays of up to four items are

apprehended by a specific mechanism that is categorically

different from enumeration of larger set sizes, comes from

chronometric studies (Kaufman et al., 1949; Mandler and

Shebo, 1982; but see Balakrishnan and Ashby, 1991). One

focus of current research is to establish the role of attentional

control in small number processing. Challenging Trick and

Pylyshyn’s (1994) description of subitizing as being the

outcome of mid-level visuo-spatial indexing processes
recent studies failed to confirm the assumed independence

from attentional modulation as a property of the instanta-

neous and precise enumeration capacity for small set sizes

(Burr et al., 2010; Poiese et al., 2008; Railo et al., 2008; Vetter

et al., 2011; but see Piazza et al., 2003). The results of these

studies rather suggest that the distinction of stimulus-driven

versus goal-oriented attentional functions as elaborated in

Corbetta and Shulman’s (2002) model may better describe the

existing data (Ansari et al., 2007). A second strand of research

is not so much concerned with capacity limited cognitive re-

sources, but with the nature of representational systems

mediating quantity processing for small and large arrays of

objects (Feigenson et al., 2004). In a recent review, Piazza

(2010) distinguishes two functionally and neuroanatomically

dissociable systems fundamental for quantification pro-

cesses. Whereas a substantial body of research corroborates

models that link estimation of large numerical quantities to

the functioning of an analog magnitude processing system

located in inferior parietal regions of both hemispheres (see

Dehaene, 2009, for a recent review), much less is known of a

putative second system underlying the rapid and accurate

processing of small collections of items. This latter, the so-

called object tracking system (Feigenson et al., 2002), is

assumed to be crucial for establishing and tracing individual

tokens of objects (see Carey, 2009, Chapter 3) and to be linked

to the functioning of extra-striate visual areas (Sathian et al.,

1999; but see Izard et al., 2008). The assumption of a func-

tional separation of representation systems for small and

precise versus large and approximate quantities was recently

supported by Palomares et al. (2011), who showed processing

of the object tracking systems to be restricted to small

numerosities, while the parietal processing system was

demonstrated to be involved in stimulus processing across the

whole numerical range.

Apart from experimental demonstrations of the behavioral

manifestations of numerical distance effect in adults

(Dehaene et al., 1990) and children (Sekuler and Mierkiewicz,

1977), neuroimaging methods such as electroencephalog-

raphy (EEG); (Dehaene, 1996; Temple and Posner, 1998) and

functional magnetic resonance imaging (fMRI); (Pinel et al.,

2001, 2004) were used to explore its neural basis. And just

recently, eyemovementmeasures were used to tap into levels

of numerical processing related to the execution ofmagnitude

comparisons (Merkley and Ansari, 2010).

In their seminal paper on atypical number development,

Ansari and Karmiloff-Smith (2002) suggested that differences

in behavioral and neural manifestations of numerical distance

effects may serve as predictors of individual mathematical

competencies and may allow for specific insights into the

relationship between impairments of basic numerical func-

tions and the development of so-called end-state representa-

tional systems. Consequently, a number of studies have

addressed developmental changes of manifestations of the

numerical distance effect. It was demonstrated that the impact

of distance manipulations on behavioral measures generally

decreases in the course of development (Duncan and

McFarland, 1980; Holloway and Ansari, 2008; but see

Reynvoet et al., 2009). Interestingly, on the level of neural

http://dx.doi.org/10.1016/j.cortex.2012.11.009
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functioning, an age-related increase of distance-related activa-

tion in relevant cortical regions such as the inferior parietal

cortex was demonstrated for numerical magnitude compari-

sons on symbolic (Ansari et al., 2005) and non-symbolic (Ansari

and Dhital, 2006) stimuli (for a review see Ansari, 2008).

Regarding the relationship of numerical distance effects and

individual numerical competencies, a number of studies using

symbolic comparison tasks reported larger behavioral distance

effects to be concomitant with lower mathematical achieve-

ment in children (De Smedt et al., 2009; Holloway and Ansari,

2009; Lonnemann et al., 2011; but see Landerl et al., 2009;

Landerl and Kölle, 2009). These age- and achievement-related

differences in numerical distance effects are either explained

by noisier mappings between number symbols and their rep-

resented quantities in younger populations and in those with

mathematical impairments (De Smedt et al., 2009; Holloway

and Ansari, 2009; Rousselle and Noël, 2007) or, alternatively,

by a lack of acuity at the level of numerical magnitude repre-

sentations per se (Heine et al., 2010; Mazzocco et al., 2011;

Piazza et al., 2010). For non-symbolic comparison paradigms,

the data are less conclusive. In line with the findings on sym-

bolic comparison tasks, Mussolin et al. (2010b) showed dis-

tance effects to correlate negatively with mathematical

achievement in 10- to 11-year-old children. However, studies

on somewhat younger children found no relationship between

performance in non-symbolic numerical comparison tasks

and measures of abstract mathematical abilities (De Smedt

and Gilmore, 2011, 6:8-year-olds; Holloway and Ansari, 2009,

6- to 8-year-olds; Rousselle and Noël, 2007, 7-year-olds; Soltész

et al., 2010, 4- to 7-year-olds). These latter findings are hard to

reconcile with the common assumption that the processing of

non-symbolic quantities, i.e., sets of objects, may serve as a

precursor for higher-level numerical cognition (Barth et al.,

2005, 5- to 6-year-olds; for a review see Ansari, 2008).

On the brain level, fMRI studies on developmental changes

in neural correlates of number processing typically find a so-

called fronto-parietal activation shift triggered by basic and

higher-level numerical tasks (Ansari, 2008). The observed in-

crease in activation in parietal regions in the course of indi-

vidual development is taken as evidence for a functional

specialization of the parietal cortex during ontogeny (Ansari

and Dhital, 2006; Holloway and Ansari, 2010). The concomi-

tant decreased involvement of prefrontal areas, on the other

hand, is assumed to reflect a disengagement of domain-

general processes related to executive control and working

memory over developmental time (Ansari et al., 2005; Rivera

et al., 2005). Neuroimaging studies on numerical distance ef-

fects in different mathematical achievement groups typically

report higher distance-related activation differences in infe-

rior parietal regions for controls compared to low achievers.

For example, using a symbolic comparison task, Mussolin

et al. (2010a) reported brain activation in bilateral inferior

parietal regions to be modulated systematically by numerical

distance manipulations only in controls, but not in children

with MLDs. Using non-symbolic numerical comparison tasks,

Price et al. (2007) showed larger distance-related activation

differences in right-hemispheric inferior parietal regions in

typically developing children compared to low math

achievers. These results were confirmed by a recent meta-

analysis of fMRI studies on typical and impaired numerical
development. Based on the still relatively small number of

published studies, a meta-analysis (Kaufmann et al., 2011)

identified patterns of stronger activation in the right posterior

parietal lobe in controls compared to low achievers in the

mathematical domain. Children with MLDs seem to rely more

on frontal brain areas and on more anterior parietal regions

that were suggested to be related to immature finger-based

number representations of quantities (Kaufmann et al.,

2008). However, these results are challenged by an fMRI

study on non-symbolic comparison that actually found

stronger activation in bilateral inferior parietal areas in chil-

dren with MLDs compared to their typically developing peers

(Kaufmann et al., 2009), or by studies that reported no differ-

ential activation in inferior parietal cortex but in frontal and

prefrontal areas (Kucian et al., 2011), occipital, as well as

subcortical and cerebellar regions (Kovas et al., 2009). These

latter findings, in particular, support the view that numerical

processing involves an extensive brain network, including but

not limited to inferior parietal areas. Overall, it is, thus, still an

open question whether and how differences in inferior pari-

etal activation levels are specifically related to differential

numerical and mathematical abilities.

Apart from investigations into event-related potential (ERP)

correlates of early, i.e., more automatized steps of numerical

processing, electrophysiological studies typically focus on so-

called late parietal positivities that are assumed to be reflections

of quantity processing functions in adults, children or also in

infants (Dehaene, 1996; Hyde and Spelke, 2011, 2012; Izard

et al., 2008; Soltész et al., 2011; Szücs et al., 2007; Temple

and Posner, 1998). For both, symbolic and non-symbolic

comparison tasks, more positive-going amplitudes of the

late parietal ERP components in response to large compared to

small numerical distances were found in typical adult

(Paulsen and Neville, 2008; Paulsen et al., 2010; Turconi et al.,

2004), and in younger populations (Heine et al., 2011; Soltész

et al., 2007; Temple and Posner, 1998). However, there are

also reports of reversed amplitude effects under certain

experimental conditions such as habituation paradigms (Hyde

and Spelke, 2009) or task designs that involve comparisons

with memorized numerical standards (Libertus et al., 2007).

Interestingly, Soltész et al. (2007) found no distance-related

effects for the late positive ERPs in a group of adolescents

with impairments in the domain of mathematics, while age-

matched typical achievers (TAs) showed a partially graded

distance effect that was reminiscent of the fully graded dis-

tance effect demonstrated for an adult control group.

To sum up, the rather sparse and overall somewhat

inconsistent data on neural signatures of basic numerical ca-

pacities in children suffering from MLDs obviously call for

further studies into the neurocognitive correlates of typical

and atypical magnitude processing. What is more, systematic

investigations of processing signatures for stimuli tapping into

different numerical ranges are required so as to gain insight

into specific neurocognitive mechanisms related to the func-

tioning of the two postulated core systems of number pro-

cessing, i.e., the small number system and the approximate

number system (Butterworth, 2010; Feigenson et al., 2004;

Piazza, 2010). EEG, which offers an excellent temporal resolu-

tion, seems to be especially well-suited to track subtle indi-

vidual differences in the time-course of numerical processing.

http://dx.doi.org/10.1016/j.cortex.2012.11.009
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The aim of the present study was, thus, to probe distance-

related electrophysiological effects in children with MLDs

compared to a matched group of typically developing primary

schoolers by analyzing ERPs and concomitant patterns of

activation in underlying cerebral current sources. Our focus on

childrenduring their first years of schooling ismotivated by the

fact that it is typically at this point in development that critical

deviations in basic numerical processing capacities become

obvious in populations at risk for MLDs (Geary, 2004, 2010).

Following the general experimental procedures described

in the literature, we investigated ERP and current density ef-

fects of numerical distance manipulations for non-symbolic

stimuli in the subitizing range (i.e., arrays of up to four

items, see Kaufman et al., 1949), the so-called counting range

which spans arrays from four up to ten items (Piazza et al.,

2003; Temple and Posner, 1998) and the estimation range

(Ansari et al., 2007; Hyde and Spelke, 2009). Since canonicity of

the displayed arrays of objects was shown to shift the cut-off

point in behavioral performancemeasures, we added a fourth

condition that involved arrays of canonical dot patterns

(Mandler and Shebo, 1982, Exp. 4). While more recent studies

on non-symbolic numerical processing typically focus on the

comparison of small and large number processing (e.g., Ansari

et al., 2007; Hyde and Spelke, 2009), we were also interested in

distance effects for stimuli in the counting range, which were

shown to also elicit late positive-going ERPs in typically

developing children and in adults (Temple and Posner, 1998).

Including not only non-canonical, but also canonical arrays of

stimuli allows for further insight into the impact of familiarity

of appearance on non-symbolic magnitude processing for

stimuli within and just beyond the subitizing range and, thus,

accommodates the discussion of whether subitizing may or

may not be based primarily on a pattern-matching mecha-

nism not specific to small numerosities (i.e., the pattern-

matching hypothesis; Logan and Zbrodoff, 2003; Mandler

and Shebo, 1982).

Choosing non-symbolic comparisons over symbolic tasks

was mainly motivated by the fact that non-symbolic stimuli

can be assumed to tap into the very basic processing functions

proposed to underlie higher-level capacities (Piazza, 2010).

Interestingly, Maloney et al. (2010) recently demonstrated that

compared to symbolic variants of number comparisons in

general, and particularly paradigms that involve comparisons

of digits to a standard, non-symbolic magnitude comparisons

have the highest reliability.
2. Materials and methods

2.1. Participants

The data from 40 second and third graders were used for the

present EEG study on non-symbolic numerical comparison

(i.e., 20 children with MLDs, 20 matched typically developing

controls). Approval from the local research ethics committee

was obtained prior to study enrollment, and all participants

and their parents gave written informed consent.

The group of participants was selected from a pool of 1242

children from six public primary schools in Berlin based on

their performance scores in several standardized tests, i.e.,
mathematical achievement [Heidelberger Rechentest 1-4 (HRT 1-

4), Haffner et al., 2005], intelligence [Kognitiver Fähigkeitstest –

Grundschulform (1-3, Heller and Geisler, 1983)] and working

memory capacity [Working Memory Test Battery for Children

(WMTB-C, Pickering and Gathercole, 2001)]. In a first step,

children from the original pool were administered the HRT 1-4

(Haffner et al., 2005). The HRT 1-4 is a standardized math

achievement test for grades 1e4 that comprises two sub-

scales. The arithmetic subscale includes timed tests of arith-

metic skills, e.g., addition, subtraction, multiplication, and

division, whereas the second subscale consists of tests of

visuo-spatial abilities, e.g., 2D-length estimation, estimation

of set size. After the initial screening for mathematical

achievement, a group of 382 children entered the second

diagnostic phase. Children’s general cognitive performance

levels were determined using the KFT 1-3, a standardized in-

telligence test for primary school children (Heller and Geisler,

1983). After exclusion of children with IQs more than 1 stan-

dard deviation (SD) below the standard mean, working

memory functions were assessed using the WMTB-C, a stan-

dardized test battery (Pickering and Gathercole, 2001). In a last

step, screenings for possible attentional problems were car-

ried out using the children’s color trails test (CCTT), a stan-

dardized diagnostic tool (Llorente et al., 2003) and a short

questionnaire for teachers (Conners, 1973). Additionally, per-

formance in reading and spelling was measured by stan-

dardized tests, i.e., the Salzburger Lese-Screening für die

Klassenstufen 1-4 (SLS 1-4, Mayringer and Wimmer, 2003) and

the spelling subtest of the Salzburger Lese- und

Rechtschreibtest (SLRT), (Landerl et al., 1997). These final

diagnostic testings guaranteed for both achievement groups

that children with potential attentional, reading or spelling

problems were excluded from the study (cut-off scores for all

screenings: �.8 SD below the standard means).

Based on their performance on the arithmetic subscale of

the math achievement test, children were assigned to one of

two experimental groups, i.e., children with MLDs (math per-

formance scores �1.65 SD below the standard mean, which

corresponds to the fifth percentile as critical threshold, cf.

Ramus et al., 2003; 10 girls; 9 2nd/11 3rd graders) and a group of

typically performing children that were matched with respect

to age, grade level, intelligence andworkingmemory functions

(TA; math performance scores �.3 SD below the standard

mean; 11 girls; 9 2nd/11 3rd graders; see Table 1). We decided

for a conservative cut-off criterion in order to assure that only

children with MLD were included in the study (see Mazzocco

et al., 2011, who distinguished between children with MLDs,

i.e., diagnostic scores below the 10th percentile, and mathe-

matical low achievers, i.e., scores between the 11th and 25th

percentile). While children’s math scores differed significantly

between the two achievement groups (all ps< .001), the groups

were matched with regard to age, intelligence and working

memory capacity (all ps > .300; see Table 1).

2.2. Materials and procedure

EEG data were obtained while children performed a magni-

tude comparison task that involved four separate numerical

conditions, i.e., different numerical ranges. The task required

children to decide which of two sequentially displayed arrays

http://dx.doi.org/10.1016/j.cortex.2012.11.009
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Table 1 e Relevant demographic and diagnostic variables.

Matching variable Achievement group F
(1, 38)

p

MLD (n ¼ 20) TA (n ¼ 20)

M (SD) M (SD)

Age (months) 99.2 (9.0) 98.4 (6.4) .43 .466

Intelligencea 53.05 (6.59) 54.30 (6.60) .36 .553

Mathematicsb

Composite score 34.40 (3.60) 52.15 (4.84) 173.17 .000

Arithmetic operations 32.05 (2.87) 53.25 (8.94) 101.86 .000

Visuo-spatial abilities 41.95 (6.24) 52.50 (7.60) 22.99 .000

Working memoryc

Central executive 87.30 (11.86) 91.35 (12.53) 1.10 .300

Phonological loop 93.15 (13.87) 94.20 (14.40) .06 .816

Visuo-spatial

sketchpad

86.70 (19.41) 89.75 (19.45) .25 .622

Note: MLD, children with mathematical learning disabilities; TA,

typical achievers.

a KFT 1-3, mean standard score ¼ 50, SD ¼ 10.

b HRT 1-4, mean standard score ¼ 50, SD ¼ 10.

c WMTB-C, mean standard score ¼ 100, SD ¼ 15.
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of dots was the numerically larger one (see Fig. 1). Each trial

started with a fixation cross (600 msec), followed by the first

array of dots (1000 msec), another fixation cross (600 msec),

and the second dot array (1000 msec; interstimulus interval

(ISI) ¼ 3000 msec). Apart from two minor changes, the overall

study design was adopted from the experimental procedure

described by Ansari et al. (2007). However, in order to avoid

errors caused by a mix-up of the temporal sequence of the

displays within each trial, the dots were presented slightly to

the left or right of the fixation cross. For each stimulus, both

lefteright and righteleft sequences were generated and ran-

domized so that the presentation of the two laterality com-

binations was balanced out. The children had to respond to

the larger set size by pressing the button on the corresponding
Fig. 1 e Experimental design with timing information and

examples of stimuli for each block.
side of the response box. A third button had to be pressed for

equal set sizes, which were included in order to prevent the

children fromdrawing premature inferences about the second

array in those caseswhere the first stimulus part wasmade up

of the smallest or the largest set sizes for the respective

experimental condition. A secondmodification concerned the

timing of the response execution. In order to provide for suf-

ficient artifact-free EEG segments, children were instructed to

wait with the response execution until a cue appeared on the

screen. These adjustments to the settings were introduced

after two test runs with age-matched typically developing

children who did not take part in the current study but were

recruited in order to assess the suitability of the experimental

settings for this specific age group.

The experiment consisted of four experimental blocks

separated by rest periods. Within each block, stimuli from

only one of the four numerical conditions were presented in

random order. Depending on the respective experimental

condition, the stimuli consisted of arrays of either 1, 2, 3 and 4

(‘subitizing’ e SUB), 4, 5, 6 and 7 (‘small-number estimation’ e

ESTS), or 10, 20, 30 and 40 (‘large-number estimation’ e ESTL)

randomly distributed dots, or of 4, 5, 6 and 7 dots that were

arranged into dice or domino patterns (‘canonical patterns’ e

CAN).1 It is important to note that even though arrays of 4, 5, 6

and 7 dots (ESTS, CAN) are instantiating the numerical range

typically referred to as the ‘counting range’ in the literature

(Piazza et al., 2003), the short stimulus presentation times

used for the present experimental setting (i.e., 1000 msec)

prevented counting processes to take place. Additionally,

children were explicitly instructed to not count the dots, but

try to find the correct solution by approximation.

For each condition, the dot arrays were assembled into

pairs of 16 numerically different sets of dot arrays (e.g., 1-1, 1-

2, 1-3, 1-4, 2-1, to 4-4 for the subitizing range). Numerical dif-

ferences of two and three dots for the smaller numerical

ranges (SUB, CAN, ESTS), and 20 and 30 dots for large-number

estimation were considered large numerical distances, while

a difference of one or 10 dots, respectively, was considered a

small numerical distance. This resulted in six sets instanti-

ating large distances and six sets instantiating small distances

for each numerical condition.

In order to provide for equal numbers of EEG segments

across the four conditions after the elimination of errors trials,

the stimuli were presented either four or five times, depend-

ing on complexity (i.e., subitizing and canonical patterns: 64

trials; small-number and large-number estimation: 80 trials).

Prior to each of the four or five presentation cycles within the

blocks, the order of the stimuli was randomized. The overall

duration of stimulus presentation was 24 min, divided into

four blocks (SUB: 5 min, ESTL: 6 min, CAN: 5 min, ESTS: 6 min)

with variable resting periods in between.
1 The decision to introduce a set size of four items for both the
subitizing and the small-number estimation conditions was
motivated by two considerations: Firstly, the cut-off for the
subitizing range actually falls somewhere between 3 and 4 items
and varies interindividually. Secondly, since no canonical pat-
terns exist for larger numerical values, the largest set size within
the counting range had to be set at 7 � which, in turn, was
included to provide for comparable stimulus arrays across the
four conditions.

http://dx.doi.org/10.1016/j.cortex.2012.11.009
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In order to minimize afterimages, the arrays of white dots

were presented on a medium gray screen. Non-numerical

variables that are continuous with numerical size were

controlledwithin each of the four experimental conditions (see

Piazza et al., 2004). Intensive parameters, i.e., individual dot

size and spacing between the dots, are systematically related

to extensive parameters, i.e., cumulative area of all dots and

overall area covered by the dot configurations. Following

Ansari et al. (2007), we held one of the extensive variables

constant, i.e., the overall area of the dot configuration did not

change within each of the experimental conditions (see also

Libertus et al., 2007; Paulsen and Neville, 2008), and created

combinations of dots arrays for all set sizes that were equated

with respect to one of the intensive parameters (i.e., dot size

and spacing between the dots). This means that within each

single trial the arrays were equated along only one of the

intensive continuous dimensions. However, within each

experimental condition, the intensive variables were equated

across the repetitions of set size combinations. Furthermore,

the exact locations of the individual dot configurations (left/

right from the fixation cross; upper/lower half of the screen)

were balanced within the experimental conditions.

Following a standardized set of instructions, the children

were asked to respond as quickly and accurately as possible as

soon as the response cue appeared on the screen. Each of the

experimental blocks was preceded by 10 practice trials, during

which the childrenwere invited to comment on their choice of

button in order to make sure they fully understood the task.

The children were seated in front of the computer screen (17”

CRT display; distance: 60 cm) with their hands resting on the

button box. During the experimental runs, the ambient light

was dimmed.

2.3. Acquisition and pre-processing of the EEG data

Continuous EEG was recorded from 27 active electrodes

(actiCAP system, Brain Products, Munich) placed according to

the extended international 10e20 system. Horizontal and

vertical eye movements were recorded unipolarly (i.e., sub-

and supra-orbital, right and left outer cantheal sites). All

electrodes were online referenced to the left mastoid lead.

Electrode impedances were kept below 5 kU for the scalp

electrodes, and below 10 kU for the electrooculogram. The

recordings were amplified using a BrainAmp system (Brain

Products, Munich). The sampling rate was 250 Hz.

The data were pre-processed using the BrainVision

Analyzer software (Brain Products, Munich). In a first step, the

EEG was filtered (bandwidth: .1e30 Hz, 24 dB/oct; and 50 Hz

notch), and offline re-referenced to an average of the left and

right mastoids. An independent component analysis was

carried out on the filtered data to remove ocular artifacts from

the EEG signal. An automatic rejection procedure (cut-off:

�90 mV) was applied on the thus reconstructed EEG signal.

The continuous EEG signal was segmented into single trials

(interval: �200e1000 msec), time locked to the onsets of the

critical stimulus parts (i.e., the second dot array). After

exclusion of all error trials, baseline corrected average ERPs

were computed for each participant and stimulus category

(baseline: 200e0 msec pre-stimulus).
2.4. Data analysis

Mean error rates and reaction times (RTs) were calculated for

each participant and stimulus condition. Mean RTs were

calculated on the basis of correct trials only. Tukey’s (1977)

fence method was applied to remove extreme outliers, i.e.,

the first quartile minus two times the interquartile range [i.e.,

Q1 � 2 (Q3 � Q1)] constitutes the lower and the third quartile

plus two times the interquartile range [i.e., Q3 þ 2 (Q3 � Q1)]

the upper fence. Trials with RTs that exceeded this rangewere

excluded from the analyses. After the elimination of outliers,

an average of 98.4% of the correct trials entered the analyses.

Mixed repeated-measures analyses of variance (ANOVAs)

were performed on mean error rates and mean RTs with nu-

merical condition (SUB, ESTL, CAN, ESTS) and numerical dis-

tance (small, large) as within-subject factors, and group (MLD,

TA) as between-subjects factor. However, RT data should be

treatedwith caution, because childrenwere instructed to wait

with their responses until the response cue was shown, i.e.,

children’s response timesmay not actually reflect efficiency of

numerical processing per se but domain general abilities

related to cued response execution.

Based on visual inspection of grand average waveforms at

posterior electrode sites that were shown to be modulated by

numerical parameters in previous electrophysiological

studies (Dehaene, 1996; Hyde and Spelke, 2009, 2011; Libertus

et al., 2007; Temple and Posner, 1998), two time windows were

selected for the ERP analysis. An early time window that

comprises the parietal N1 component, i.e., the first negative-

going component that follows the P1 (interval:

110e210msec; early timewindow; Johannes et al., 1995), and a

second time window that covers the large positive-going

deflection at parietal electrode sites (interval: 280e600 msec;

late time window). Statistical tests were focused only on

relevant clusters of electrodes (cf. Luck, 2005, who suggests to

‘analyze an ERP component only at sites where the compo-

nent is actually present’; p. 254), i.e., left (P3, P7, CP5, O1) and

right (P4, P8, CP6, O2) parieto-occipital recording sites which

correspond to the effect sites typically referred to in the

literature on number processing (Dehaene, 1996; Temple and

Posner, 1998).

Following the procedure described by Hyde and Spelke

(2012), who implemented a very similar design for an EEG

study on numerical processing in healthy adults, peak la-

tencies were used to decide whether separate or combined

analyses of the ERP components for the different numerical

conditions were warranted. Consistency in peak morphology

across different experimental conditions indicates that ac-

tivity in the respective time window can be explained by one

single ERP component, which, in turn, suggests a joint anal-

ysis of that component across conditions. For this purpose, an

automatic peak detection algorithm was applied to identify

global maxima in the predefined time windows for the pooled

bilateral parieto-occipital electrodes. Peak latency data were

compared using repeated-measures ANOVAs with numerical

condition as within-subject factor for each time window.

Experimental effects on both ERP components were tested

by computing average amplitudes centered over critical in-

tervals for each of the electrodes. The thus determined ERP
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Table 2 e Mean error rates and RTs separated by
achievement group and numerical condition.

Measure Numerical distance

Small Large

M (SD) M (SD)

Children with MLDs

Subitizing (a)

Error rate (%) 8.91 (4.39) 3.75 (7.89)

RT (msec) 601 (202) 595 (268)

Large-number estimation (b)

Error rate (%) 42.53 (10.29) 12.75 (6.83)

RT (msec) 700 (232) 651 (259)

Canonical patterns (c)

Error rate (%) 11.86 (8.68) 6.09 (5.12)

RT (msec) 652 (277) 600 (322)

Small-number estimation (d )

Error rate (%) 42.08 (12.12) 13.50 (14.20)

RT (msec) 742 (308) 627 (244)

TAs

Subitizing (a)

Error rate (%) 7.30 (6.08) 2.70 (4.08)

RT (msec) 524 (156) 543 (164)

Large-number estimation (b)

Error rate (%) 36.63 (12.69) 4.31 (4.60)

RT (msec) 560 (235) 542 (174)

Canonical patterns (c)

Error rate (%) 4.39 (10.39) 4.18 (7.14)

RT (msec) 527 (171) 508 (172)

Small-number estimation (d )

Error rate (%) 33.13 (12.42) 6.23 (9.94)

RT (msec) 747 (330) 569 (195)
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data were subjected to mixed repeated-measures ANOVAs

with numerical condition (for the early time window only),

laterality (left, right), recording site (inferior parietal, IP; su-

perior parietal, SP; central-parietal, CP; occipital, OC) and nu-

merical distance (small, large) as within-subject factors, and

group as between-subject factor. A number of follow-up an-

alyses were carried out to gain further insights into the spe-

cific effects of relevant factors. The ERP waveforms were low-

pass filtered offline with 10 Hz filter for presentation purposes

only. All statistical analyses were performed on unfiltered

data.

Across all types and levels of the statistical analysis,

GreenhouseeGeisser corrected p- and epsilon-values (εGG) are

reported when the assumption of sphericity was violated (see

Luck, 2005). Bonferroni corrected post-hoc tests were carried

out where appropriate, and corrected p-values are reported.

Standardized low-resolution brain electromagnetic to-

mography (sLORETA; Pascual-Marqui, 2002) was applied to

estimate the underlying cortical generators of scalp effects.

Significant differences in current source distributions were

determined using statistical nonparametric mapping pro-

cedures (SnPM; Holmes et al., 1996) as implemented in sLOR-

ETA, i.e., randomization tests (5000 permutations) corrected

for multiple comparisons. To gain insight into differences

between the two achievement groups that were related to

numerical distance manipulations, we used an independent

groups design ([(A�A2) vs. (B�B2)]), with A and A2, and B and

B2 paired, but (A,A2) independent of (B,B2); cf. Pascual-Marqui,

2003), where A and A2 refer to large and small numerical

distances for the group of TAs, while B and B2 refer to

the corresponding conditions for the group of children with

MLD.
3. Results

3.1. Behavioral data

Children’s responses were both slower and less accurate

when the numerical distance was small (i.e., distance effect),

or when the dot arrays were complex (i.e., small-number and

large-number estimation). Overall, children with MLD per-

formed worse than their typically developing peers. However,

no specific interactions between group and the factors con-

dition or distance were found (see Table 2).

3.1.1. Error rates
The analyses of error rates revealedmain effects of numerical

condition, F(3, 114) ¼ 112.34, p < .001, εGG ¼ .74, h2p ¼ .747;

distance, F(1, 38) ¼ 487.65, p < .001, h2p ¼ .938, and group; F(1,

38) ¼ 7.98, p ¼ .007, h2p ¼ .174. Of the interactions only

condition by distance was significant, F(3, 114) ¼ 118.05,

p < .001, h2p ¼ .756 (all other ps �.215). Across both groups,

accuracy differed depending on numerical condition (SUB:

5.66%, SD ¼ 4.99; ESTL: 24.05%, SD ¼ 8.11; CAN: 6.63%,

SD ¼ 7.34; ESTS: 23.73%, SD ¼ 11.82; post-hoc comparisons:

SUB vs ESTL, CAN vs ESTL, SUB vs ESTS, CAN vs ESTS: ps < .001;

all other ps > .999) and distance (small: 23.35%, SD ¼ 7.85;

large: 6.69%, SD ¼ 5.80). Furthermore, children with MLD

committed more errors than TAs (MLD: 17.68%, SD ¼ 5.50; TA:
12.36%, SD ¼ 6.40). The interaction effect was caused by a

much steeper distance-related decline in performance for

small-number and large-number estimations compared to the

other two conditions.

3.1.2. RTs
The analysis of RTs revealed significant effects of numerical

condition, F(3, 114) ¼ 4.43, p ¼ .006, h2p ¼ .104; distance,

F(1, 38)¼ 19.72, p< .001, h2p ¼ .342, and a condition by distance

interaction, F(3, 114) ¼ 8.55, p < .001, εGG ¼ .80, h2p ¼ .184 (all

other ps �.248). Similarly to the accuracy data, children’s RTs

varied with condition (SUB: 566 msec, SD ¼ 197; ESTL:

613 msec, SD ¼ 221; CAN: 572 msec, SD ¼ 237; ESTS: 671 msec,

SD ¼ 258; post-hoc comparisons: SUB vs ESTS, CAN vs ESTS:

ps < .045; all other ps > .462) and numerical distance (small:

632 msec, SD¼ 200; large: 579msec, SD¼ 188). However, while

children with MLD were slower that TA, this difference in RTs

was not significant (MLD: 646 msec, SD ¼ 222; TA: 565 msec,

SD ¼ 149; p ¼ .184).

3.2. Electrophysiological data

3.2.1. Early time window, preliminary analysis
A repeated-measures ANOVA on peak latencies for the pooled

bilateral parieto-occipital electrodeswith numerical condition

as within-subject factor revealed no significant timing differ-

ences for the early ERP component, F(3, 117) ¼ 1.22, p < .305,
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h2p ¼ .030 (SUB: 156 msec, SD ¼ 31; ESTL: 162 msec, SD ¼ 24;

CAN: 159 msec, SD ¼ 27; ESTS: 162 msec, SD ¼ 25; post-hoc

comparisons: all ps > .769). This consistency in peak la-

tencies suggests that the negative-going activity in the early

timewindow can be explained by a single ERP component (see

Fig. 2), which suggests a joint analysis across all numerical

conditions.

3.2.2. Early time window, main analysis
A repeated-measures ANOVA on mean amplitudes over the

critical interval with numerical condition, laterality, recording

site and distance as within-subject factors, and group as

between-subjects factor revealed significant main effects of

recording site, F(3, 114) ¼ 30.35, p < .001, εGG ¼ .61, h2p ¼ .444

(IP: �.51 mV, SD ¼ 3.35; SP: 3.16 mV, SD ¼ 4.30; CP: .60 mV,

SD ¼ 3.37; OC: 4.06 mV, SD ¼ 4.75; post-hoc comparisons: IP vs

SP, IP vs OC, SP vs CP, CP vs OC: ps < .001; all other ps > .125),

numerical condition, F(3, 114) ¼ 9.20, p < .001, h2p ¼ .195, and

group, F(1, 38)¼ 5.24, p¼ .028, h2p¼ .121, as well as a significant

two-way interaction of numerical condition and recording site,

F(9, 342)¼ 8.01, p< .001, εGG¼ .44, h2p ¼ .174. Themain effect of

numerical condition resulted from more negative-going am-

plitudes for the smaller numerical ranges compared to large-

number estimation (SUB: 1.72 mV, SD ¼ 3.81; ESTL: 3.44 mV,

SD¼ 4.10; CAN: 1.12 mV, SD¼ 4.08; ESTS: 1.02 mV, SD¼ 3.73; post-

hoc comparisons: ESTL vs SUB, ESTL vs CAN, ESTL vs ESTS:

ps < .042; all other ps > .999). The main effect of group was due

to larger N1-amplitudes for TAs in comparison to childrenwith

MLD (TA: .61 mV, SD ¼ 4.62; MLD: 3.05 mV, SD ¼ 4.77; see Fig. 3).

3.2.3. Late time window, preliminary analysis
A repeated-measures ANOVA on peak latencies revealed a

significant effect of numerical condition, F(3, 117) ¼ 9.35,

p < .001, εGG ¼ .80, h2p ¼ .193. The first positive component

following the N1 peaked approximately 50 msec later in

response to dot arrays in the subitizing range compared to all

other numerical conditions (SUB: 414 msec, SD ¼ 57; ESTL:

361 msec, SD ¼ 62; CAN: 356 msec, SD ¼ 62; ESTS: 359 msec,

SD ¼ 68; post-hoc comparisons: SUB vs ESTL, SUB vs CAN, SUB
Fig. 2 e Stimulus-locked waveforms response to the

different numerical conditions for the pooled bilateral

parieto-occipital electrodes. The ERPs were averaged

across groups and numerical distances.
vs ESTS: ps < .001; all other ps > .999). This peak delay is

consistent with the findings from a recent study on adults

(Hyde and Spelke, 2012), and, following Hyde and Spelke’s

approach, warranted separate analyses for the different nu-

merical conditions.

3.2.4. Late time window, main analysis
Mean ERP amplitudes for the critical intervals were submitted

to separate repeated-measures ANOVAs for each numerical

condition with laterality, recording site and distance as

within-subject factors, and group as between-subjects factor.

For the subitizing condition, the repeated-measures ANOVA

revealed significant main effects of recording site, F(3,

114)¼ 64.06, p< .001, εGG¼ .53, h2p¼ .628 (IP: 12.00 mV, SD¼ 4.47;

SP: 14.10 mV, SD ¼ 6.10; CP: 6.46 mV, SD ¼ 4.64; OC: 17.91 mV,

SD ¼ 7.68; post-hoc comparisons: all ps < .007), and numerical

distance, F(1, 38) ¼ 7.19, p ¼ .011, h2p ¼ .159 (small: 11.38 mV,

SD ¼ 6.29; large: 13.86 mV, SD ¼ 4.99), as well as interactions of

laterality by distance, F(1, 38) ¼ 14.06, p ¼ .001, h2p ¼ .270, and

laterality by recording site, F(3, 114) ¼ 3.29, p ¼ .023, εGG ¼ .67,

h2p ¼ .080. For large-number estimation, a main effect of

recording site, F(3, 114)¼ 34.30, p< .001, εGG¼ .48, h2p ¼ .474 (IP:

11.08 mV, SD ¼ 4.35; SP: 13.45 mV, SD ¼ 5.51; CP: 5.67 mV,

SD ¼ 4.70; OC 14.43 mV, SD ¼ 8.31; post-hoc comparisons: SP vs

OC: p> .999; all other ps< .006), and interactions of laterality by

distance, F(1, 38) ¼ 7.37, p ¼ .010, h2p ¼ .162, laterality by

recording site, F(3, 114)¼ 6.74, p< .001, εGG¼ .55, h2p¼ .151, and

laterality by distance by group, F(1, 38) ¼ 5.88, p ¼ .020,

h2p ¼ .134, were found. For the canonical patterns, the analysis

yielded a main effect of recording site, F(3, 114) ¼ 37.04,

p< .001, εGG ¼ .47, h2p ¼ .494 (IP: 8.31 mV, SD¼ 4.00; SP: 11.87 mV,

SD ¼ 6.45; CP: 5.61 mV, SD ¼ 5.78; OC: 13.67 mV, SD ¼ 6.57; post-

hoc comparisons: SP vs OC: p ¼ .625; all other ps < .001), and

interactions of laterality by distance, F(1, 38) ¼ 5.87, p ¼ .020,

h2p ¼ .134, recording site by distance, F(3, 114) ¼ 4.88, p ¼ .010,

εGG ¼ .66, h2p ¼ .114, and laterality by distance by group, F(1,

38) ¼ 9.83, p ¼ .003, h2p ¼ .206. For small-number estimation, a

main effect of recording site, F(3, 114) ¼ 41.29, p < .001,

εGG ¼ .58, h2p ¼ .521 (IP: 9.90 mV, SD ¼ 3.76; SP: 10.12 mV,

SD ¼ 5.15; CP: 4.06 mV, SD ¼ 3.75; OC: 13.35 mV, SD ¼ 7.32; post-

hoc comparisons: IP vs SP: p > .999; all other ps < .014), and

interactions of laterality by distance, F(1, 38) ¼ 4.34, p ¼ .044,

h2p ¼ .103, laterality by recording site, F(3, 114) ¼ 6.43, p < .001,

εGG ¼ .68, h2p ¼ .145, and laterality by distance by group, F(1,

38) ¼ 4.31, p ¼ .045, h2p ¼ .102, were found.

The significant interactions of laterality and distance for all

numerical ranges can be attributed to the absence of numer-

ical distance effects across all conditions for left in contrast to

right posterior electrodes (see Fig. 3). Paired t-tests on pooled

left parieto-occipital recording sites confirmed this observa-

tion [SUB: t(39) ¼ �.72, p ¼ .479; ESTL: t(39) ¼ �.75, p ¼ .456;

CAN: t(39) ¼ .39, p ¼ .696; ESTS: t(39) ¼ �.53, p ¼ .597]. The

follow-up analyses to further investigate the effects of dis-

tance manipulations for the two groups were, thus, carried

out for pooled right-hemisphere electrodes only. Repeated-

measures ANOVAs for each numerical condition with dis-

tance as within-subject factor and group as between-subjects

factor revealed a main effect of distance, F(1, 38) ¼ 15.49,

p < .001, h2p ¼ .290, for the subitizing condition, but no inter-

action. For large-number estimation, an effect of distance, F(1,
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Fig. 3 e Stimulus-locked ERP waveforms at nine selected electrodes for both achievement groups (MLD: red; TA: blue). Large

and small distances are plotted separately for each numerical condition, i.e., panels (a) subitizing, (b) large-number

estimation, (c) canonical patterns and (d) small-number estimation. (MLD, children with mathematical learning disabilities;

TA, typical achievers.)
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38)¼ 7.04, p¼ .012, h2p¼ .156, and an interaction of distance by

group, F(1, 38) ¼ 4.19, p ¼ .048, h2p ¼ .099, were found. For the

canonical patterns, distance and group interacted signifi-

cantly, F(1, 38) ¼ 6.36, p ¼ .016, h2p ¼ .143, while for small-

number estimation the main effect of distance, F(1,

38) ¼ 8.76, p ¼ .005, h2p ¼ .187, and a distance by group inter-

action, F(1, 38)¼ 4.51, p¼ .040, h2p¼ .106, were significant. This

pattern of findings was followed up by paired t-tests that

confirmed that for the group of MLD effects of numerical

distance were present only for dot arrays in the subitizing
range ( p ¼ .009), but absent for all other numerical conditions

(all ps� .438), whereas TAs showed distance effects across the

whole numerical range (all ps � .015; see Table 3).

To sum up the results of the analyses, the distance-related

amplitude modulations of late positive-going components

documented for the group of TAs are in line with previous ERP

studies on numerical distance effects in children (Soltész

et al., 2007; Temple and Posner, 1998). In contrast to the sta-

ble distance effects across the whole numerical range

demonstrated for TA, the group of children with MLD showed
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Table 3 e Results of the follow-up t-tests on mean ERP amplitudes (mV) of the late positive-going deflection at parietal
electrode sites (interval: 280e600 msec; late time window) for the right-hemisphere posterior cluster of electrodes (P4, P8,
CP6, O2) (statistically significant p values in boldface)

Measure Numerical distance t(19) p

Small Large

M (SD) M (SD)

Children with MLDs

Subitizing (a)

R. Posterior cluster 10.56 (6.24) 14.81 (4.06) �2.93 .009

Large-number estimation (b)

R. Posterior cluster 10.92 (5.66) 11.44 (5.80) �.48 .636

Canonical patterns (c)

R. Posterior cluster 9.32 (4.32) 8.65 (5.65) .55 .589

Small-number estimation (d )

R. Posterior cluster 8.75 (4.60) 9.47 (4.57) �.79 .438

TAs

Subitizing (a)

R. Posterior cluster 10.67 (6.81) 14.92 (7.15) �2.66 .015

Large-number estimation (b)

R. Posterior cluster 10.00 (7.02) 14.07 (5.47) �3.02 .007

Canonical patterns (c)

R. Posterior cluster 8.89 (4.87) 12.68 (7.21) �2.96 .008

Small-number estimation (d )

R. Posterior cluster 7.54 (6.19) 11.88 (6.60) �2.99 .007
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effects of distance manipulations only for stimuli in the

subitizing range.

In a final step, sLORETA standardized current density es-

timations were performed on the late component to identify

cortical current sources of differential effects of numerical

distance on scalp voltage distributions for the two groups.

Fig. 4 shows the results of the sLORETA computations. Sig-

nificant distance-related current source density differences

for the contrast TA versus MLD were established in several

brain regions, i.e., inferior parietal (Brodman area (BA) 40),

medial frontal (BA 24, BA 32) and occipital (BA 19) areas. Most

notably, distance-related group differences were found in the

right inferior parietal cortex for stimuli in the counting (CAN,

ESTS) and large-number estimation (ESTL) ranges. Noticeable,

however, is the absence of distance-related activation differ-

ences in inferior parietal areas between the two achievement

groups for stimuli in the subitizing range (SUB). For small set

sizes, differences were found only for a right occipital cluster

of voxels. For non-canonical patterns in the counting range

(ESTS), additional current density differences were found in

the medial prefrontal cortex. It should be kept in mind, how-

ever, that in interpreting the results of sLORETA analyses, a

good measure of caution is warranted with respect to the

precision of current source localization in general. Neverthe-

less, there is convincing evidence for the validity and reli-

ability of sLORETA solutions even for low-density EEG data

(Anderer et al., 2003; Mulert et al., 2004; Vitacco et al., 2002).
4. Discussion

The present study was designed to investigate the electro-

physiological indices of non-symbolic numerical processing

in children with MLDs compared to typically developing
children. A non-symbolicmagnitude comparison task allowed

us to determine the effects of distance manipulations for

different numerical ranges, i.e., the subitizing, counting and

estimation ranges. For the group of TAs, we found the am-

plitudes of late positive-going parietal ERP waveforms to be

systematically affected by the magnitude of quantity differ-

ences between stimulus arrays. This is in line with previous

ERP studies on numerical distance effects (Heine et al., 2011;

Paulsen and Neville, 2008; Paulsen et al., 2010; Temple and

Posner, 1998). The observed amplitude effects, i.e., more

positive-going ERP waveforms for large compared to small

distances, were more pronounced over right than over left

parietal electrode sites, and detectable across all numerical

ranges. Following Dehaene’s (1996) early study on electro-

physiological correlates of numerical distance processing, late

posterior positivities are commonly assumed to be a reflection

of current source activity primarily in inferior parietal regions

(see e.g., Soltész et al., 2007; Temple and Posner, 1998). This

interpretation of ERP patterns mirrors the fMRI literature on

numerical comparisons (Fias et al., 2003; Holloway and Ansari,

2010; Kaufmann et al., 2011; Piazza et al., 2004). Positive de-

flections over parietal scalp sites are, thus, supposed to reflect

the recruitment of domain-specific resources for the repre-

sentation and manipulation of numerical quantities (Ansari,

2008; Brannon, 2006; Dehaene and Cohen, 1995; Dehaene

et al., 2003; but see Shuman and Kanwisher, 2004).

On the behavioral level, children with MLD, even though

performing less accurately than their typically developing

peers, did not differ qualitatively from the TAs in that similar

numerical distance effects were observed in both groups, i.e.,

no interactions effects were found. Our results confirm previ-

ous studies (Landerl et al., 2009; Landerl and Kölle, 2009), and

corroborate Holloway and Ansari’s (2009) assumption that

behavioral measures of non-symbolic numerical comparison
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Fig. 4 e Differences in distance-related current source density between the two groups for the four numerical conditions as

revealed by sLORETA analyses (Montreal Neurological Institute (MNI) coordinates for each slice are shown; L [ left);

R [ right; panels (a) subitizing, (b) large-number estimation, (c) canonical patterns and (d) small-number estimation.
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are not related to children’s mathematical achievement before

and during the first years of schooling (see also De Smedt and

Gilmore, 2011; Rousselle and Noël, 2007; Soltész et al., 2010). It

should be kept in mind, however, that the present RT data

should be treated with caution since the children were

instructed to wait with their responses until a cue was shown,

i.e., the response times may be related primarily to domain

general abilities such as cued response execution.

In contrast to the behavioral findings, the analysis of the

electrophysiological data revealed clear differences between

the two achievement groups. Different from the controls, we

found no late parietal numerical distance effects for the group

of children with mathematical disabilities for large arrays of

dots, i.e., the counting and estimation ranges. This pattern of

differential effects of numerical distance manipulations on

neurophysiological measures in the absence of group differ-

ences on the level of behavioral performance confirms recent

fMRI studies (Kaufmann et al., 2009; Kucian et al., 2011).

A previous ERP study on electrophysiological distance ef-

fects by Soltész et al. (2007) reported similar results for a group

of dyscalculic adolescents compared to age-matched controls
and adults. The authors demonstrated that while ERPs indi-

cating early, i.e., more automatic processing steps were similar

for all groups, correlates of later, i.e., more controlled stages of

numerical information processing were less homogeneous. A

graded late parietal numerical distance effect demonstrated

for adults and controls was less specific in the group of dys-

calculic adolescents. Applying principal component analysis

to the same data set in order to disentangle the ERP-correlates

of independent processing stages, Soltész and Sz}ucs (2009)

related these group effects mainly to differences in execu-

tive functioning. However, while differential executive control

capacities were previously demonstrated to be related to

impaired numerical processing (cf. e.g., Bull et al., 1999;

Passolunghi et al., 2007), Soltész and Sz}ucs (2009) rightly point

out that domain-general deficits may be only one of a number

of different explanatory factors for developmental dyscalcu-

lia. Given that for the present study the groups of children

were matched with regard to working memory performance

in general and, specifically, with respect to central executive

abilities (Pickering and Gathercole, 2001), it does not seem

likely that domain-general functions are at the core of the ERP

http://dx.doi.org/10.1016/j.cortex.2012.11.009
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differences found in the present study. It seems more plau-

sible to relate our findings to children’s number processing

capacities per se, which were previously linked to ERP effects

on right-parietal electrode sites (Szücs and Soltész, 2007;

Szücs et al., 2007) that were shown to undergo systematic

developmental changes (Soltész et al., 2011).

Current source density analysis of the distance-related

group effects yielded areas in right inferior parietal regions to

be involved, which is consistent with fMRI data on numerical

magnitude comparison tasks (Chochon et al., 1999; Holloway

et al., 2010). A number of studies have found right inferior pa-

rietal regions to be crucially related to format-independent

numerical magnitude representations (Cappelletti et al., 2010;

Dormal et al., 2010; Holloway and Ansari, 2010; Piazza et al.,

2007). This was recently confirmed by a transcranial magnetic

stimulation-study (TMS)-study (Dormal et al., 2012) that

demonstrated right inferior parietal regions to play anessential

functional role in non-symbolic numerical processing e a role

that cannot be taken over by the left homolog areas. The au-

thors propose that the right inferior parietal cortex may be the

neural locus for approximate quantity representations, while

left parietal regions are assumed to be complementary in that

they provide resources for representations of exactmagnitude.

Apart from these general findings, a meta-analysis on fMRI

studies involving children reported activation in response to

non-symbolic stimuli to be related to right inferior parietal

regions mainly, while symbolic tasks typically yield more

bilateral activation patterns (Kaufmann et al., 2011). Such a

right-parietal dominance for non-symbolic magnitude pro-

cessing functions was demonstrated in typically developing

children as young as 4 years of age (Cantlon et al., 2006). The

fMRI findings were corroborated by a study using near-

infrared spectroscopy (Hyde et al., 2010). The very few

studies on children with MLD reported reduced distance-

related activation differences in right inferior parietal re-

gions in low achievers compared to controls for non-symbolic

comparisons (Price et al., 2007), and lateralization differences

between achievement groups for symbolic comparisons

(Mussolin et al., 2010a). Additionally, morphometric studies

demonstrated generally lower gray-matter volumes in right

inferior parietal regions in children with MLDs compared to

typically developing controls (Rotzer et al., 2008; Rykhlevskaia

et al., 2009). In light of these data from functional and struc-

tural imaging studies, the results of the sLORETA analysis

point to a systematic relationship between a reduced

involvement of right inferior parietal regions in numerical

magnitude processing and levels of achievement in the

domain of mathematics. Consequently, the present electro-

physiological data complement the existing fMRI literature.

Interestingly, for dot arrays in the subitizing range, the

ERPs did not differ between TAs and children with MLD, i.e.,

both groups showed similar distance effects. Furthermore, no

group differences in current source density measures were

found in parietal regions, but only in the right occipital cortex

which can be assumed to be related to basic visual processing

(Heine et al., 2011). This deviation of the EEG patterns for small

set sizes from the general pattern found for larger arrays of

dots is not completely unexpected. From a developmental

perspective, it is primarily the analog magnitude processing

system that is assumed to be a start-up tool for numerical
processing (Barth et al., 2005; Piazza, 2010; for a review of

comparative and developmental data see Nieder, 2005) and a

possible locus of dysfunction in MLD (Mazzocco et al., 2011;

but see Rousselle and Noël, 2007). In contrast to this well-

established role of the approximate number system in nu-

merical development, no conclusive evidence for an involve-

ment of the object tracking system in higher-level numerical

thinking in general, and in developmental disorders of nu-

merical processing in particular exists. For example, a study

by Piazza et al. (2011) showed that functional restrictions of

the object tracking system are primarily related to visuo-

spatial working memory capacity. Furthermore, data that

confirm the assumption that subitizing deficits may be

involved in the development of MLDs are sparse (Mandler and

Shebo, 1982; Moeller et al., 2009; Schleifer and Landerl, 2011;

Van Der Sluis et al., 2004; for a discussion, see Rubinsten and

Henik, 2009). The current data do not support accounts that

link subitizing deficits to impaired number processing, but

rather support Piazza’s (2010) account of an involvement of

the analog magnitude processing system in the development

of higher-level mathematical skills. The group-related acti-

vation differences in occipital areas can be assumed to reflect

differential recruitment of domain-general visual processing

resources instead of number-specific functions. On a more

general level, the striking homogeneity of group-related ERP

and current source density effects across the three conditions

reflecting the classical counting and estimation ranges com-

bined with the diverging EEG patterns for the subitizing con-

dition suggests that numerosity of the stimulus arrays, rather

than familiarity of appearance is the key factor underlying the

distinction between small and large number processing. The

results of the present study are, thus, hard to reconcile with

subitizing accounts that focus mainly on visual aspects of

non-symbolic stimuli such as the canonicity of dot arrange-

ments (Logan and Zbrodoff, 2003; Mandler and Shebo, 1982).

At least as far as explicitnumerical comparisons are concerned,

the electrophysiological results for the canonical pattern con-

dition are suggestive of processing functions similar to those

involved in small- and large number-estimations.

One final point should be mentioned, namely the ampli-

tude effects in the early time window. In line with Dehaene’s

(1996) serial-stagemodel, we found no distance-related effects

for the parietal N1 component. However, the amplitude dif-

ferences between the two achievements groups were

considerable. Posterior N1 components are generally assumed

to be reflections of visuo-spatial attentional processing (Eimer,

1998). The more negative-going waveforms in the early time

windowmay, thus, be related to a more effective allocation of

visuo-spatial and/or attentional resources in the group of

typically developing children compared to the children with

MLD. Alternatively, as pointed out by Libertus et al. (2007), N1

effects may be related to differences in sensory processing

(see also Turconi et al., 2004). It would be most interesting to

conduct further studies in order to explore these effects in

depth. Even though the two groups were matched with

respect to general attentional and visuo-spatial working

memory functions, more fine-grained diagnostic and experi-

mental investigations into different levels of visuo-spatial and

attentional processes in groups of children with and without

MLDs should be carried out in the future.
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5. Conclusion

To conclude, comparing the patterns of electrophysiological

activity related to basic numerical processing of children with

MLDs to those of typically developing children allowed for

specific insights into the functional specifics of impaired

number processing. Our results suggest that domain-specific

systems in predominantly right inferior parietal regions are

recruited differentially in the context of non-symbolic nu-

merical magnitude processing in TAs compared to children

with MLD. However, these functional differences were

observed only for stimulus arrays with set sizes that exceeded

the subitizing range.

Onamoregeneral level, thecurrent studydemonstrates that

electrophysiologicalmeasures provide fine-grained insight into

the complex neural reflections of quantity processing in chil-

dren. EEG can thus be seen as a valuable tool for the investiga-

tion of the neuro-functional basis of typical and impaired

behavioral performance in the domain of mathematics.
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Mussolin C, Mejias S, and Noël MP. Symbolic and nonsymbolic
number comparison in children with and without dyscalculia.
Cognition, 115(5): 10e25, 2010b.

Nieder A. Counting on neurons: The neurobiology of numerical
competence. Nature Reviews Neuroscience, 6(3): 177e190, 2005.

Palomares M, Smith PR, Pitts CH, and Carter BM. The effect of
viewing eccentricity on enumeration. PLoS ONE, 6(6): e20779,
2011.

Pascual-Marqui RD. Standardized low-resolution brain
electromagnetic tomography (sloreta): Technical details.
Methods and Findings in Experimental and Clinical Pharmacology,
24(Suppl. D): 5e12, 2002.

Pascual-Marqui RD. Loreta: Low Resolution Brain Electromagnetic
Tomography, Documentation for the Loreta-key Software Package.
The KEY Institute for Brain-Mind Research, 2003.

Passolunghi MC, Vercelloni B, and Schadee H. The precursors of
mathematics learning: Working memory, phonological ability
and numerical competence. Cognitive Development, 22(2):
165e184, 2007.

Paulsen DJ and Neville HJ. The processing of non-symbolic
numerical magnitudes as indexed by ERPs. Neuropsychologia,
46(10): 2532e2544, 2008.

Paulsen DJ, Woldorff MG, and Brannon EM. Individual differences
in nonverbal number discrimination correlate with event-
related potentials and measures of probabilistic reasoning.
Neuropsychologia, 48(13): 3687e3695, 2010.

Piazza M. Neurocognitive start-up tools for symbolic number
representations. Trends in Cognitive Sciences, 14(12): 542e551,
2010.

Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S,
Lucangeli D, et al. Developmental trajectory of number acuity
reveals a severe impairment in developmental dyscalculia.
Cognition, 116(1): 33e41, 2010.

Piazza M, Fumarola A, Chinello A, and Melcher D. Subitizing
reflects visuo-spatial object individuation capacity. Cognition,
121(1): 147e153, 2011.

Piazza M, Giacomini E, Le Bihan D, and Dehaene S. Single-trial
classification of parallel pre-attentive and serial attentive
processes using functional magnetic resonance imaging.
Proceedings of the Royal Society of London. Series B: Biological
Sciences, 270(1521): 1237e1245, 2003.

Piazza M, Izard V, Pinel P, Lebihan D, and Dehaene S. Tuning
curves for approximate numerosity in the human
intraparietal sulcus. Neuron, 44: 547e555, 2004.

Piazza M, Pinel P, Le Bihan D, and Dehaene S. A magnitude code
common to numerosities and number symbols in human
intraparietal cortex. Neuron, 53(2): 293e305, 2007.

Pickering S and Gathercole S. Working Memory Test Battery for
Children (WMTB-C). London: The Psychological Corporation,
2001.
Pinel P, Dehaene S, Rivière D, and Le Bihan D. Modulation of
parietal activation by semantic distance in a number
comparison task. NeuroImage, 14(5): 1013e1026, 2001.

Pinel P, Piazza M, Le Bihan D, and Dehaene S. Distributed and
overlapping cerebral representations of number, size, and
luminance during comparative judgments. Neuron, 41(6):
983e993, 2004.

Poiese P, Spalek TM, and Di Lollo V. Attentional involvement in
subitizing: Questioning the preattentive hypothesis. Visual
Cognition, 16(4): 474e485, 2008.

Price GR, Holloway ID, Vesterinen M, Rasanen P, and Ansari D.
Impaired parietal magnitude processing in developmental
dyscalculia. Current Biology, 17(24): R1042eR1043, 2007.

Railo HM, Koivisto M, Revonsuo A, and Hannula MM. The role of
attention in subitizing. Cognition, 107(1): 82e104, 2008.

Ramus F, Rosen S, Dakin SC, Day BL, Castellote JM, White S, et al.
Theories of developmental dyslexia: Insights from a
multiple case study of dyslexic adults. Brain, 126(4): 841e865,
2003.

Reynvoet B, De Smedt B, and Van Den Bussch E. Children’s
representation of symbolic magnitude: The development of
the priming distance effect. Journal of Experimental Child
Psychology, 103(4): 480e489, 2009.

Rivera SM, Reiss AL, Eckert MA, and Menon V. Developmental
changes in mental arithmetic: Evidence for increased
functional specialization in the left inferior parietal cortex.
Cerebral Cortex, 15(11): 1779e1790, 2005.

Rotzer S, Kucian K, Martin E, Von Aster M, Klaver P, and
Loenneker T. Optimized voxel-based morphometry in
children with developmental dyscalculia. NeuroImage, 39(1):
417e422, 2008.
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Szücs D and Soltész F. Event-related potentials dissociate
facilitation and interference effects in the numerical stroop
paradigm. Neuropsychologia, 45(14): 3190e3202, 2007.
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