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Abstract

It is still an open question whether increasing life expectancy as such causes higher
health care expenditures (HCE) in a population. According to the “red herring” hypothesis,
the positive correlation between age and HCE is exclusively due to the fact that mortality
rises with age and a large share of HCE is caused by proximity to death. As a consequence,
rising longevity – through falling mortality rates – may even reduce HCE. However, a
weakness of many previous empirical studies is that they use cross-sectional evidence to
make inferences on a development over time. In this paper we analyse the impact of rising
longevity on the trend of HCE over time by using data from a pseudo-panel of German
sickness fund members over the period 1997-2009. Using (dynamic) panel data models, we
find that age, mortality and five-year survival rates each have a positive impact on per-capita
HCE. Our explanation for the last finding is that physicians treat patients more aggressively
if the results of these treatments pay off over a longer time span, which we call “Eubie
Blake effect”. A simulation on the basis of an official population forecast for Germany is
used to isolate the effect of demographic ageing on real per-capita HCE over the coming
decades. We find that while falling mortality rates as such lower HCE, this effect is more
than compensated by an increase in remaining life expectancy so that the net effect of
ageing on HCE over time is clearly positive.
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If I’d known I was going to live this long,
I would have taken better care of myself.

(Eubie Blake on his alleged 100th birthday)

1 Introduction

The ageing of populations in most OECD countries will place an enormous burden on tax
payers over the coming decades. Given this demographic change, previous fiscal policies in
several of these countries were deemed unsustainable, and major reforms of social insurance
systems have been enacted, in particular with respect to public pension and long-term care
financing systems. However, what remains unclear is whether population ageing also jeopar-
dizes the sustainability of social health insurance (see, e.g. Hagist and Kotlikoff (2005) and
Hagist et al. (2005)). While there is no doubt that the revenue side of these systems will suffer
from the shrinking size of future taxpayer generations, it is not so clear if rising longevity will
place an extra burden on the expenditure side. If so, additional reforms of these systems would
be necessary to guarantee the sustainability of these systems, such as introducing more funding
or limiting the generosity of benefits.

The impact of population ageing on health care expenditures (henceforth: HCE) has been
heavily debated over the last decade.1 That the positive association between age and HCE is
primarily due to the high cost of dying and rising mortality rates with age was first observed
by Fuchs (1984). Subsequently, Zweifel et al. (1999) have coined the term “red herring” to
characterize the erroneous conclusion from the cross-sectional correlation between age and
HCE that population ageing due to increasing longevity implies rising country level HCE over
time. As counter-evidence they showed that in individual data – when controlling for proximity
to death – calendar age is not even a significant predictor of health care costs.

Although this early study suffered from its focus on patients in their last year of life, subsequent
studies by several authors such as Seshamani and Gray (2004), Zweifel et al. (2004), Werblow
et al. (2007) and Felder et al. (2010) confirmed the red herring hypothesis by demonstrating
that even for persons who survived for at least four more years, there is at most a small age
gradient in HCE, whereas the costs of the last year of life even tend to decrease with age at
death (e.g. Felder et al. (2010), Colombier and Weber (2011)). The latter finding is explained
by the tendency of physicians to treat patients who have lived beyond a “normal life-span” less
aggressively than younger patients with the same diagnosis and survival chances. In this vein,
Miller (2001) shows by simulation that, based on a negative relationship between age at death
and death-related costs, an increase in longevity will dampen the growth of HCE.

However, an important weakness of almost all studies in the related literature is their reliance
on cross-sectional expenditure data. Therefore, in drawing inferences from these studies on
the development of HCE over time, proponents of the red herring hypothesis commit the same
error of which they accuse their opponents (i.e. those who think that population ageing in-
creases health spending because per-capita expenditures increase with age). In particular, they
overlook the fact that increasing longevity not only means that 30 years from now average age
at death will be higher, but also that people at a certain age – say, 80 – will on average have
more years to live than present 80-year olds.

If individuals have more years to live, this will have an influence on their HCE for two reasons:
First, there is evidence that physicians as prime decision makers, who have to allocate scarce
resources among their patients (e.g. in a hospital), base their decisions on the benefit to the

1A recent survey can be found in Karlsson and Klohn (2014).
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patient (see, e.g. Hurst et al. 2006)), where, of course, the patient’s expected longevity is an
important determinant of this benefit.2 This effect will lead to physician behavior similar to
“age-based rationing” of health care services when the notion of a “normal life span” (Callahan
(1987), Daniels (1985)) shifts over time with rising longevity.3 However, if physicians have a
better indicator than calendar age, i.e. if they can observe “biological age”, they will certainly
use the latter, which is just the mirror image of “expected remaining lifetime”.

Secondly, when a major medical treatment such as implanting an artificial hip is decided upon,
the physician and the patient himself, will weigh the risks involved against the potential gains,
which again depend upon the general health status of the patient for which his life expectancy
is a proxy. In that respect, the physician and the patient will behave in a way described in the
famous quotation from Eubie Blake, i.e. more will be spent on those patients who will profit
from the treatment for a longer time period.4

This reasoning suggests that the relationship between ”life expectancy” or “time to death” and
HCE is non-monotonic, and it is exactly this non-monotonic relationship on which we focus
in this study: In the very last years of life, a lower value of these variables indicates worse
health and therefore higher HCE, e.g. for emergency treatment and heroic efforts to avoid the
unavoidable. In individual data, this effect can be captured by a dummy for the “last year of
life” and in group data by the share of persons who died in the particular year, i.e. the mortality
rate. In contrast, when time to death is longer (say, between 5 and 10 years), a higher value
indicates a better chance to benefit from elective surgery and other potentially risky procedures
for a longer time and thus leads to higher HCE, as argued above; in group data, this “Eubie
Blake effect” can be captured by including a measure for longevity such as the remaining life
expectancy.

To test whether there is a “Eubie Blake effect”, it is desirable to study how rising life ex-
pectancy in a population has affected HCE over time. This requires a data set that comprises
this variable, or an indicator of it, and covers several years.

To our knowledge, there have only been three previous studies that have used life expectancy
as an explanatory variable in a regression equation for HCE, viz. Shang and Goldman (2008),
Zweifel et al. (2005) and Bech et al. (2011), of which the first used individual-level data and
the other two population-level data.

Shang and Goldman (2008) used a rotating panel of more than 80,000 Medicare beneficia-
ries and predicted the life expectancy for each individual, based on age, sex, race, education
and health status and then performed a nonlinear-least-squares estimation of individual HCE.
In this equation, predicted life expectancy turned out to be highly significant and negative,
whereas age became insignificant when this variable was included. The interpretation of this
result is, however, very similar to other studies in the red herring literature because predicted
life expectancy, if the value is low (say, a few years), is a proxy for time to death.

Zweifel et al. (2005), in contrast, used a panel of 17 OECD countries over a period of 30 years
(1970-2000) and tried to jointly explain HCE and life expectancy. As one of the determinants
of HCE, they constructed an artificial variable by multiplying “life expectancy at 60” (averaged
over both sexes) with the share of persons over 65 in the total population. The predicted value
of this variable turned out to be a significantly positive determinant of HCE. A problem with

2For instance, one criterion in organ allocation is expected organ functioning duration.
3The empirical literature shows that some physicians use age as a prioritization criterion in allocating scarce health

care resources; for an overview see Strech et al. (2008).
4Fang et al. (2008) attribute the same quotation to the baseball star Mickey Mantle and speak of a “Mickey Mantle

effect”. However, it is quite clear that Mantle did not invent the phrase, but quoted the football player Bobby Lane,
who died in late 1986 and may well have known the statement by Blake, which was made already in February 1983.
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this result is that it does not allow the disentangling of the effect of life expectancy itself from
the effect of the old age dependency ratio, which is also a function of past birth rates.

Bech et al. (2011) considered per-capita HCE for a panel of 15 EU member states over the
period 1980 to 2003 and found that both mortality and remaining life expectancy at age 65
have a significant positive effect on HCE in the following year. They then calculated long-
run elasticities of HCE with respect to these variables and found a positive value only for life
expectancy, so that a linear increase in life expectancy at 65 is associated with an exponential
growth in per-capita HCE. Being a “macro” study, the work by Bech et al. leaves open the
question of whether the same relationship can still be found when disaggregated data can be
used such as HCE by age group.

In this paper, we aim to disentangle the two effects of rising longevity, i.e. the “direct” effect of
decreasing HCE (at a certain age) due to a falling mortality rate (at that age) and the “indirect”
effect of increasing HCE due to an increase in the remaining life expectancy (at that age and
conditional on surviving until the end of the year). To do so we employ a measure for remaining
life expectancy which is especially common among physicians: (expected) 5-year survival
rates. In medical studies, in particular those concerned with specific diseases, this measure is
used instead of life expectancy as such.5

Assessing the impact of life expectancy on total HCE in a country requires the use of population-
level data for two reasons: First, for individuals, life expectancy is not well-defined let alone
observable. Secondly, the red herring effect – even though many authors use individual data
to make their point in this debate – is focused exactly on the question of whether population
ageing due to increasing life expectancies will lead to increasing HCE in a country; whether
this is the case not only depends on individual demand but also on supply side factors like
government interventions or measures taken by the sickness funds.6 Hence, population-level
data should be used to scrutinize the validity of the red-herring theory.

The data set we employ is a pseudo panel of sickness fund members in Germany, which was
originally collected for calculating age and sex specific (average) HCE for purposes of risk ad-
justment. This data set, which covers the years 1997 to 2009, is merged with data on mortality
rates published annually by the Human Mortality Database.

To determine the impact of longevity we estimate (dynamic) panel data models; to disentangle
age, period and cohort effects, we apply the Intrinsic Estimator (Yang et al. (2008)), which is
a special case of a partial least squares regression (Tu et al. (2012)). We then use the estimated
relationship to show the effect of an increase in survival rates according to official statistics on
average HCE. We find that while falling mortality rates as such lower HCE, this effect is more
than compensated by an increase in remaining life expectancy so that the net effect of ageing
on HCE over time is clearly positive.

The remainder of this paper is organized as follows. In Section 2, we state the theoretical
hypotheses to be tested, and describe the data in Section 3. The estimation strategy is presented
in Section 4, and the regression results in Section 5. We perform the simulation of the future
development of HCE in Section 6, and Section 7 concludes.

5See, e.g., the fact sheet on cancer edited by the National Institutes of Health, which is published online under
http://report.nih.gov/nihfactsheets/Pdfs/Cancer(NCI).pdf.

6This point is also made by van Baal and Wong (2012).
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2 Testable Hypotheses

The main focus of this paper will be the effect of “population ageing”, expressed by falling
mortality rates and increasing life expectancy, on average HCE of a population group charac-
terized by age and gender. However, age and time will be used as explanatory variables in the
regression as well. The following theoretical predictions are derived from the literature and
will be tested in the empirical estimation:

Age: According to more “traditional” theory, HCE will be decreasing with age in the age range
0-20, stay approximately constant between 20 and 60 and will be increasing with age for age
above 60. In contrast, the alternative hypothesis on which the red herring claim is based states
that HCE will be independent of age for age above 20.

Time: HCE will be increasing over time due to medical progress.

Mortality: As for individuals expenditures are especially high in the last year of life (“cost-of-
dying effect”), average HCE of a population group will be increasing in the mortality rate of
the group.

Life expectancy: Holding the mortality rate of an age group constant, HCE of this group will be
increasing in the remaining life expectancy within the group as more resources will be spent on
patients who have “more to gain” from an intervention. This “Eubie Blake effect” is especially
important for older patients.

3 Data

3.1 Data sources

The data we use in this study come from three different sources. Our estimation data set
comprises data of the first and second source; the simulation uses data of the third source.

Data on HCE were provided by the German Federal (Social) Insurance Office (“Bundesver-
sicherungsamt”, BVA). To determine the risk adjustment payments for the statutory sickness
funds, each year the BVA collects data on all expenditures covered by the sickness funds for all
individuals insured in the social health insurance system.7 These data comprise eight major ex-
penditure categories: ambulatory care, dental care, prescription drugs, inpatient care, medical
supplies and equipment, sick-pay, dialysis and vaccinations.8 Based on this census, the BVA
calculates the average yearly HCE for all sickness fund members, separately for each age-sex
group; these averages are then published as daily HCE. The official risk adjustment data, which
can be found on the BVA’s website, are smoothed. For our study, we use the unsmoothed data
which were provided to us by the BVA.9 Since we want to focus on health care expenditures,
we exclude expenditures for sick-pay. The data set also contains the number of individuals in
each age-sex group; these data are given as number of person-days, i.e., the number of insured
times the average number of days per year an individual of this age-sex group is insured. The
highest age group in this data set contains all individuals of age 90 and above (along with their
average HCE). Since we have no information about the age distribution within this group, we
could not compute their average mortality and survival rate. We therefore drop this group,

7The social health insurance system covers about 90% of the population in Germany.
8Expenditures for long-term care are not covered under Social Health Insurance.
9We thank Dirk Göpffarth, the Head of the Risk Adjustment Unit at BVA, for making this data set available to us.
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which amounts to a loss of 0.71% of all person-days.

Data on age and sex specific mortality rates are taken from the Human Mortality Database
(2011). These data apply to the German population as a whole and not only to sickness fund
members. Since the omitted group, the privately insured, have on average higher incomes, and
life expectancy is positively associated with income in Germany (von Gaudecker and Scholz
(2007), Breyer and Hupfeld (2009)), the population-based life expectancy is somewhat higher
than the true life expectancy of sickness fund members, but this error should be rather small
given that sickness fund members account for about 90 per cent of the German population.

The third source of data, which will be used for simulating the demographic effect on HCE,
is the German Statistical Office, which publishes forecasts on the size and composition of the
population in Germany over the following decades. The most recent one is the “12th coordi-
nated population projection” (Statistisches Bundesamt 2009). In addition, the Office provided
estimates of the development of age-specific mortality rates for the period until 2060. From
these data, we calculated the time paths of age-specific survival rates. Of the two published
forecasts, the one denoted the “most likely one” by the Office and the one with an even stronger
increase in longevity, we use the “most likely one”.

3.2 Variables

Throughout this paper, we use the 5-year survival rate of each age group as our measure of “life
expectancy” because it is a familiar concept for physicians. Technically, the 5-year survival rate
SR5 at age a in year t, conditional on surviving at least until the end of year t, is calculated by
multiplying the one-year survival rates (i.e. one minus the mortality rate) of age groups a+ 1,
a + 2, . . . , a + 5 in year t. This corresponds to the usual way remaining life expectancy for
an age group is calculated. Note that the mortality rate of age group a in year t does not enter
the calculation of the 5-year survival rate of this age group in year t. We can therefore indeed
hold the mortality rate of an age group constant, while varying the remaining life expectancy,
as formulated in the last of the four hypotheses.

For the following reason we do not use the 5-year survival rate SR5 as such but a predicted
value of it. We argued that a physician will take the 5-year survival rate into account when
deciding whether to perform an expensive or risky procedure. However, during the year t,
the physician does not know the 5-year survival rate SR5c,a,t, where c denotes cohort and a
denotes age. SR5c,a,t is a measure derived from the mortality rates in the same year, which
are not known until the end of year t. It is therefore an informed guess of the survival rate
the physician will have in mind. One possible proxy for this guess would be the value of this
variable in the previous year (for the same age), SR5c−1,a,t−1, but this is certainly not the best
choice: First, survival rates are increasing over time, so there would be a systematic downward
bias in this proxy. Secondly, the survival rate in a particular year t − 1 is derived from the
mortality rates of 5 different age groups in this particular year t − 1, which, to some degree
also depend upon singular events such as a flu epidemic or a heat wave. These singular events
will however have no (or only a minor) effect on the informed guess of the physician. Rather,
it will depend on his or her experience over a longer time period. Therefore, we use a linear
projection of the survival rate (for the same age) of the previous five years.10 In the following,

10Technically, we run a regression of (SR5c−5,a,t−5, . . . , SR5c−1,a,t−1)′ on a constant and a linear time trend,
i.e.

SR5c−τ,a,t−τ = µ0 − µ1τ + ε for τ = 1, . . . , 5,

and determine the prediction as ŜR5c,a,t = µ̂0 − µ̂1 · 0 = µ̂0. For each prediction a separate regression is
performed. As these equations are estimated for every age, there is implicitly an interaction between age and year in
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whenever we use the symbol SR5, we refer to this prediction of the 5-year survival rate.11

In our analysis, we use the following variables:

• HCEc,a,t (dependent variable), the average annual health care expenditures covered by
the sickness funds except for sick pay of all insured persons in cohort c of age a in year
t, expressed as average daily expenditures and converted to Euros of 2009 using the
consumer price index;

• MORTc,a,t, the mortality rate, i.e. the share of persons in cohort c of age a in year t
who have died within that year;

• SR5c,a,t, the (predicted) 5-year survival rate of all persons in cohort c of age a in year
t, conditional on surviving until the end of the current year;12

• a set of dummy variables Agea for each age a with a = 0, . . . , 89;

• a set of dummy variables Cohortc for each cohort c with c = 1908, . . . , 2009, (the year
in which the person was born);

• a set of dummy variables Yeart for each year t with t = 1997, . . . , 2009.

Because each entry of our data set contains the average values of a particular age-sex group, it is
a “pseudo panel” in the sense of Deaton (1985). It comprises the period 1997 to 2009. As there
are 90 age groups (0 to 89) for men and women separately, the total number of observations is
2340. Table 1 contains descriptive statistics on the data set. Since we perform the estimations
separately for men and women, we present these statistics separately, too. For men, average
HCE per day range from e 1.78 (at age 3 in 1997) to e 17.60 (at age 89 in 2009).

Table 1: Descriptive Statistics for the variables Age, Cohort, HCE, MORT and SR5

Men Women

mean std.dev. min max mean std.dev. min max

Age 44.5 25.99 0 89 44.5 25.99 0 89

Cohort 1958.5 26.26 1908 2009 1958.5 26.26 1908 2009

HCE 6.2437 4.7329 1.7812 17.6005 6.1312 3.8728 1.5020 15.7070

MORT .0233 .0437 .00007 .2275 .0153 .0321 .00005 .1711

SR5 .8785 .2021 .1687 .9996 .9117 .1685 .2603 .9997

Table 2 presents 5-year survival rates for selected age groups in the base year 1997 and their
increase over time until 2009. The table shows that even within this relatively short time span,
for some age groups 5-year survival rates increase considerably: up to 9 percentage points for
men and up to 5.6 percentage points for women.

this estimation. In contrast, there is no age-year interaction term in the equation for HCE; this difference is used for
identification.

11A possible concern might be that the mortality rate and SR5 are highly correlated and thus the effect of the two
variables cannot be disentangled empirically. However, this is not the case; we return to this issue in Section 5.

12For the robustness checks we also use the variables SR2c,a,t, SR3c,a,t, . . .SR10c,a,t, i.e., the predicted 2-year
survival rate, 3-year survival rate, and so on.
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Table 2: Age-sex specific 5-year survival rates: Level in 1997 (per cent) and increase ∆ from
1997 to 2009 (percentage points)

Men Women

SR5 SR5

Age 1997 ∆ 1997 ∆

60 91.1 2.4 95.9 0.8

65 86.1 4.3 93.2 1.9

70 79.1 5.9 88.3 3.4

75 67.9 6.9 79.5 4.6

80 51.2 9.0 64.6 5.6

85 31.6 8.6 43.6 4.7

90 14.0 4.0 22.1 1.1

4 Estimation Strategy

4.1 Main specification

To describe the estimation strategy, we begin with the general specification

HCEc,a,t = g(c, a, t) + β1MORTc,a,t + β2SR5c,a,t + uc,a,t, (1)

where g captures the effects of cohort, age and time, and uc,a,t denotes the error term. There is
no dummy variable included for gender because we perform all estimations separately for men
and women, since – as it is well known – the age profiles of HCE have rather different shapes
for men and women.

The specification in (1) suffers from the familiar problem of linear dependence since age equals
year minus cohort:

a = t− c.

Because we want to estimate the effects of cohort, age and time in a flexible manner, we follow
the dummy-variables approach and set

g(c, a, t) = β0 +
∑
c

γcCohortc +
∑
a

αaAgea +
∑
t

δtYeart, (2)

where in each set of dummy variables one variable is omitted because of the constant term.

Of course, the problem of linear dependence applies to the dummy variables specification
as well. There are in principle two strategies for dealing with this problem: The first one
is to drop one of the variables (or set of dummies for) age, cohort or time and for example
estimate a model with only age and year dummies. As our data set is a pseudo panel where the
“individuals” are cohorts, this variable cannot be dropped in our analysis. Obviously, neither
the age effect nor the time effect can be dropped, either.
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The second strategy is to impose a restriction on the coefficients γ, α and δ.13 One can distin-
guish two ways to do so: In most cases, one of the coefficients is set to zero, or two – usually,
but not necessarily, adjacent – coefficients are set equal. E.g. with δ2000 = δ2001, it is assumed
that there is no time effect going from the year 2000 to 2001; with α20 = α21, it is assumed
that 20 and 21-year-olds have equal health care expenditures. If one can be confident that the
assumption is valid, this will correctly disentangle the age, period and cohort effects.

However, as shown by Yang et al. (2008), the resulting estimates can be seriously misleading
if the assumption is not warranted. In fact, in our data the estimates are very sensitive to which
two coefficients are set equal: If, for example, we assume α23 = α24, the year dummies
indicate a positive time trend; this reverses if we set α24 = α25, so that HCE are estimated to
decrease over time. For α25 = α26, the time trend is again positive. This lack of robustness is
a strong reason for discarding this solution to the linear dependence problem.

The second way to impose a restriction on γ, α and δ is the following: The problem in esti-
mating (1) with g(a, c, t) replaced by the set of dummy variables as shown in (2) is that the
well-known least squares formula (X ′X)−1X ′HCE, (where X is the matrix containing all
the explanatory variables) cannot be applied because X ′X is a singular matrix that cannot be
inverted. However, an infinite number of generalized inverse matrices exist. A particular one is
the Moore-Penrose inverse, which, as Tu et al. (2012) point out, is to be preferred, because the
results using this Moore-Penrose inverse correspond to the results of both a Principal Compo-
nent Regression and a Partial Least Squares Regression if the maximum number of components
is used; in addition, they also coincide with the result of the Intrinsic Estimator proposed by
Yang et al. (2008). This is the approach we follow in this study.14

Before we proceed, it is important to emphasize that the restriction imposed on γ, δ and α
has no influence on the coefficients of all the other covariates: Regardless of whether one
coefficient is set equal to zero, or two coefficients are set equal, or the Intrinsic Estimator is
used, β̂1 and β̂2 will always be the same. This means that the coefficients we are most interested
in are not at all affected by how the linear dependence problem is solved. As a consequence,
the predicted values ĤCE also do not depend on which restriction is imposed.15

As our main specification we therefore use the Intrinsic Estimator to estimate

HCEc,a,t = β0 +
∑
c

γcCohortc +
∑
a

αaAgea +
∑
t

δtYeart + β1MORTc,a,t

+β2SR5c,a,t + uc,a,t. (3)

To have a comparison model as used by the proponents of the red herring hypothesis we also
estimate a model with only MORT (i.e. equation (3) without SR5). We also present the
results with only SR5 to show that the coefficients are stable and that the effects of these two
variables can indeed be disentangled. Throughout the text (and in the tables containing the

13Of course, dropping one of the variables means imposing the restriction that all coefficients of this variable are
zero. However, since this is usually not made explicit, we mention it as a separate way to deal with the problem of
linear dependence.

14Because of the way the Intrinsic Estimator is implemented in Stata’s apc ie command, in practice the estimates of
the Intrinsic Estimator may differ slightly from the results of the partial least squares regression. In our data, we find
the difference between the estimates using the Partial Least Squares Regression procedure of the software package R
and Stata’s apc ie command to be negligible. Since we perform the other regressions in Stata, we present the results
for the Intrinsic Estimator.

15This is an application of the Frisch-Waugh-Lowell-Theorem, see Davidson and MacKinnon (1993), Chapter 1.
No matter which restriction is imposed on γ, δ and α, the subspace spanned by (2) is always the same.
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results) we refer to the model with only MORT as regression (1), the model with only SR5
as regression (2), and the model with both MORT and SR5 as regression (3).

As the data set is a pseudo panel, and the respective cohort-age cells contain different numbers
of observations, the results from the (fixed effects) panel estimation may not be efficient and
have to be weighted by the square root of the cohort size, see Deaton (1985). As in our panel the
cohort size is not constant over time, we could use different weights for each cohort-age cell.
However, Inkmann et al. (1998) show that estimation results can be unstable if the cohort size
differs considerably and therefore propose weighting by the average weight for each cohort.
We therefore use weights that do not differ in the time dimension. In addition, in all regressions
we present, we allow for autocorrelation of the error terms by clustering at the cohort level.16

4.2 Robustness Checks

As a first robustness check, we test whether our results critically depend on choosing the 5-year
survival rate (instead of any other n-year survival rate) as our proxy for how long a patient
benefits from a treatment. We examine this question by re-estimating the model with SR5
replaced by different n-year survival rates SRn. The results are discussed in Section 5.2.1.

A second issue is that one could argue that the variable MORT not only measures the actual
share of individuals within an age bracket who die in a particular year, but that it is also a
proxy for mortality risk. If this mortality risk increases, HCE should go up, especially if
the remaining life expectancy is large. This would call for also including an interaction term
MORT × SR5. However, these two variables are mutually exclusive at the individual level.
One way to capture that the effect of MORT may depend on the level of the remaining life
expectancy is to interact MORT with age.17 We perform the corresponding robustness check
in Section 5.2.2

In Section 5.2.3 we consider the case that the true relationship may be dynamic so that there
is persistence in HCE. If, e.g., a particularly large share of individuals in an age bracket
develops a chronic condition (like diabetes or COPD), this will not only raise HCE in the
current year, but also in the following year (for this cohort).18 To account for this problem, we
estimate the following dynamic panel model:

HCEc,a,t =
∑
c

βcCohortc +
∑
a

αaAgea +
∑
t

δtYeart

+φHCEc,a−1,t−1 + γ1MORTc,a,t + γ2SR5c,a,t + uc,a,t. (4)

We estimate (4) by GMM, (where the fixed effects correspond to the cohort dummies), us-
ing both the difference-GMM-estimator by Arellano and Bond (1991) and the system-GMM-
estimator by Blundell and Bond (1998), and show the results both for MORT to be either
predetermined or endogenous. We refer to the four GMM specifications as regressions (4) to
(7).

As a final robustness check we consider the case that the variables may be non-stationary so
that there may be the problem of spurious regression. For this reason we tested for unit roots.
Since these tests do not reject non-stationarity in the explanatory variables – although they
do so for the dependent variable HCE – we also estimate all models in first (and second)

16Results are very similar when clustering at the age or year level.
17We thank an anonymous referee for this suggestion.
18Another way to deal with this would be to include proxy-variables; however, such variables will be difficult to

find because they would have to be recorded in an age-specific way.
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differences, i.e. with HCE, MORT and SR5 replaced by ∆HCE, ∆MORT and ∆SR5,
(and ∆2HCE, ∆2MORT and ∆2SR5), see Section 5.2.4. We refer to the regressions in first
differences as regressions (11) to (17), and in second differences as regressions (21) to (27).19

5 Regression Results

5.1 Main Specification

In Table 3 we present the regression results for our main specification, separately for men and
women. In column (1), results from the Intrinsic Estimator for the model with age, cohort and
year dummies and MORT is presented; the results with SR5, but without MORT can be
found in column (2). Column (3) contains the results with both MORT and SR5 as defined
in regression equation (3).

Table 3: Regression Results using the Intrinsic Estimator. Dependent variable: daily HCE.
Standard errors clustered at the cohort level.

Men Women

(1) (2) (3) (1) (2) (3)

MORT 68.26∗∗∗ 58.30∗∗∗ 27.22∗ 26.24∗∗∗

(11.88) (11.23) (14.19) (7.87)

SR5 41.72∗∗∗ 36.45∗∗∗ 42.79∗∗∗ 42.69∗∗∗

(8.47) (7.31) (4.11) (3.90)

Standard errors in parentheses; ∗∗∗(∗∗,∗ ): significant at α = 0.01 (0.05, 0.1).

We first observe that in the full model (3) the coefficients of mortality are positive and highly
significant. They suggest that expenditures in the last year of life for men are about 10 times
as high as for the average sickness fund member; for women, the factor is about four. These
estimates are roughly in line with findings from previous studies. E.g., Riley and Lubitz (2010)
found that the 5 per cent of decedents account for about 25 per cent of total Medicare expen-
ditures, which implies that decedents spend about 6 times as much as survivors; van Baal and
Wong (2012) estimate a factor even as high as 20.

Longevity, measured by the predicted value of the 5-year survival rate, has a positive and
significant impact on HCE. A value of 36 suggests that an increase in the 5-year survival rate
by 5 percentage points (which occurred for men over 70 and for women between 75 and 85
from 1997 to 2009) raises real daily per-capita HCE by roughly 30 per cent.

The coefficients are similar if only MORT or SR5 is included. This shows that contrary to
what one might expect, the variables “mortality rate” and “predicted 5-year survival rate” are
not so closely correlated that their effects could not be disentangled: their coefficients have
small standard errors and are robust to the inclusion of the other variable, respectively.

In Figures 1 - 3, we present a graphical depiction of the coefficients for the age, cohort and year
dummies for the full model (column (3)). In Figure 1, we observe that the age dummies show a
familiar picture: a high value for newborns, then a decline up to age 3, followed by a relatively

19Regression (1) in first differences is referred to as regression (11), and in second differences as regression (21),
and so on.
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flat portion up to age 45 (with somewhat higher expenditures for women of child-bearing age),
and then a steep rise until age 89. It is remarkable that this pattern remains even though both
the mortality rate and the 5-year survival rate are held constant. Thus there seems to be an
independent effect of age on HCE, in contrast to the findings of some papers in the previous
literature.

The coefficients of the cohort dummies are declining except for the first and last few cohorts,
which we observe only for a smaller number of years than the other cohorts, see Figure 2. The
general pattern confirms the well-known fact that more recent cohorts are healthier at a given
age and therefore need less medical care than older cohorts, see Crimmins et al. (1997).

Figure 3 shows the positive time trend in HCE. It also shows the dampening impact of a major
health care reform that took effect in 2004. The year dummies indicate an annual growth rate
of 2.32 per cent for men and 1.62 per cent for women, which can be interpreted as the “pure
time trend in real per-capita HCE”, independent of demographic effects.

Figure 1: Results for age dummy coefficients using the Intrinsic Estimator
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Figure 2: Results for cohort dummy coefficients using the Intrinsic Estimator.
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Figure 3: Results for year dummy coefficients using the Intrinsic Estimator.
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5.2 Robustness Checks

5.2.1 Results for n-year-survival rates

To show that our results do not depend on choosing the 5-year survival rate instead of another
n-year survival rate, we re-estimated the full model (3) with SR5 replaced by different n-year
survival rates. The results can be found in Table 4. Each column in the table contains the result
for one regression with MORT and SRn, with SRn as indicated in the first row.

Table 4: Regression Results for SRn (with n = 2, . . . , 10) and MORT . Dependent variable:
HCE.

SR2 SR3 SR4 SR5 SR6 SR7 SR8 SR9 SR10

Men

SRn 17.63† 23.61 33.46 36.45 37.32 36.29 34.30 30.48 26.50
(7.93) (7.19) (7.16) (7.31) (6.34) (6.10) (5.52) (5.31) (5.11)

MORT 65.66 63.72 60.24 58.30 55.31 55.37 56.67 59.26 60.94
(11.86) (11.47) (11.08) (11.23) (11.56) (11.74) (11.58) (12.03) (12.27)

Women

SRn 56.57 49.92 45.17 42.69 41.23 40.53 39.89 39.51 38.93
(8.07) (5.80) (4.38) (3.90) (3.71) (3.51) (3.44) (3.44) (3.46)

MORT 24.95 20.39† 25.23 26.24 27.12 27.64 26.96 25.21 23.28†

(9.18) (9.25) (8.59) (7.87) (7.52) (7.46) (7.78) (8.69) (10.25)

Standard errors in parentheses.

All coefficients are significant at the one per cent level (except for those indicated by †, which
are significant at the five per cent level). Also the coefficients of the n-year survival rates (and
MORT ) are not affected much by the choice of n, at least in the range between 4 and 9.
Our main conclusion that HCE depend on both MORT and SR therefore does not hinge on
choosing a particular SRn.
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5.2.2 Age-specific mortality effect

As explained in Section 4.2, we re-estimated the full model (3) with MORT replaced by
MORT interacted with 10-year age-brackets, by MORT interacted with 5-year age-brackets
and by MORT interacted with the age-dummies AGEa. The results can be found in Table 5.

Table 5: Regression Results for SR5, for four different specifications of mortality. Dependent
variable: HCE.

(3) (3a) (3b) (3c)

MORT MORT× MORT× MORT×
10-year age-brackets 5-year age-brackets age-dummies

Men

SR5 36.45∗∗∗ 36.21∗∗∗ 39.99∗∗∗ 41.87∗∗∗

(7.31) (7.30) (7.42) (6.95)

Women

SR5 42.69∗∗∗ 43.43∗∗∗ 46.33∗∗∗ 50.96∗∗∗

(3.90) (3.97) (3.89) (3.45)

standard errors in parentheses; ∗∗∗(∗∗,∗ ): significant at α = 0.01 (0.05, 0.1).

As can be seen, the coefficient for SR5 is hardly affected by whether (and how) MORT is
interacted with age. The coefficients for MORT interacted with age are often insignificant,
and contrary to results of previous studies there is no noteworthy decline of the corresponding
coefficients beyond age 70.
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5.2.3 Dynamic panel models

Table 6 contains the results for the dynamic panel model of equation (4). Columns (4) and
(6) show the results for the difference-GMM-estimator due to Arellano and Bond (1991), and
column (5) and (7) the results for the system-GMM-estimator due to Blundell and Bond (1998).
For comparison, we include the results of the Intrinsic Estimator in column (3).

Table 6: Regression Results using GMM (column (4) to (7)) and the Intrinsic Estimator (IE,
column (3)), for Men (upper part) and Women (lower part). Dependent variable: HCE.

IE GMM

Dif. Sys. Dif. Sys.

MORT endog. X X

Men

(3) (4) (5) (6) (7)

MORT 58.30∗∗∗ 70.17∗∗∗ 30.01∗∗∗ 75.56∗∗∗ 37.25∗∗∗

(11.23) (16.31) (5.63) (19.44) (7.49)

SR5 36.45∗∗∗ 34.82∗∗∗ 12.45∗∗∗ 33.46∗∗∗ 14.23∗∗∗

(7.31) (6.75) (1.54) (7.48) (1.95)

HCEt−1 0.12∗∗∗ 0.23∗∗∗ 0.11∗∗∗ 0.22∗∗∗

(0.04) (0.06) (0.04) (0.06)

AR(1) (.000) (.000) (.000) (.000)

AR(2) (.493) (.605) (.484) (.627)

Women

(3) (4) (5) (6) (7)

MORT 26.24∗∗∗ 15.20 33.68∗∗∗ 15.25 41.38∗∗∗

(7.87) (13.07) (8.76) (13.12) (8.55)

SR5 42.69∗∗∗ 29.01∗∗∗ 8.99∗∗∗ 28.99∗∗∗ 10.66∗∗∗

(3.90) (3.96) (2.51) (3.98) (2.22)

HCEt−1 0.28∗∗∗ 0.31∗∗∗ 0.28∗∗∗ 0.28∗∗∗

(0.03) (0.04) (0.03) (0.05)

AR(1) (.000) (.000) (.000) (.000)

AR(2) (.973) (.751) (.973) (.861)

standard errors in parentheses: ∗∗∗(∗∗,∗ ): significant at α = 0.01 (0.05, 0.1);
for AR(1) and AR(2), p-values in parentheses.

In all the GMM-estimations, HCEt−1 and SR5t are regarded to be predetermined as they
do not depend on the error term in period t. In (4) and (5) MORTt is also assumed to be
predetermined, while in (6) and (7) we allow for MORTt to be endogenous. To limit in-
strument proliferation, the number of instruments was reduced using the collapse-option of
Stata’s xtabond2-command, see Roodman (2006). Results with the full set of instruments are,
however, very similar.

We first observe that the coefficients of mortality are again positive and highly significant for
men although their sizes vary somewhat. For women, the coefficients are significant for the
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system-GMM-estimator, but become insignificant when using the difference-GMM-estimator.

Longevity, measured by the predicted value of the 5-year survival rate, remains positive and
highly significant, although the size of the coefficient is generally smaller and varies consider-
ably according to the specification. A value of 9, which seems to be a lower bound, suggests
that an increase in the 5-year survival rate by 5 percentage points raises real daily per-capita
HCE by roughly 7 per cent.

None of the results depend on whether the mortality rate is treated as predetermined or en-
dogenous. If anything, the coefficient of mortality tends to be somewhat larger when mortality
is treated as endogenous.

5.2.4 Regressions in first (and second) differences

We finally consider the case that the variables may not be stationary. We first employ the unit
root tests by Harris and Tzavalis (1999) and by Im et al. (2003) with and without different
numbers of lags.

Table 7: Unit root tests: Rejection of H0: non-stationarity

Men Women

level ∆ ∆2 level ∆ ∆2

HCE yes yes yes yes yes yes

MORT no yes/no yes no yes/no yes

SR5 no yes/no yes no yes/no yes

Table 7 shows an overview of the results; the detailed results can be found in Tables 10 to 12
in the Appendix. For the dependent variable HCE, non-stationarity is clearly rejected. For
MORT and SR5, non-stationarity in levels is never rejected, as all p-values are very close
to 1. For first differences, the results are ambiguous as the null hypothesis is only rejected for
some of the tests. For second differences, the null is always rejected.

Therefore, in this section we present results for the estimations in first and second differences,
see Table 8. The seven models in first differences are presented in columns (11) to (17), the
models in second differences in columns (21) to (27). However, for women the AR(2)-test is
highly significant (with a p-value < 0.001 for the difference GMM-estimator, and 0.002 for
the system GMM-estimator), which is a clear indicator that the model in second differences is
misspecified; therefore we present results in second differences only for men.

The results of these estimations are similar to the ones in levels. The only noticeable difference
is that for women the mortality rate is not significant when using GMM. However, the coef-
ficients of the 5-year survival rate remain (highly) significant and their size never falls below
11.
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Table 8: Regression Results for dependent variable ∆HCE (upper and lower part) with In-
trinsic Estimator (IE, column (11) to (13)) and GMM (column (14) to (17)). Middle part:
Dependent variable ∆2HCE with IE (column (21) to (23)) and GMM (column (24) to (27)).

IE GMM

Dif. Sys. Dif. Sys.

MORT endog. X X

Men, First Differences (∆)

(11) (12) (13) (14) (15) (16) (17)

∆MORT 60.86∗∗∗ 56.22∗∗∗ 56.54∗∗∗ 55.03∗∗∗ 83.78∗∗∗ 77.18∗∗∗

(12.23) (12.00) (11.76) (10.78) (16.71) (15.16)

∆SR5 20.92∗∗∗ 13.83∗∗ 16.32∗∗∗ 15.16∗∗ 12.46∗∗ 12.08∗∗

(6.66) (5.69) (4.97) (6.62) (5.28) (6.14)

∆HCEt−1 -0.02 -0.01 -0.03 -0.02
(0.03) (0.04) (0.03) (0.05)

AR(1) (.000) (.000) (.000) (.000)

AR(2) (.401) (.339) (.312) (.308)

Men, Second Differences (∆2)

(21) (22) (23) (24) (25) (26) (27)

∆2MORT 51.28∗∗∗ 42.41∗∗∗ 49.30∗∗∗ 44.72∗∗∗ 58.51∗∗∗ 64.66∗∗∗

(12.20) (10.35) (12.06) (11.08) (15.02) (14.95)

∆2SR5 29.50∗∗∗ 21.84∗∗∗ 12.36∗∗∗ 15.13∗∗∗ 11.51∗∗∗ 13.12∗∗∗

(5.66) (3.77) (4.01) (4.78) (4.01) (4.77)

∆2HCEt−1 -0.32∗∗∗ -0.25∗∗∗ -0.32∗∗∗ -0.23∗∗∗

(0.04) (0.04) (0.04) (0.04)

AR(1) (.000) (.000) (.000) (.000)

AR(2) (.602) (.613) (.970) (.149)

Women, First Differences (∆)

(11) (12) (13) (14) (15) (16) (17)

∆MORT 33.65∗∗∗ 20.38∗ 3.24 4.99 8.46 7.90
(8.73) (10.53) (8.49) (7.81) (10.74) (9.07)

∆SR5 19.22∗∗∗ 15.77∗∗∗ 19.97∗∗∗ 18.22∗∗∗ 19.43∗∗∗ 18.01∗∗∗

(3.19) (4.26) (4.33) (4.57) (4.58) (4.65)

∆HCEt−1 0.12∗∗∗ 0.14∗∗∗ 0.11∗∗∗ 0.13∗∗∗

(0.03) (0.03) (0.03) (0.03)

AR(1) (.000) (.000) (.000) (.000)

AR(2) (.781) (.689) (.791) (.697)

standard errors in parentheses: ∗∗∗(∗∗,∗ ): significant at α = 0.01 (0.05, 0.1);
for AR(1) and AR(2), p-values in parentheses.

17



5.2.5 Summary of regression results

We conclude that the results found in the main specification are robust to a number of changes
in the specification. Altogether the hypotheses stated in Section 2 are supported by the results
for both sexes. Since both the mortality rate and longevity, measured by the 5-year survival rate
have a significantly positive effect on HCE, the sign of the total effect of population ageing,
which leads both to a decline in mortality and an increase in longevity, is unclear. Therefore,
we have to use simulation methods to determine whether the total effect will be positive, given
the demographic development predicted for Germany.

6 Estimating the Demographic Effect on Health Care Ex-
penditures

In the following, we do not attempt to forecast the development of health care expenditures in
Germany over the coming decades. This would be a futile endeavor, because this depends to a
great extent on political decisions. Instead, we are trying to measure the purely demographic
impact on HCE by performing a counterfactual exercise in that we vary only the demographic
factors, holding everything else constant at the 2009 level. For ease of interpretation, we divide
the resulting values by the respective value of HCE in 2009, so that we can interpret the result
as the relative increase of HCE due to the demographic change.

To facilitate comparisons with existing simulations in the literature (e.g. Stearns and Norton
(2004), Breyer and Felder (2006)), we proceed in three steps:

• In the first step we consider only the effect of the reduction of mortality rates (without
its impact on the 5-year survival rates and the age distribution). To do so, we calculate
the age profiles of HCE and per-capita HCE that would result from changing only the
mortality rates for all age groups to their values in 2020, 2030, 2040, 2050 and 2060,
using the regression results of model (1) with only MORT as an additional explanatory
variable besides age, year and cohort.20 These simulations can be found in the left part
of Table 9 in column (1), both for men and women.21

• In the second step, we take into account that with falling mortality the 5-year survival
rates must rise, which by itself would raise HCE. We therefore calculate the age profiles
of HCE and per capita HCE that would result from changing both the mortality rates
and the 5-year survival rates to their values in 2020, 2030, . . . 2060, using the regression
results of model (3) with bothMORT and SR5, see column (3)in the left part of Table 9
(both for men and women).

• In the third step, we also set the age distribution to their levels in 2020 through 2060.
These results must be interpreted with caution because when we make use of the age
dummy coefficients, we also have to decide how to treat the coefficients of the cohort
dummies. However, there is no natural way to extrapolate the cohort effects because it
is not known how healthy or unhealthy future cohorts will be. To make matters worse,

20As we had to drop the age group 90+ in our estimations, in all the simulations we present we use the predicted
value of HCE for the 89-year-olds as the predicted value of the age group 90+.

21The columns are numbered as in Table 3 to indicate on which regressions the simulations are based. Table 9
refers only to the regressions in levels using the Intrinsic Estimator. Simulations based on the regressions in first and
second differences and on the GMM regressions can be found in Tables 13 and 14 in the Appendix. These results are
discussed in Section 6.2.
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there is no monotone trend in the cohort coefficients which could easily be extrapolated
(see Figure 2). We therefore did not use any predicted values for the cohorts but left them
at their 2009 values, but this is not much more than the application of the Principle of
Insufficient Reason. We nevertheless present these results so that they can be compared
to other studies where the cohort effect is also ignored. The results of this exercise can
be found in the right part of Table 9.

We first present the simulation results using the regression results of our main specification
in the following Section 6.1; in Section 6.2, we use the regression results of our robustness
checks.

6.1 Simulation results for the main specification

The results of step 1 show that the well-known cost-of-dying effect is present in our data
as well: When the mortality rates decline in the way predicted for the coming decades and
everything else stays the same, the age profiles of HCE shift downwards because in each age
bracket, fewer people are in their last year of life, so that per capita HCE decrease. However,
the overall impact is rather modest: With the mortality rates of 2060, expenditures in 2009 for
men would have been lower by 7.1 per cent and those for women by 2.6 per cent, (see columns
(1) for men and women).

Table 9: Relative values of per capita HCE when mortality rates and survival rates (and the
age distribution) are set to their future values; column numbers refer to the regression results
as presented in Tables 3.

Age distribution not adjusted Age distribution adjusted

Men Women Men Women

(1) (3) (1) (3) (1) (3) (1) (3)

MORT X X X X X X X X

SR5 X X X X

2009 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2020 0.975 1.033 0.991 1.048 1.078 1.152 1.058 1.126

2030 0.960 1.061 0.986 1.084 1.137 1.286 1.107 1.237

2040 0.948 1.085 0.982 1.116 1.184 1.419 1.160 1.375

2050 0.938 1.107 0.978 1.145 1.190 1.505 1.191 1.487

2060 0.929 1.126 0.974 1.170 1.184 1.554 1.192 1.532

growth rate (in per cent): demographic 0.33 0.87 0.34 0.84

growth rate (in per cent): time trend 1.95 2.32 1.02 1.62

Adding the development of the 5-year survival rates in step 2 shows that for men the total
change in HCE resulting from this variation is positive and amounts to 12.6 per cent (column
(3)). For women, the respective value is 17 per cent. Thus we see that the decline in HCE due
to lower mortality rates is more than compensated by considering the concomitant increase in
the 5-year survival rates of older population groups.22

22We emphasize again that these results do not at all depend on how the problem of linear dependence between age,
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The results from step 3 show that with the 2060 age composition (along with the 2060 mortality
and survival rates), health care expenditures in 2009 would have been higher by 55 per cent
for men and by 53 per cent for women, an effect that is considerably larger than the impact
of mortality and survival rates alone. The second line from the bottom in Table 9 contains the
results of converting the respective increases into annual growth rates, which can be interpreted
as “growth in real HCE due to demographic change”. Considering changes in mortality, 5-year
survival rates and the age composition, these annual growth rates are .87 per cent for men and
.84 per cent for women.

In the last line of Table 9 we present the pure time trend in real per-capita HCE, independent of
demographic effects, calculated from the coefficients for the year dummies. It can be assumed
that this trend is to a large extent due to medical progress. The annual growth rates for the
full model are 2.32 per cent for men and 1.62 per cent for women and are thus considerably
larger than the purely demographic effect estimated above. If these two effects are added up,
the resulting total growth rates are around 3.2 per cent for men and 2.5 per cent for women,
which is somewhat higher than common forecasts of the growth rate of real per capita income
in the ageing German population. Thus they suggest that demographic change and technical
progress combined may after all present problems for the financing of health care in Germany.

6.2 Robustness Check

For all the estimations we performed as robustness checks in Section 5.2.3 and 5.2.4, we also
determined the corresponding simulations in the same way as for the main specification. These
results can be found in Tables 13 and 14 in the Appendix. The resulting annual demographic
growth rates based on the full model are slightly smaller than the ones reported above and lie
between .47 and .79 per cent for men and between .44 and .72 per cent for women. Adding the
time trend, total annual growth rates lie in the range of 2.5 to 3.05 per cent for men and in the
range of 1.6 to 2.2 per cent for women.

7 Conclusions and Caveats

In this paper, we have used a pseudo-panel of health care expenditure data for Germany to
demonstrate that per-capita HCE are significantly influenced by the age composition of the
population, mortality rates and the development of longevity, as measured by the age-specific
5-year survival rates. We believe that the last effect, which is quite substantial, mirrors the
medical profession’s willingness to perform expensive or risky treatments on elderly patients,
and the patients’ willingness to undergo these treatments, if the patients can be expected to live
long enough to enjoy the benefits of the treatment.

The results of the simulations based on the regression coefficients show that if past trends
continue, per-capita HCE would rise by more than 1 per cent per year for women and more than
2 per cent per year for men even without demographic change. Moreover, while we can confirm
that simulations on the basis of the population age structure alone are misleading, the same
applies when only age-specific mortality rates are added. The effect of rising longevity cannot
be ignored, either. One way to take this into account is to include a measure of age-specific
5-year survival rates. In sum, the (negative) effect of falling mortality rates on health care
expenditures is more than compensated by the (positive) effect of increasing 5-year survival
rates. Adding the effect of a changing age composition in the population, the total effect of

period and cohort is solved.
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demographic change on per capita HCE is estimated to amount to an annual growth rate of
about 0.85 per cent.

The type of data employed for this study has important advantages, but also certain drawbacks.
To our knowledge, this is the first attempt to quantify the effect of rising longevity on the
development of age-specific health care expenditures over time. However, since we used age
and sex group averages instead of individual expenditure data, the well-known cost-of-dying
effect on HCE is accounted for only in an indirect form: by estimating the impact of the
mortality rate within a population group on average expenditures.

It can further be argued that mortality and survival rates themselves are influenced by HCE
and therefore endogenous. With respect to SR5, the endogeneity does not occur as we used its
predicted value instead of SR5 itself. For MORT , possible endogeneity is accounted for in
two of the four dynamic panel models (estimated by GMM), which had basically no effect on
the regression results. This seems reasonable as one may argue that, unlike in individual data,
for group averages the causal effect of HCE on mortality should not be too strong. It does not
seem likely that the correlation between the variation in HCE and MORT is caused primarily
by the fact that tight rationing for a particular age-sex group as a whole within a certain year
by all physicians leads to a higher mortality rate, but rather by a higher mortality rate of an
age-sex group causing higher expenditures.

We sum up by stating the main purpose of this paper, namely to examine whether ageing –
i.e. an increase of longevity alongside a fall in mortality rates – as such will increase health
expenditures, and the answer to this question is a clear “yes”. Independently from the specifi-
cation used, the 5-year survival rate always has a positive and sizeable impact on health care
expenditures so that for Germany a “Eubie Blake effect” indeed exists.

Appendix

The following Tables 10 to 12 provide the unit root tests for the variables HCE, MORT and
SR5.

Tables 13 and 14 present the simulation results for the regressions of the robustness checks.
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TU, Y.-K., N. KRÄMER, AND W.-C. LEE (2012): “Addressing the Identification Problem in
Age-period-cohort Analysis,” Epidemiology, 23(4), 583–593.

VAN BAAL, P. H., AND A. WONG (2012): “Time to Death and the Forecasting of Macro-level
Health Care Expenditures: Some Further Considerations,” Journal of Health Economics,
31(6), 876–887.

VON GAUDECKER, H.-M., AND R. SCHOLZ (2007): “Differential Mortality by Lifetime Earn-
ings in Germany,” Demographic Research, 17(4), 83–108.

28



WERBLOW, A., S. FELDER, AND P. ZWEIFEL (2007): “Population ageing and health care
expenditure: a school of red herrings?,” Health Economics, 16(10), 1109–1126.

YANG, Y., S. SCHULHOFER-WOHL, W. FU, AND K. LAND (2008): “The Intrinsic Estima-
tor for Age-Period-Cohort Analysis: What it is and How to Use It,” American Journal of
Sociology, 113(6), 1697–1736.

ZWEIFEL, P., S. FELDER, AND M. MEIER (1999): “Ageing of population and health care
expenditure: a red herring?,” Health Economics, 8(6), 485–496.

ZWEIFEL, P., S. FELDER, AND A. WERBLOW (2004): “Population ageing and health care
expenditure: New Evidence on the Red Herring,” Geneva Papers on Risk and Insurance:
Issues and Practice. Special Issue on Health Insurance, 29(4), 652–666.

ZWEIFEL, P., L. STEINMANN, AND P. EUGSTER (2005): “The Sisyphus Syndrome in Health
Revisited,” International Journal of Health Care Finance and Economics, 5(2), 127–145.

29


	Introduction
	Testable Hypotheses
	Data
	Data sources
	Variables

	Estimation Strategy
	Main specification
	Robustness Checks

	Regression Results
	Main Specification
	Robustness Checks
	Results for n-year-survival rates
	Age-specific mortality effect
	Dynamic panel models
	Regressions in first (and second) differences
	Summary of regression results


	Estimating the Demographic Effect on Health Care Expenditures
	Simulation results for the main specification
	Robustness Check

	Conclusions and Caveats

