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Competence in many domains rests on children developing conceptual and procedural knowledge, as
well as procedural flexibility. However, research on the developmental relations between these different
types of knowledge has yielded unclear results, in part because little attention has been paid to the validity
of the measures or to the effects of prior knowledge on the relations. To overcome these problems, we
modeled the three constructs in the domain of equation solving as latent factors and tested (a) whether
the predictive relations between conceptual and procedural knowledge were bidirectional, (b) whether
these interrelations were moderated by prior knowledge, and (c) how both constructs contributed to
procedural flexibility. We analyzed data from 2 measurement points each from two samples (Ns = 228
and 304) of middle school students who differed in prior knowledge. Conceptual and procedural
knowledge had stable bidirectional relations that were not moderated by prior knowledge. Both kinds of
knowledge contributed independently to procedural flexibility. The results demonstrate how changes in
complex knowledge structures contribute to competence development.
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When children practice solving problems, does this also enhance
their understanding of the underlying concepts? Under what cir-
cumstances do abstract concepts help children invent or implement
correct procedures? How do knowledge of concepts and proce-
dures each contribute to flexible problem solving in a domain?

These questions tap a central research topic in the field of
cognitive development: the relations between conceptual and pro-
cedural knowledge. Conceptual knowledge can be defined as
knowledge of the concepts of a domain and their interrelations,
whereas procedural knowledge can be defined as the ability to
execute action sequences to solve problems (e.g., Canobi, Reeve,
& Pattison, 2003; Rittle-Johnson, Sielger, & Alibali, 2001). Both
kinds of knowledge have been hypothesized to contribute to the
ability to solve a range of problems flexibly and efficiently, so-
called procedural flexibility (Blote, van der Burg, & Klein, 2001;
Kilpatrick, Swafford, & Findell, 2001; Star & Seifert, 2006).

The goals of the current study were threefold: (a) test whether
the predictive relations between conceptual and procedural knowl-
edge were bidirectional, (b) evaluate whether these interrelations
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were moderated by prior knowledge, and (c) explore how both
constructs contributed to procedural flexibility. The introduction is
organized around these three goals.

Possible Relations Between Conceptual and Procedural
Knowledge

A primary goal of the current study was to empirically test the
longitudinal relationship between conceptual and procedural
knowledge using a more rigorous methodology than has been
applied in past research. There are four different theoretical view-
points on the causal interrelations of conceptual and procedural
knowledge, each one supported by some empirical evidence (cf.
Haapasalo & Kadjievich, 2000; Rittle-Johnson & Siegler, 1998).
Concepts-first theories posit that children initially acquire concep-
tual knowledge, for example, through parent explanations or by
innate constraints, and then derive and build procedural knowledge
from it through repeated practice solving problems (e.g., Gelman
& Williams, 1998; Halford, 1993). Procedures-first theories posit
that children first learn procedures, for example, by means of
explorative behavior and then gradually derive conceptual knowl-
edge from them by abstraction processes, such as representational
redescription (e.g., Karmiloff-Smith, 1992; Siegler & Stern, 1998).
A third possibility, sometimes labeled inactivation view (e.g., by
Haapasalo & Kadjievich, 2000), is that conceptual and procedural
knowledge are mutually independent (e.g., Resnick, 1982; Resnick
& Omanson, 1987). On the basis of the plausibility of both the
concepts-first view and the procedures-first view, Rittle-Johnson et
al. (2001) proposed a fourth possibility with their iterative model.
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The causal relations may be bidirectional, with increases in con-
ceptual knowledge leading to subsequent increases in procedural
knowledge and vice versa (Canobi & Bethune, 2008; Rittle-
Johnson & Alibali, 1999).

Unfortunately, after decades of research, it is still not clear
which of the four viewpoints on the longitudinal relations between
conceptual and procedural knowledge is adequate. Low validity of
the measures is one likely source of this problem (Schneider &
Stern, 2010). Schneider and Stern used four measures of each kind
of knowledge at three time points in a longitudinal design. De-
pending on which pair of measures they used for their analyses, the
results supported the concepts-first view, the procedures-first
view, the iterative model, or the inactivation view.

Further, if the four manifest measures for a particular knowledge
type assessed the same kind of knowledge with high validity, they
should be strongly related to a commonly underlying latent factor.
This was not the case empirically. For each kind of knowledge and
each measurement point, the latent factor explained less than 50%
of the pooled variance of its indicators. More than half of the
variance of each measure did not validly indicate conceptual or
procedural knowledge but instead reflected unsystematic measure-
ment error or task-specific competencies (e.g., verbal abilities on
an explanation task or knowledge about diagrams in a diagram
task). Schneider and Stern suggested that subsequent studies
should pay greater attention to questions of measurement and that
latent variable analyses are a useful tool for this. Therefore, a main
goal of the current study was to investigate the predictive relations
between conceptual and procedural knowledge by means of latent
variable analyses. We expected our results to be in line with earlier
studies that supported the assumption of bidirectional relations
between the two kinds of knowledge over time (e.g., Canobi &
Bethune, 2008; Rittle-Johnson & Alibali, 1999; Rittle-Johnson et
al., 2001). Two further aims of our study were to test whether prior
knowledge moderated the relations between conceptual and pro-
cedural knowledge and how both kinds of knowledge contributed
to procedural flexibility.

Possible Moderating Influences of Prior Knowledge

The iterative model and the three competing viewpoints are all
based on the assumption that the longitudinal relations between
conceptual and procedural knowledge are always the same and,
thus, stable over different situations. This could, for example, be
the case if the relations between kinds of knowledge are deter-
mined by the stable architecture of the human information pro-
cessing system (e.g., Anderson et al., 2004; Karmiloff-Smith,
1992; Sun, Merrill, & Peterson, 2001). This assumption has never
been tested empirically, so the second goal of this study was to
evaluate whether these interrelations between conceptual and pro-
cedural knowledge were moderated by prior knowledge.

Empirical results indicate that there is variability in the longi-
tudinal relations between conceptual and procedural knowledge. In
areview of the mathematics learning literature, Rittle-Johnson and
Siegler (1998) found that the relations differed between domains,
studies, and even participants within studies. This may explain
why the four conflicting theoretical viewpoints have coexisted for
many years: Each viewpoint is supported by some empirical stud-
ies but countered by others. In this study, we analyzed a possible
source of this heterogeneity—a moderating effect of prior knowl-

edge on the assessments and the predictive relations between kinds
of knowledge. Differences in prior knowledge are among the
strongest sources of individual differences in learning processes
(Ackerman & Cianciolo, 2000; Smith, diSessa, & Roschelle,
1994).

First consider children with little prior knowledge of the target
content. Karmiloff-Smith (1992) analyzed knowledge acquisition
processes in young children, who had little prior knowledge in
their fields of learning. She concluded that, most likely, procedural
knowledge developmentally precedes and facilitates a later con-
ceptual understanding in many domains, because children first
need to explore a domain on a practical level. For example,
children typically learn counting procedures before they under-
stand most of the underlying concepts (e.g., Frye, Braisby, Lowe,
Maroudas, & Nicholls, 1989; LeFevre et al., 2006). Subsequently,
they abstract the underlying concepts from concrete impressions
and procedures gained by exploring. This suggests that for learners
with little prior knowledge, the influence of procedural knowledge
on the subsequent acquisition of conceptual knowledge might be
stronger than vice versa.

Next consider children who have some prior knowledge of the
target content. Many studies have shown that existing conceptual
knowledge about the target content is one of the most important
determinants of subsequent learning processes, including the ac-
quisition of new procedures (Hecht, Close, & Santisi, 2003; Sch-
neider, Grabner, & Paetsch, 2009). Conceptual knowledge is gen-
eral and abstract, and thus can be generalized to new problem
types. By contrast, procedural knowledge is more tied to routine
problems familiar from practice (Rittle-Johnson et al., 2001).
Therefore, when a learner needs to solve a problem he has never
encountered before, prior conceptual knowledge should support
the generation of new procedures (Gelman & Williams, 1998).
This suggests that for learners with some prior knowledge of the
target content, conceptual knowledge might have a stronger influ-
ence on the subsequent acquisition of procedural knowledge than
vice versa. From a methodological point of view, this would mean
that prior knowledge is a moderator of the predictive relations
between conceptual and procedural knowledge (cf. Baron &
Kenny, 1986).

The amount of prior knowledge a person has in a domain might
not only moderate the predictive relations between conceptual and
procedural knowledge, but also the validities of potential measures
of the two kinds of knowledge. Researchers often assess individ-
uals’ procedural knowledge by routine tasks familiar from prac-
tice, because procedural knowledge is thought to be tied to these
problems. On the other hand, conceptual knowledge is often mea-
sured by new problems, where people have to resort to their
knowledge of domain concepts to construct new solution ap-
proaches (Bisanz & LeFevre, 1992; Gelman & Williams, 1998;
Halford, 1993). However, what is a routine problem and what is a
new problem changes as a result of prior knowledge and experi-
ence (Schneider & Stern, 2010). As a consequence, the same task
might be a new problem that assesses conceptual knowledge for a
person with little prior knowledge but a familiar problem that
assesses procedural knowledge for a person with higher prior
knowledge. This is especially a problem in pretest—posttest designs
or longitudinal studies in which the same measure is used multiple
times with the intention to assess one construct in the same way
each time.
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In the current study, we evaluated whether the interrelations of
conceptual knowledge, procedural knowledge, and procedural
flexibility were stable over two samples of students differing in
their prior knowledge.

Relations to Procedural Flexibility

Conceptual and procedural knowledge are important sources of
competence in a domain but certainly not the only sources. An-
other source of competence is procedural flexibility, where learn-
ers know multiple procedures and apply them adaptively to a range
of situations (Baroody & Dowker, 2003; Rittle-Johnson & Star,
2007; Star & Seifert, 2006; Verschaffel, Luwel, Torbeyns, & Van
Dooren, 2009). For example, expert mathematicians know and use
more procedures than novices, even choosing to use different
procedures when attempting identical problems on different occa-
sions (Dowker, 1992).

Procedural flexibility is typically assessed both as (a) ability to
solve problems in more than one way (often with prompting) and
(b) success in choosing the most appropriate procedure to solve a
given problem on the basis of problem features and situational
demands (see Verschaffel et al., 2009, for a review). It is consid-
ered important because people who develop procedural flexibility
are more likely to use or adapt existing procedures when faced
with unfamiliar transfer problems and to have a greater under-
standing of domain concepts (e.g., Blote et al., 2001; Hiebert &
Wearne, 1996). For example, knowledge of multiple procedures
for multidigit arithmetic calculations was related to greater accu-
racy on transfer problems and greater conceptual knowledge of
arithmetic (Carpenter, Franke, Jacobs, Fennema, & Empson,
1998). Because of this, flexibility is discussed as an important
component of mathematical proficiency in several recent mathe-
matics education policy documents (Kilpatrick et al., 2001; U.S.
Department of Education, 2008).

Although flexibility is assessed independently of conceptual and
procedural knowledge in research studies, it is a less familiar
construct to the education community. In particular, it is unclear
how flexibility should be situated within the conceptual/procedural
knowledge framework. As noted earlier, flexibility is related to
procedural knowledge (e.g., Star, 2005) and to conceptual knowl-
edge (e.g., Baroody, Feil, & Johnson, 2007). However, past re-
search on flexibility has not included evidence for the validity of
the measures nor evaluated whether development of flexibility is
predicted by prior conceptual and/or procedural knowledge in the
domain. Thus, our third goal was to provide much needed evidence
for these two issues.

The Present Studies

Conceptual Knowledge, Procedural Knowledge, and
Procedural Flexibility as Latent Variables

We had three research questions. First, can latent variable anal-
yses replicate and validate earlier findings with manifest measures
that indicate bidirectional, predictive relations between conceptual
and procedural knowledge (Canobi & Bethune, 2008; Rittle-
Johnson & Alibali, 1999; Rittle-Johnson et al., 2001)? Second, are
the predictive relations between conceptual and procedural knowl-
edge the same in a sample with low prior knowledge and in a

sample with higher prior knowledge? Third, how do conceptual
and procedural knowledge each contribute to developing proce-
dural flexibility, modeled as a latent variable?

To investigate these research questions, we analyzed data from
two empirical investigations of the acquisition of conceptual
knowledge, procedural knowledge, and procedural flexibility.
Each study tested more than 200 middle school students’ knowl-
edge about linear equation solving before and after several lessons
on the topic. The two samples differed in prior algebra instruction
and, thus, in prior knowledge at the first measurement point. The
students in Study 1 were tested near the beginning of the school
year and had received very limited prior instruction on equation
solving. The participants of Study 2 were tested toward the end of
the school year and had participated in a prealgebra curriculum
during that year, so that they already had some knowledge about
the content of the study. In addition to differences in knowledge
across studies, all students received instruction on the topic be-
tween the first and second measurement points, leading to knowl-
edge increases from pretest to posttest.

In both studies, we modeled conceptual knowledge, procedural
knowledge, and procedural flexibility as latent factors underlying
our manifest (i.e., actually assessed) measures, as advocated for by
Schneider and Stern (2010). Manifest measures that are used to
estimate a latent factor are also referred to as factor indicators in
the literature. Compared with manifest measures, latent factors
have the advantage that they only take on variance that is common
to all of their indicators, and thus, the variance does not reflect
random noise in the data. For this reason, a latent factor usually
reflects a construct with a reliability that is greater than the
reliability of any of the manifest measures used to estimate the
factor (Bollen, 2002; Ullman, 2007). Latent variable analyses
allow for explicit tests about whether two latent factors, which
could stand, for example, for two kinds of knowledge, are signif-
icantly different from each other. Latent variable analyses can also
be used to test whether the relations between the manifest mea-
sures and the underlying latent factors change over time or groups
of persons. The stability of factor loadings is referred to as facto-
rial measurement invariance (Bollen, 2002; Vandenberg & Lance,
2000) and is desirable in many contexts because it aids the com-
parability of results across studies and across measurement points
within studies. To our knowledge, our study is the first successful
attempt to model the longitudinal relations between conceptual
knowledge and procedural knowledge by means of latent variable
analyses (cf. Schneider & Stern, 2010).

Equation Solving

We investigated our research questions in the domain of linear
equation solving. Because equation solving draws on multiple
principles and allows for a variety of solution procedures, it is an
ideal domain for studying issues of learning and transfer (Van-
Lehn, 1996). It is also an important topic for students to learn; it is
considered a basic skill by many (e.g., U.S. Department of Edu-
cation, 2008) and is recommended as a curriculum focal point in
middle-school mathematics by the National Council of Teachers of
Mathematics (2006).

Typically, conceptual knowledge measures for equation solving
focus on understanding of equivalent expressions by asking stu-
dents to decide and justify if two expressions or equations are
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equivalent (e.g., Alibali, Knuth, Hattikudur, McNeil, & Stephens,
2007). In contrast, procedural knowledge for equation solving is
typically measured by asking students to solve algebraic equations.
In the current study, we focused on multistep linear equations such
as 3" (x + 1)+ 6 =5+ 1), as they require some of the
longest procedures that students must implement by eighth grade
and because they can be solved in multiple ways (cf. Rittle-
Johnson & Star, 2007). Finally, procedural flexibility is measured
by asking students to solve problems in more than one way and to
recognize and evaluate alternative solution procedures (Blote et
al., 2001; Rittle-Johnson & Star, 2007; Star & Rittle-Johnson,
2008).

Study 1

Rationale

In Study 1, we investigated the relations between conceptual and
procedural knowledge and procedural flexibility with students who
had had very limited instruction about equation solving prior to the
first measurement point. Between the first and the second mea-
surement point, each student participated in one of three experi-
mental lessons on multistep equation solving. All students studied
worked examples of different procedures for solving equations,
discussed the examples with a partner, and solved practice prob-
lems. The lessons differed in whether and what types of compar-
isons students were asked to make when studying the worked
examples. The interventions were described and empirically com-
pared by Rittle-Johnson, Star, and Durkin (2009) using the man-
ifest measures. In Study 1, we controlled for differences between
intervention groups and instead reanalyzed the data from Rittle-
Johnson et al. (2009) with a focus on the use of latent variables, the
quality of the measures, and the longitudinal relations between the
different types of knowledge over time, none of which have been
reported previously.

Method

Participants.  Participants were drawn from 11 classrooms at
a low-performing, urban middle school in Massachusetts. In these
classes, 72% of the students were White, 9% African American,
9% Hispanic, and 9% Asian American. Teachers identified classes
they felt were prepared to learn about multistep equation solving;
nine of the classes were eighth-grade classes (five regular- and
four honors-level classes) and two of the classes were seventh-
grade classes (both honors level). Students were using the Con-
nected Mathematics 2 Curriculum (Lappan, Fey, Fitzgerald, Friel,
& Phillips, 2009). Most teachers reported only spending a few
days on linear equation solving. In five of the classes, teachers
reported briefly introducing some of their students to multistep
equations but provided little opportunity to practice solving them.

All 239 students from these classes participated. Three students
were excluded from the analyses because they were absent from
two of the three intervention sessions or did not complete the
pretest and the posttest. Eight additional students were excluded
because they had been the third member of a triad during the
intervention phase, and our analysis model only allowed for data
from dyads of students (see later). All subsequent results are
reported for the remaining 228 students. Among these students

were 44 seventh-grade students and 184 eighth-grade students, and
130 were girls. The average age was 13.3 years (range 11.9-15.7
years). The school used the Measures of Academic Progress
(MAP) as a norm-referenced test to measure mathematics achieve-
ment and growth. Students’ average score was in the 74th percen-
tile, but there was great variability, with scores ranging from the
12th to the 99th percentile.

Materials.

Assessments.  The measures assessed conceptual knowledge,
procedural knowledge, and procedural flexibility, as reported in
Rittle-Johnson et al. (2009). Details of the assessment, including
scoring criteria, are in the Appendix. We used the following three
assessments. (a) There were 13 conceptual knowledge items de-
signed to tap students’ verbal and nonverbal knowledge of algebra
concepts, such as maintaining equivalence and the meaning of
variables. (b) The nine procedural knowledge items assessed stu-
dents’ ability to solve equations, with three familiar problems and
six novel problems. Familiar problems had the same problem
features (but not numbers) as problems presented during the in-
tervention, whereas novel problems included a new problem fea-
ture. We also coded students’ solution procedure on each item as
using a correct algebraic procedure (i.e., included a simplified
equation based on a valid transformation of the equation, such as
distributing across the parentheses), an incorrect algebraic proce-
dure (i.e., included a simplified equation based on an invalid
transformation of the equation, such as distributing incorrectly), or
an informal procedure such as guess-and-test. (c) The 20 flexibility
knowledge items tapped students’ knowledge of multiple proce-
dures for solving equations and their ability to recognize and
evaluate unfamiliar solution steps for accuracy and efficiency. The
same assessments were administered at Times 1 and 2.

Two independent coders categorized the open responses across
the assessment for 20% of the sample. Kappa scores ranged from
.64 to 1.00, with a mean of .84. Discrepancies were discussed, and
codes were altered when deemed appropriate by the primary coder.

Instruction packets.  Students completed three 1-day lessons
on multistep equations such as 3(x + 5) = 12, 4(y + 2) + 6(y +
2) =20, and 7(n + 5) = 4(n + 5) + 9. For a majority of each
lesson, students studied packets of worked examples and answered
reflection questions about the examples with a partner. The worked
examples illustrated two different solution methods and three
different versions of the packets were created that varied in
whether and how the worked examples were paired. Packets either
presented (a) the same problem solved with two different proce-
dures side by side (i.e., compare methods), (b) two different
problems solved with the same procedure side-by-side (i.e., com-
pare problems, or (c) a single problem solved with one procedure
on each page (i.e., sequential). As reported in Rittle-Johnson et al.
(2009), for students who did not attempt to use algebra at pretest,
comparing problems or sequential study of examples aided learn-
ing the most. For students who attempted algebra at pretest,
comparing methods was most beneficial.

Procedure. The assessment was administered by a researcher
in a group setting during one of students’ regular mathematics
classes (Time 1). Students were given 13 min to solve the equa-
tions in order to encourage use of efficient solution methods. They
had about 30 min to finish the remainder of the assessment. For the
next 3 days, students completed the three lessons. They were
randomly paired with another student in their class for the partner
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work. In eight cases, triads were created instead of dyads because
of an uneven number of students. On the fifth day, the students
completed the assessment again (Time 2).

Statistical analyses. In order to have the required minimum
number of two indicators for each latent factor, for each of the
three constructs in our study (i.e., conceptual knowledge, proce-
dural knowledge, and procedural flexibility), we split the respec-
tive items into two groups (cf. Little, Cunningham, Shahar, &
Widaman, 2002). We assigned items with odd item numbers to an
Item Group A, items with even numbers to an Item Group B, and
computed the sum score for each group. In the following, we refer
to these sum scores as manifest or measured variables. When a
latent factor stands alone, at least three indicators are needed for
that factor to be identified. However, in more complex models
where the factor is allowed to correlate with other constructs, two
indicators for each factor are enough (Anderson & Gerbing, 1988,
p. 415; Huizinga, Dolan, & van der Molen, 2006, p. 2030).

We specified the structural equation model (SEM) displayed in
Figure 1. For each kind of knowledge and each measurement
point, the respective Manifest Measures A and B served as indi-
cators of a latent variable reflecting the amount of knowledge. At
both measurement points, all latent factors could intercorrelate. At
Time 2, also the residuals of the latent factors were allowed to
intercorrelate. Procedural flexibility was modeled only for Time 2,
because students typically exhibit little or no flexibility prior to
experience solving problems in a domain (cf. Torbeyns, Ver-
schaffel, & Ghesquiére, 2005), and in accordance with this, per-
formance was near floor on most of our flexibility items at Time
1. Finally, we specified regression paths from all factors at Time 1
to all factors at Time 2, thus, creating a cross-lagged panel model
(Burkholder & Harlow, 2003).

In our model, the factor loadings indicate the reliability of our
measures. The lower the error variance of each manifest measure,
the greater is the measures’ loading on the underlying latent factor,
which stands for the assessed construct (Ullman, 2007). The cor-
relations between the latent factors indicated the divergent validity
of the respective assessments. The higher these correlations are the
higher is the degree of overlap between the measures of the two
constructs and the lower is their divergent validity (Eid & Diener,
2006). Finally, the regression paths between the latent factors at
Time 1 and Time 2 indicated the strength of the predictive rela-
tions between the constructs the factors stand for (Burkholder &
Harlow, 2003).

In the following, we refer to this model, which is depicted in
Figure 1, as our basic model. We derived a series of models from
the basic model by introducing constraints on some of the model
parameters, and we investigated how this affected the model fit to
the empirical data.

The data were collected in different classrooms and for three
treatment conditions within each classroom. If not accounted for,
this multilevel structure of the data can lead to an underestimation
of standard errors. We solved this problem by z standardizing each
of our manifest measures separately for Time 1 and Time 2, first
within each treatment condition and then within each classroom.
Treatment condition and classroom were orthogonal to each other,
because the students in each classroom were randomly assigned to
the treatment conditions. Therefore, the two consecutive standard-
izations led to a data set with neither significant mean differences
(all ps > .9, all n?s < .002) nor significant variance differences
(all ps > .7) between treatment conditions or classrooms, as
confirmed by analyses of variance and Levene’s tests carried out
with each of our 10 manifest measures. Z-standardized measures

Conceptual
itemsAtl
Conceptual
Conceptual knowledge t1
itemsBtl
Procedural
items A tl
Procedural
knowledge t1
Procedural
.55
itemsBtl
Figure 1.

Conceptual
items At2
Conceptual
knowledge t2 Conceptual
items B t2
Procedural
items A t2
Procedural
knowledge t2
Procedural
itemsB t2
Flexibility
items A t2
Procedural
flexibility t2
Flexibility
itemsB t2

Factor loadings, factor intercorrelations, and regression paths of the best fitting structural equation

model (Model 1k) of the relations among conceptual knowledge, procedural knowledge, and procedural
flexibility in Study 1. A = Item Group A (sum of items with odd numbers); B = Item Group B (sum of items
with even numbers); tI = Time 1; t2 = Time 2. All estimated coefficients are significant with p < .01.
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have a mean of 0 and a variance of 1. Accordingly, the intraclass
correlations were < .01 for all measures, because the standardiza-
tion left no mean differences between classes or treatment groups.

The students learned in dyads during the intervention phase.
Therefore, persons were not independent units of analysis in our
study. If not accounted for, this dyadic structure of the data would
lead to an underestimation of the standard errors and an overesti-
mation of the statistical significances in our analyses. Two ap-
proaches are frequently used for modeling dyadic data: multilevel
modeling and treating dyads as unit of analysis (Kenny, in press).
In the former approach, differences between persons within each
dyad and differences between dyads are modeled simultaneously.
Thus, multilevel regression models can include predictor variables
on both levels, individual persons and dyads. A drawback of
multilevel models are the large sample sizes needed to obtain valid
results, in particular with complex structural equation models like
the ones in our study (cf. Meuleman & Billiet, 2009). Indeed, when
we tried modeling the multilevel structure of our data, we ran into
convergence problems. For this reason, we used the alternative
approach and treated dyads as units of analysis (i.e., each line in
our data set corresponded to one dyad), as recommended by
Kenny, Kashy, and Cook (2006, p. 100). This approach does not
decompose overall effects into person-level effects and dyad-level
effects and, thus, is statistically less demanding.

We treated dyads (n = 114) as the unit of analysis, with each unit
consisting of two persons with two (at Time 1) or three (at Time 2)
latent factors, respectively (see also Newsom, 2002). Thus, we spec-
ified all latent factors and paths displayed in Figure 1 twice, once for
Person 1 and once for Person 2. For example, the model comprised
two latent factors for conceptual knowledge at Time 1, one for Person
1 and one for Person 2 of the dyad. The model also comprised two
correlations between conceptual and procedural knowledge at Time 1,
one for Person 1 and one for Person 2.

It was arbitrary who was Person 1 and who was Person 2 of each
dyad. We did not expect to find different model parameters for
Persons 1 and Persons 2, because both belong to the same popu-
lation. For example, there is no reason to expect that the correla-
tion between conceptual and procedural knowledge would be
different for all Persons 1 in the sample than for all Persons 2 in the
sample. We, thus, constrained all factor loadings and paths coef-
ficients to be equal for Person 1 and Person 2, which is why
Figure 1 displays all relevant outcomes of our model. For further
details on modeling dyadic data in SEM, see Kenny et al. (2006).

Table 1

We analyzed the covariance matrix of our measures in the
program Mplus (Muthén & Muthén, 1998-2007) by means of
maximum-likelihood estimation. Missing data were handled by the
full-information maximum likelihood (FIML) procedure imple-
mented in Mplus. Data were missing because students were occa-
sionally absent from class or did not finish the assessments in the
available time, with data missing for only 6% of students. We
assumed the data were missing at random, a requirement for the
FIML procedure. We set the factor metrics by fixing the loading of
the first indicator of each latent factor to one. Some of our
measures did not follow a normal distribution (see Table 1). We
accounted for this by bootstrapping the standard errors of our
model parameters using 500 draws (cf. Nevitt & Hancock, 2001).

Results

As expected, students were low in prior knowledge. At Time 1,
their accuracy was only 24% on the conceptual knowledge items
and 20% on the procedural knowledge items. On the procedural
knowledge items, only 23% of students used a correct algebraic
solution method to solve at least one equation, and correct alge-
braic methods were only used on 9% of items.

Table 1 displays the solution rates together with Cronbach’s
alpha for each scale, the number of items on that scale, and the
number of valid cases. Where the number of valid cases is smaller
than the total sample size, students were absent from a data
collection session or did not complete all tests. Cronbach’s alphas
range from .39 to .74. Although some are lower than is advisable
for psychometric tests of homogeneous constructs, the obtained
values are still acceptable in the context of this article because
persons’ knowledge in a domain usually has multiple facets (e.g.,
different procedures, different concepts). Students can know one
facet without necessarily knowing all other facets (Schneider &
Stern, 2009). The low alpha coefficients indicate this partly frag-
mented nature of knowledge and conform to previous findings
from similar analyses (Schneider & Stern, 2010).

Before fitting the full model, we tested, separately for each mea-
surement point and each pair of constructs (conceptual knowledge,
procedural knowledge, and procedural flexibility), whether they were
better fit by a two-factors model (with the two factors standing for the
two constructs) than by a more parsimonious one-factor model (Re-
search Question 2). The former case would indicate good divergent
validities of our measures. In particular, evidence that all three con-

Study 1 Performance Summary: Percentage Correct, Standard Deviation, Cronbach’s Alpha, Number of Items, Number of Valid

Cases, Skewness, and Kurtosis for Each Manifest Measure

Items A Items B
n valid n valid
Measure M SD « n items cases Skewness Kurtosis M SD « n items cases Skewness  Kurtosis
Pretest
Conceptual knowledge 30 25 .69 7 221 091 0.05 18 19 .40 6 217 0.92 0.14
Procedural knowledge 17 21 .57 5 225 1.42 1.92 23 23 .39 4 225 0.67 -0.39
Posttest
Conceptual knowledge 54 26 .62 7 220 —0.03 —0.96 42 26 .58 6 218 0.25 —0.76
Procedural knowledge 47 34 .75 5 220 0.18 —1.30 35 31 .57 4 220 0.50 —0.81
Procedural flexibility 61 22 .68 10 216 0.03 —0.94 54 22 71 10 215 0.17 —0.88
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structs are distinct from each other in pairwise comparisons supports
a model with three latent factors (at Time 2).

The fits of the estimated models are displayed in the upper part
of Table 2 (Models la—1h). A comparative fit index (CFI) greater
than .95, a root-mean-square error of approximation (RMSEA)
less than .05, and a standardized root-mean-square residual
(SRMR) less than .08 indicate a good absolute fit of a model.
When two models are compared, the model with the smaller
Akaike information criterion (AIC) or Bayesian information cri-
terion (BIC) should be chosen. These information criteria combine
the absolute fit of a model with a correction function penalizing for
less parsimonious model assumptions. The model fit indices differ
in their advantages and disadvantages. Thus, some indices can
indicate a good fit of a model while others indicate a bad fit (Hu
& Bentler, 1999; Ullman, 2007).

At the first measurement point, the two-factors model (Model 1b)
has a better fit than the one-factor model as indicated by all indices.
At the second measurement point, the picture is more mixed. For each
pair of constructs, some fit indices are better for the two-factors
models (Models 1d, 1f, and 1h), and other fit indices are better for the
one-factor models (Models 1c, le, and 1g). In particular, the AIC is
lower for the two-factors models, and the BIC is lower for the
one-factor models. Thus, the divergent validities of our measures are
low. We modeled the constructs by separate latent factors in the
subsequent longitudinal analyses in spite of this for three reasons.
First, conceptual knowledge and procedural knowledge are clearly
distinct at Time 1. Second, the distinction of conceptual knowledge,
procedural knowledge, and procedural flexibility is of a high theoret-
ical importance and cannot be investigated empirically when the
constructs are not modeled as separate factors. Third, as expected and
as we show empirically in a later section, conceptual knowledge and
procedural knowledge influence each other over time. Therefore, the
very close relation of the latent factors at Time 2 is in line with our
theory.

In a next step, we estimated the fit of three different versions of our
basic model to investigate the longitudinal relations between the

Table 2
Fit Indices of the Models Estimated for Study 1

different types of knowledge (see Method section). Their fits are
displayed in the lower part of Table 2. Model 1i was the basic model
itself. In Model 1j, we constrained the factor loadings to be equal at
Time 1 and Time 2 (i.e., we assumed weak factorial measurement
invariance; Research Question 3). Model 1j is more parsimonious
than Model 1i, because a smaller number of parameters (i.e., in this
case, different factor loadings) have to be estimated. We derived
Model 1k from Model 1j by restraining the predictive relations from
conceptual knowledge at Time 1 to procedural knowledge at Time 2
and from procedural knowledge at Time 1 to conceptual knowledge at
Time 2 to be equally strong. All three models have good CFI,
RMSEA, and SRMR coefficients. In addition, Model 1k has the
lowest AIC (together with Model 1j) and the lowest BIC and is more
parsimonious than the other two models. In structural equation mod-
eling, when alternative models have about the same fit, one chooses
the most parsimonious of the models, because it is more simple and,
thus, more economical than its competitors (Ullman, 2007). There-
fore, Model 1k, with invariant factor loadings and equally strong
relations between conceptual and procedural knowledge, describes
the relations between the variables obtained in Study 1 best.

The coefficients of Model 1k are displayed in Figure 1. All
factor loadings were greater than .5 and were significant with ps <
.01, demonstrating acceptable reliabilities of our measures. The
factor loadings were constrained to be equal at Time 1 and Time
2, but they could vary slightly among the four cases due to
technical details of their standardization in Mplus (i.e., only un-
standardized coefficients can be constrained, but we report stan-
dardized coefficients). The factor intercorrelations are low at Time
1 and very high at Time 2, indicating an increasing overlap and a
decreasing divergent validity of the measures of the three kinds of
knowledge. The bidirectional predictive relations between concep-
tual and procedural knowledge (Research Question 1) had stan-
dardized regressions coefficients of about .3, were significantly
greater than 0, and were in the same range as the findings reported
by Rittle-Johnson et al. (2001). Both conceptual and procedural
knowledge at Time 1 contributed significantly to procedural flex-

Model type, measurement

point, and model no. Model description x> df )4 CFI RMSEA SRMR AIC BIC
Divergent validities
Time 1
la Conceptual and procedural knowledge, 1 factor 112 23 <.001 .576 184 140 10632 10689
1b Conceptual and procedural knowledge, 2 factors 14 16 .573 1.000 .000 056 10548 10625
Time 2
lc Conceptual and procedural knowledge, 1 factor 46 22 .002 .903 .098 .061 10238 10299
1d Conceptual and procedural knowledge, 2 factors 29 17 .039 953 .077 077 10231 10305
le Conceptual knowledge and procedural flexibility, 1 factor 29 22 155 981 .052 .045 10046 10107
1f Conceptual knowledge and procedural flexibility, 2 factors 9 16 .924 1.000 .000 .033 10038 10115
lg Procedural knowledge and procedural flexibility, 1 factor 31 22 .093 974 .060 .060 10078 10139
1h Procedural knowledge and procedural flexibility, 2 factors 14 16 .579 1.000 .000 .047 10074 10150
Longitudinal relations
1i Basic model 166 156 271 .990 .024 074 25552 25755
1j Invariant factor loadings assumed 167 158 299 991 .022 074 25549 25745
1k Invariant factor loadings and symmetrical predictive relations 169 159 276 .990 .024 078 25549 25743
assumed
Note. CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root-mean-square residual; AIC =

Akaike information criterion; BIC = Bayesian information criterion.
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ibility at Time 2, with standardized regression coefficients of .42
and .26, respectively (Research Question 3).

Discussion

In all, the findings from Study 1 indicate that conceptual knowl-
edge, procedural knowledge, and procedural flexibility were as-
sessed reliably and at least partly independently of each other. At
Time 1, the two-factors model clearly had a better fit than the
one-factor model. However, at Time 2, some fit indices were better
for the two-factors models while others were better for the one-
factor models. This supports the notion that conceptual and pro-
cedural knowledge can sometimes partly overlap and are hard to
measure independently of each other (Schneider & Stern, 2010). It
should be noted, though, that this problem seems large or negli-
gibly small depending on the measurement point.

The three longitudinal models that modeled conceptual knowl-
edge, procedural knowledge, and procedural flexibility as three
separate entities had excellent fits to the data and suggest that in
the overall context of a longitudinal study, these three constructs
can, indeed, be modeled as interrelated but separate latent factors.
The relatively high factor loadings that changed only modestly
across measurement points demonstrate that our constructs were
assessed with acceptable reliabilities. The comparison of the three
alternative longitudinal models demonstrated the adequacy of the
iterative model, which assumes bidirectional predictive relations.
In addition, conceptual and procedural knowledge at Time 1 each
predicted students’ procedural flexibility at Time 2, supporting the
importance of both types of knowledge for gaining flexibility.

Study 2

Rationale

In Study 1, students had received limited instruction in algebra
and very little instruction on equation solving. In Study 2, we
investigated whether the relations among conceptual knowledge,
procedural knowledge, and procedural flexibility were different
when students had already received classroom instruction on equa-
tion solving and thus had greater domain knowledge. The method
and analyses were almost exactly the same as in Study 1. The data
from Study 2 have not been analyzed and published before.

Method

Participants and procedure. Participants were drawn from
two urban public middle schools from the same school district; we
had worked with one of the schools in Study 1, but during a
different school year. The students were diverse, in terms of
ethnicity (55% White, 20% Hispanic, 15% Asian, 9% African
American, and 1% Native American), language spoken at home
(35% spoke a language other than English at home), and socio-
economic background (55% received free- or reduced-price
lunch). The head of the math department at each school identified
2 seventh-grade advanced-level classes, 10 eighth-grade advanced-
level classes, and 2 eighth-grade regular-level classes they felt
were prepared for solving multistep equations. Teachers used a
mixture of the Connected Mathematics 2 curriculum and algebra I
textbooks. Most teachers reported spending a few months on linear

equation solving, all reported discussing and practicing multistep
equations, and a majority (8/14) reported working on linear equa-
tion solving again within a month of the study.

All 325 students from these classes participated. Fourteen stu-
dents were excluded from analyses because they were absent for
both assessments or for two of the three intervention sessions.
Seven additional students were excluded because they were the
third member of a triad during the intervention. Of the remaining
304 students, 245 were in advanced mathematics classes, 154 were
girls, and the average age was 14.0 years (range 12.0-16.3 years).
On average, they scored in the 64th percentile on a standardized
math assessment, but there was a wide range (from 9th to the 99th
percentile).

The procedure and analyses were identical to Study 1. We
analyzed data from 157 dyads (i.e., 147 dyads with two members
and 10 dyads with only one member, due to the exclusion of some
participants from the analyses as described earlier).

Materials. The assessment was the same as the one used in
Study 1 except that two equations on the procedural flexibility
assessment were modified without changing the nature of these
tasks. Interrater reliability on open-response items for 20% of the
sample, measured by kappa, ranged from .62 to 1.00, with a mean
of .88.

The intervention packets were very similar to those used in
Study 1, with three different conditions varying in how the worked
examples were paired. Two of the conditions were the same as in
Study 1 (compare methods and compare problems), and the third
condition had students compare equivalent equations—for exam-
ple, 3(x + 1) = 12 and 4(y + 2) = 16—solved with the same
procedure. In all packets, there were four fewer worked examples
presented in each lesson than in Study 1. There was no main effect
of condition in this study.

Results and Discussion

Differences between samples in Studies 1 and 2 at pretest.
The defining difference between the samples was that students in
Study 2 had received a significant amount of instruction related to
the topic under study, while the sample in Study 1 had received
very limited prior instruction on equation solving. We thus as-
sumed that the students in Study 2 had more relevant prior knowl-
edge than the students in Study 1. If this was the case, the students
in Study 2 should have more conceptual and procedural knowledge
for equation solving than the students in Study 1. We used tests for
the differences on our measures as an implementation check,
although our measures were not intended to capture the full range
of algebra knowledge that students in Study 2 were expected to
have.

As expected, students in Study 2 had greater prior knowledge at
Time 1 than students in Study 1. Their accuracy was higher on the
conceptual knowledge items (M = 33%, SD = 27, in Study 2 vs.
M = 25%, SD = 20, in Study 1), Mann—Whitney U = 25892, p =
.005, and on the procedural knowledge items (M = 32%, SD = 32,
in Study 2 vs. M = 19%, SD = 20, in Study 1), Mann—Whitney
U = 25878, p < .001. The largest difference between the two
samples was their use of algebra to solve equations on the proce-
dural knowledge assessment. Students in Study 2 solved 45% of
the equations using a correct algebraic procedure at pretest,
whereas students in Study 1 only solved 9% of the equations using
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a correct algebraic procedure, Mann—Whitney U = 17222, p <
.001. This greater use of algebraic procedures in Study 2 was due
in large part to many more of the students in this study using a
correct algebraic procedure at least once: 61% vs. 22% of students,
x>(1) = 75.148, p < .001. Most students in Study 2 had spent
several months studying linear equation solving, and this added
instructional time had the greatest impact on how students solved
the equations.

Study 2 analyses. Table 3 shows the percentage correct,
Cronbach’s alpha, number of items, and number of valid cases for
each manifest measure. Cronbach’s alphas were relatively good.
Percentage correct was higher at Time 2 than at Time 1, indicating
that the students gained additional knowledge of equation solving
by participating in the interventions between Time 1 and Time 2.

As in Study 1, we compared the fit of a two-factors model and
the fit of a one-factor model for each pair of constructs and each
measurement point (see the upper part of Table 4; Research
Question 2). The two-factors models (Models 2b, 2d, 2f, and 2h)
had excellent fits to the data based on all indices. In contrast, none
of the one-factor models fit the data well. Both the AIC and BIC
values indicated that the two-factors models were a better fit than
the one-factor models, providing evidence for the divergent valid-
ity of the measures in Study 2.

In a second step of our analyses, we fit a series of longitudinal
models to the data. These three models, Models 2i, 2j, and 2k, were
the same as Models 1i, 1j, and 1k in Study 1. CFI, RMSEA, and
SRMR indicated good fits of all three models. The values of AIC
and BIC were best for Model 2k, which assumed invariant factor
loadings and symmetrical longitudinal relations between concep-
tual and procedural knowledge.

The estimated coefficients of Model 2k are displayed in Figure
2. All factor loadings were greater than or equal to .7, indicating
good reliabilities of our measures. Conceptual knowledge, proce-
dural knowledge, and procedural flexibility were intercorrelated
with rs = .6 at both measurement points, but could still be assessed
with good divergent validities as established before by Models 2b,
2d, 2f, and 2h. The results indicate bidirectional relations between
conceptual and procedural knowledge over time (Research Ques-
tion 1), and these relations were equally strong in both directions.
Conceptual and procedural knowledge at Time 1 also contributed
to procedural flexibility at Time 2 (Research Question 3).

Comparison of the data from Study 1 and Study 2.  In order
to explicitly test whether relations in our structural equation mod-
els differed between the two studies, we combined the data sets

Table 3

from Study 1 and Study 2 into a single data set and fit a series of
multigroup models (Muthén & Muthén, 1998-2007) with the
samples of the two studies being the two groups compared. Model
coefficients were estimated independently for the two groups.

The fits of the three multigroup models are displayed in Table 5.
Model 3a has the same structure as the basic Models la and 2a.
However, it was specified as a multigroup model. All parameters
were allowed to vary between the two groups. Separately for each
group, constant factor loadings over time and symmetrical predic-
tive interrelations of conceptual and procedural knowledge were
assumed, because this had been established by the previous anal-
yses (Model 1k and Model 2k).

Model 3b was derived from Model 3a by additionally constrain-
ing the patterns of factors loadings to be equal for the two groups.
Model 3c was derived from Model 3b by additionally specifying
the predictive relations between conceptual and procedural knowl-
edge to be equally strong in both samples. CFI, RMSEA, and
SRMR indicate good fits of all three models to the data. AIC and
BIC are best for Model 3c, which is most parsimonious. In this
model, the standardized coefficients of the regression paths be-
tween conceptual knowledge and procedural knowledge at Time 1
and Time 2 all lie between .29 and .35.

In all, the predictive relations between conceptual and proce-
dural knowledge were bidirectional (Research Question 1), equally
strong in both directions, and constant across the two samples
(Research Question 2). Conceptual and procedural knowledge both
contributed to procedural flexibility (Research Question 3).

General Discussion

Longitudinal Relations Between Conceptual and
Procedural Knowledge

The relations between conceptual and procedural knowledge
during learning and development have been hotly debated for
decades. However, many of these publications ignored the prob-
lem of measuring the two kinds of knowledge validly and partly
independently of each other. In the current studies, we modeled
conceptual and procedural knowledge as latent variables. This
allowed us to better account for the indirect relation between overt
behavior and the underlying knowledge structures than was pos-
sible in previous research. A cross-lagged panel design allowed us
to directly test and compare the predictive relations from concep-
tual knowledge to procedural knowledge and vice versa.

Study 2 Performance: Percentage Correct, Standard Deviation, Cronbach’s Alpha, Number of Items, Number of Valid Cases,

Skewness, and Kurtosis for Each Manifest Measure

Items A Items B
Measure M SD o nitems n valid cases Skewness Kurtosis M SD « nitems n valid cases Skewness Kurtosis
Pretest
Conceptual knowledge 38 31 .77 7 285 0.43 -096 27 26 .64 6 285 0.77 —=0.21
Procedural knowledge 35 35 .81 5 285 0.60 —-1.02 30 32 .67 4 285 0.77 —0.61
Posttest
Conceptual knowledge 55 30 .73 7 286 —0.19 —1.10 48 32 .74 6 286 0.08 —1.18
Procedural knowledge 56 36 .81 5 286 —0.23 —138 47 37 .73 4 286 0.05 —1.40
Flexibility knowledge 60 26 .78 10 286 —0.31 —-0.63 59 27 .82 10 286 —0.24 —-0.92
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Table 4
Fit Indices of the Models Estimated for Study 2

Model type, measurement

point, and model no. Model description X’ df P CFI RMSEA  SRMR AIC BIC
Divergent validities
Time 1
2a Conceptual and. procedural knowledge, 62 23 <.001 0.809 104 071 13509 13573
1 factor
2b Conceptual and. procedural knowledge, 13 14 526 1.000 .000 .031 13479 13570
2 factors
Time 2
2c Conceptual and. procedural knowledge, 50 22 .001 926 .090 .063 13537 13604
1 factor
2d Conceptual and. procedural knowledge, 18 17 381 .997 .021 .049 13515 13597
2 factors
2e Conceptual knowledge and procedural 58 22 <.001 927 103 .066 13424 13491
flexibility, 1 factor
2f Conceptual knowledge and procedural 20 16 .209 991 .042 .034 13398 13483
flexibility, 2 factors
2g Procedural knowledge and procedural 69 22 <.001 906 118 .078 13429 13496
flexibility, 1 factor
2h Procedural knowledge and procedural 14 16 578 1.000 .000 .034 13386 13471
flexibility, 2 factors
Longitudinal relations
2i Basic model 180 156 .092 978 .031 .065 33398 33624
2j Invariant loadings assumed 180 158 112 980 .030 .065 33394 33614
2k Invariant loadings and symmetrical predictive ~ 181 159 .109 .980 .030 .065 33393 33610

relations assumed

Note. CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root-mean-square residual; AIC =

Akaike information criterion; BIC = Bayesian information criterion.

Our empirical results strongly support an iterative model, which
poses bidirectional relations between the two kinds of knowledge
over time. The predictive relations between conceptual and pro-
cedural knowledge from Time 1 to Time 2 were significant and lay
in the range from .29 to .35 in the most comprehensive model
(Model 3c). The relations were not only bidirectional but even
symmetrical.

These findings are in line with a number of recent studies that
have found indirect evidence for bidirectional relations between
conceptual and procedural knowledge in various mathematical
domains and by means of different methods. In particular, con-
ceptual sequencing of practice problems supported improvements
in 7- and 8-year-old children’s procedural and conceptual knowl-
edge about arithmetic (Canobi, 2009), direct instruction on one
type of knowledge led to improvements in the other type of
knowledge in fourth and fifth graders’ learning about equivalence
problems (Rittle-Johnson & Alibali, 1999), and iterating between
lessons on concepts and procedures on decimals supported greater
procedural knowledge than presenting concept lessons before pro-
cedure lessons in a sample of sixth graders (Rittle-Johnson &
Koedinger, 2009). In our study, we confirmed these findings using
a more adequate method and extended the findings by looking at
older student learning, a more complex topic with multistep pro-
cedures.

Overall, converging empirical evidence from different content
areas, age groups, and research methods strongly supports an
iterative model of the development of conceptual and procedural
knowledge. Hence, instruction focusing on only one of the two
kinds of knowledge is not desirable. Conceptual knowledge may
help with the construction, selection, and appropriate execution of

problem-solving procedures. At the same time, practice using
procedures may help students develop and deepen understanding
of concepts. Both kinds of knowledge are intertwined and can
strengthen each other over time.

A Lack of Moderating Influences of Prior Knowledge

Students’ prior knowledge did not moderate the predictive re-
lations between conceptual and procedural knowledge. We com-
pared two samples differing in their amount of instruction and,
thus, in their amount of prior conceptual and procedural knowl-
edge for equation solving. A multigroup structural equation model
allowed us to analyze the data from the two samples simultane-
ously and to explicitly test for differences between the learning
processes in the two groups. Despite the statistical power that
comes with our sample of 532 participants, we found no evidence
for a moderating effect of prior knowledge on the predictive
relations between conceptual and procedural knowledge. Future
research is needed to test for moderating effects for larger differ-
ences in prior knowledge or in other content domains.

One explanation for the coherence of these findings and for the
lack of a moderating effect of prior knowledge is that the bidirec-
tional relations between conceptual and procedural knowledge are
a basic property of the architecture of the human information
processing system. Unfortunately, so far, there is virtually no
connection between studies of conceptual and procedural knowl-
edge and studies of the architecture of cognition (e.g., Anderson et
al., 2004). Making these connections would be a breakthrough for
future research on conceptual and procedural knowledge, because
it would enable researchers not only to describe the relations
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Figure 2. Factor loadings, factor intercorrelations, and regression paths of the best fitting structural equation
model (Model 2k) of the relations between conceptual knowledge, procedural knowledge, and procedural
flexibility in Study 2. A = Item Group A (sum of items with odd numbers); B = Item Group B (sum of items
with even numbers); tI = Time 1; t2 = Time 2. All estimated coefficients are significant with p < .05.

between the two kinds of knowledge but also to explain why their
interrelations are the way they are in terms of the human informa-
tion processing architecture.

Relations to Procedural Flexibility

We also investigated how conceptual and procedural knowledge
contribute to procedural flexibility, that is, knowledge of how to
solve problems flexibly and efficiently. Conceptual and procedural
knowledge were both important for supporting procedural flexi-
bility. In our two samples, conceptual and procedural knowledge at
Time 1 both contributed individually to procedural flexibility at
Time 2. Given the importance of procedural flexibility for math-
ematical proficiency, it is important to recognize the benefits of
both types of prior knowledge. Flexibility does not seem to come
from conceptual or procedural knowledge alone—children may
gain flexibility by using both types of knowledge (Baroody &
Dowker, 2003).

The literature suggests several mechanisms by which conceptual
or procedural knowledge can strengthen procedural flexibility.
Conceptual knowledge can increase flexibility by guiding attention
to important problem features and aid choice of the most appro-
priate procedures, adapting the choice to the specific problem and
context at hand. At the same time, procedural flexibility rests on
knowing more than one procedure. A sufficiently large repertoire
of problem-solving procedures is necessary for flexibly adapting
the behavior to the problem at hand (Siegler & Lemaire, 1997).
Background knowledge about the effectiveness, strengths, and
weaknesses of each procedure helps people to flexibly choose the
most adequate procedure in a situation (Star, 2005). Our results
suggest that these mechanisms are not mutually exclusive. Con-
cepts and procedures can simultaneously strengthen procedural
flexibility by a multitude of mechanisms. Instruction addressing
conceptual or procedural knowledge may, thus, also be expected to
have positive indirect effects on procedural flexibility.

Table 5

Fit Indices of the Multigroup Models of Longitudinal Relations Estimated With the Data From Study I and Study 2

Model no. Model description X daf P CFI RMSEA SRMR AIC BIC
3a Basic model 360 328 .106 .985 .027 072 58932 59407
3b Identical loadings in both groups assumed 378 341 .083 982 .028 .074 58923 59352
3c Identical loadings and identical predictive relations 383 351 118 985 .026 .075 58908 59300

in both groups assumed

Note. CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root-mean-square residual; AIC =

Akaike information criterion; BIC = Bayesian information criterion.



12 SCHNEIDER, RITTLE-JOHNSON, AND STAR

Measuring Conceptual and Procedural Knowledge

When new intelligence or personality tests are developed, re-
searchers use a rigorous set of psychometric methods to evaluate
the reliability and validity of the new test. In contrast, research on
conceptual and procedural knowledge so far has not used this
approach (Schneider & Stern, 2010). In the current study, a latent
variable approach helped us to investigate several aspects of the
divergent validity and the reliability of our measures. All of our
measures had acceptable reliabilities, since their loadings on the
latent factors standing for the different kinds of knowledge are all
higher than .5 and are statistically significant (cf. Bollen, 2002).

Conceptual knowledge, procedural knowledge, and procedural
flexibility could be assessed partly independently of each other. In
most cases, the relations between our measures were fit better or at
least equally well by a factor for each construct than by a single
latent factor underlying pairs of measures. In addition, the longi-
tudinal models with a separate latent factor for each of our con-
structs had excellent fits to the data.

Latent variable analyses also allowed us to test whether our
measures functioned the same at different measurement points and
in samples differing in prior knowledge. The pattern of factor
loadings was the same for both measurement points and both
studies. The only aspects of the factor structure that changed over
time and samples were the intercorrelations between conceptual
and procedural knowledge that lay at » = .3 for Time 1 in Study
1, where the participants’ knowledge was lowest, and were greater
.6 in all other cases. Since the assessment tasks and test instruc-
tions were always the same, the changing correlations likely indi-
cate changes in the assessed knowledge structures. Some authors
have suggested that a person with low expertise in a domain has
fragmented knowledge and does not see how different pieces of
knowledge in a domain, for examples, concepts and procedures,
relate to each other. A higher expertise in a domain enables
learners to integrate more and more pieces of knowledge into a
coherent knowledge structure (Baroody & Dowker, 2003; Linn,
2006; Schneider & Stern, 2009). Our findings are in line with this
interpretation. However, high correlations between latent factors
assessing knowledge structures only indicate that these knowledge
structures frequently appear together. This does not necessarily
imply a high level of cognitive integration of the two knowledge
structures. Further research with more explicit measures of knowl-
edge integration or fragmentation is needed.

Opverall, the structural equation models of the final models (see
Figures 1 and 2) had excellent fits to the data. This is all the more
remarkable as our data sets had quite complex structures. The data
came from different samples, interventional groups, classrooms,
dyads, and measurement points. We carefully choose the adequate
modeling strategies to address each of these points. The excellent
model fits indicate that this strategy was successful and that our
models adequately reflect the relations between the assessed con-
structs in our samples.

Future studies will have to test whether our results generalize
over different measures. As explained earlier, the choice of mea-
sures can sometimes influence the quality of the obtained results
(Schneider & Stern, 2010). For logistical reasons, we had only one
type of measure for each kind of knowledge and could not control
for these effects here. Future studies on knowledge acquisition in
dyads should be conducted with larger sample sizes so that mul-

tilevel modeling can be used to simultaneously investigate effects
on the level of individual persons and effects on the dyad level.
In summary, we showed that latent variable modeling can be
used to improve the reliability of measures of conceptual knowl-
edge, procedural knowledge, and procedural flexibility. Our anal-
yses yielded clear evidence for bidirectional and even symmetric
predictive relations between conceptual and procedural knowl-
edge. These relations were stable over two large samples differing
in their prior knowledge. Conceptual and procedural knowledge at
Time 1 independently predicted students’ procedural flexibility at
Time 2. These findings add to a growing body of evidence that
conceptual and procedural knowledge develop in an iterative fash-
ion and both support the development of procedural flexibility.
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Appendix

Sample Items for Assessing Conceptual, Procedural, and Flexibility Knowledge

Problem type

Sample items

Scoring

Procedural knowledge
Familiar (n = 3)

Novel (n = 6)

Procedural flexibility knowledge
Generate multiple methods (n = 6,
from 4 question stems)

Recognize multiple methods
(n = 8, from 2 question stems)
Evaluate nonconventional methods
(n = 6, from 2 question stems)

Conceptual knowledge (n = 13)

12 (x + 1)=10

3(h +2) + 4(h +2) =35

3(m — 2)/5 = 33/5

32x + 3x — 4) + 52x + 3x — 4) = 48

Solve this equation in two different ways: 3(y + 1) =
4+ D +20+ 1)
Which of your ways do you think is easiest and fastest?

For the equation 2(x + 1) + 4 = 12, identify all possible
steps that could be done next. (4 choices)

5x+3)+6=5x+3)+ 2x

6 = 2x

What step did the student use to get from the first line to
the second line?

Do you think that this is a good way to start this problem?
(a) a very good way, (b) OK to do, but not a very good
way, (c¢) not OK to do

Explain your reasoning.

Which of the following is a like term to (could be
combined with) 7(j + 4)? (a) 7(j + 10), (b) 7(p + 4),
(), (d)2(j + 4), (e) aand d

Here are two equations:

98 = 21x

98 +2(x + 1) = 2Ix + 2(x + 1)

Look at this pair of equations. Without solving the
equations, decide if these equations are equivalent (have
the same answer).

Explain your reasoning.

1 pt for each correct answer

1 pt for each correct answer

1 pt for two correct unique solutions

1 pt for choosing solution with fewest
steps
1 pt for each correct choice

1 pt for correctly identifying step.

2 pt for Choice a, 1 pt for Choice b, 0
pts for Choice ¢

2 pt if accurately evaluates efficiency or
justifies why OK to do; 1 pt if simply
states that step is OK to do.

1 pt for choosing d

1 pt for selecting “yes (they have the
same answer)”

1 pt for mentioning equivalence of
equations

Received June 12, 2010
Revision received April 20, 2011
Accepted April 27, 2011 =



